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Abstract: Cardiovascular diseases (CVD) have become a major public health problem affecting
the national economy and social development, and have become one of the major causes of death.
Therefore, the prevention, control and risk assessment of CVD have been increasingly emphasized.
However, current CVD prediction models face limitations in capturing complex relationships within
physiological data, potentially hindering accurate risk assessment. This study addresses this gap by
proposing a novel Framework for Multi-Input, One-dimensional Convolutional Neural Network
(1D-CNN) with Attention Mechanism for CVD (FMI-CAECD). This framework leverages the feature
extraction capabilities of Convolutional Neural Network (CNN) alongside an Attention Mechanism
to adaptively identify critical features and non-linear relationships within the data. Additionally,
Shapley Additive Explanations (SHAP) analysis is incorporated to provide deeper insights into
individual feature importance for disease prediction. Performance evaluation on the BRFSS 2022
dataset demonstrates that FMI-CAECD achieves superior accuracy (97.45%), sensitivity (96.84%),
specificity (95.07%), and F1-score (92.44%) compared to traditional machine learning baselines and
other deep learning models. These findings suggest that FMI-CAECD offers a promising approach
for CVD risk assessment.

Keywords: convolutional neural network; disease prediction; feature extraction; risk assessment;
Shapley additive explanations

1. Introduction

CVD constitutes a significant global public health concern, ranking as the leading cause
of mortality worldwide [1]. CVD is widely recognized as a grave global health challenge,
responsible for a significant number of deaths and imposing a substantial burden on
healthcare systems worldwide. Various unhealthy lifestyle choices and behavioral habits
are associated with an increased risk of disease incidence. The American Heart Association
has identified several factors that may increase the risk of developing CVD, including sleep
disturbances, advanced age, and obesity [2]. These factors may operate independently or
interactively, thereby enhancing the potential for an individual to develop CVD. Therefore,
the early diagnosis, effective prevention, and treatment of CVD are crucial.

Machine learning (ML), a burgeoning field within computer science, has emerged
as a powerful tool in the medical domain. ML applications in tumor segmentation and
disease prediction have yielded promising results. Analogous to tumor segmentation and
other disease prediction applications, machine learning techniques hold promise for CVD
analysis. Within the realm of ML, deep learning (DL) has garnered increasing attention
for its proficiency in data processing and capacity for adaptive feature extraction from
complex datasets. These characteristics position DL as a valuable tool for tasks such as
cardiovascular disease analysis.
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However, current CVD prediction models face many challenges when dealing with
structured data. First, most existing models rely heavily on traditional machine learning
methods such as logistic regression (LR), random forests (RFs), support vector machines
(SVMs), and so on. These methods often lack effective strategies to capture the complex
interrelationships among features when dealing with different features, such as numerical,
categorical, and ordinal features. Second, these methods are sensitive to high-dimensional
features and data imbalance, which may lead to poor model performance in small sample
prediction or rare event detection. Some existing deep learning methods, such as single-
input CNN, usually focus on a single type of data input, which may be limited in fully
utilizing the interactive information of different feature types. In addition, many existing
models have limited interpretability, making it difficult for clinicians to understand the
basis of the model’s predictions, which affects the application of these models in actual
clinical practice.

Based on these challenges, there is an urgent need for a predictive model that can
effectively handle multiple feature types, dynamically identify vital features, and be well
interpretable. This study proposes the FMI-CAECD model, a novel approach combining a
deep feature extractor with an ensemble learning predictor. The manuscript’s contributions
are as follows:

• This study proposes a multi-input 1D-CNN architecture for feature extraction in
CVD prediction. This architecture facilitates the concurrent processing of various
data modalities (e.g., numerical, ordinal, and categorical). Compared to traditional
single-input CNN, this approach captures more complex interrelationships between
different data types, potentially enhancing feature extraction efficacy and overall
model performance.

• To guide the model’s focus on informative physiological features, this study incorpo-
rates a channel attention mechanism within the deep feature extractor. This mechanism
dynamically allocates weights to feature channels, prioritizing those most relevant
to the prediction task. The model effectively filters out noise and irrelevant informa-
tion by focusing on critical physiological indicators, resulting in a more accurate and
robust prediction.

• This study additionally incorporates a multi-model fusion strategy to potentially
enhance the model’s generalizability to new or unseen data. Single models can be
prone to bias and overfitting, especially when dealing with unbalanced or small
datasets. Ensemble learning leverages the strengths of multiple models, improving
prediction accuracy and robustness, particularly for rare disease detection.

• By incorporating SHAP analysis, this study pioneers a novel approach to interpreting
deep learning models in clinical settings. SHAP assigns an attribution value to each
feature, quantifying its influence on the model’s prediction for a specific instance. By
enhancing model interpretability, we improve trust in its predictions and uncover
critical CVD risk factors, providing invaluable clinical insights.

The remainder of this paper is structured as follows. Section 2 presents a comprehen-
sive review of the existing literature on CVD prediction using ML techniques. Section 3
details the research methodology employed in this study. Section 4 outlines the dataset
utilized, the experimental setup adopted, and the performance evaluation metrics. Finally,
Section 5 concludes the paper by summarizing the essential findings and outlining potential
future research directions.

2. Related Work

This section provides a comprehensive overview of prior research on CVD prediction
using ML and DL techniques. A substantial body of prior work has investigated the use
of ML for CVD prediction. However, the emergence of DL has led to a growing number
of studies demonstrating its potential to outperform traditional ML methods in various
aspects of CVD prediction.
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The following subsections review vital studies from both ML and DL perspectives,
focusing on their strengths and limitations. This analysis aims to identify the gaps and
challenges in existing research that call for further advancements in CVD prediction models.

2.1. Machine Learning

A recent study [3] evaluated the performance of seven machine learning models for
coronary heart disease (CHD) prediction. The models included LR, SVM, deep neural
network (DNN), decision tree (DT), naive Bayes (NB), RF, and K-nearest neighbor (K-NN).
Their study found that the DNN achieved the highest accuracy (98.15%), along with
sensitivity (98.67%) and precision (98.01%). Despite their impressive performance, DNN
models often lack interpretability, hindering clinicians’ understanding and trust in their
predictions. Additionally, their sensitivity to data imbalance can limit performance when
predicting rare events.

Another study [4] proposed a heart disease prediction model that combines feature
selection and principal component analysis. By combining chi-square selection and RF,
they extracted key features from the UCI heart dataset and achieved high-accuracy heart
disease classification. This method offers advantages in reducing data dimensionality
and potentially improving model performance, particularly when handling large datasets.
The model achieved high accuracy through effective management of data imbalance and
outliers. Despite its effectiveness, the model may have limitations in capturing complex
interrelationships between different feature types, potentially hindering its predictive
capabilities in heterogeneous datasets.

A heart disease prediction model (HDPM) was developed in a recent study [5], incor-
porating several data preprocessing techniques to potentially enhance model performance.
This approach leverages DBSCAN for outlier detection and removal within the data. Subse-
quently, it employs SMOTE-ENN to address potential class imbalances within the training
data distribution. Finally, the model utilizes an XGBoost classifier to predict heart disease.
The authors report that their model achieved high accuracy on a public heart disease
dataset. While effective, this model heavily relies on multiple preprocessing steps, which
can introduce complexity and increase computational overhead.

A hybrid machine learning technology (HRFLM) that combines RF with a linear
model (LM) for heart disease prediction was introduced in [6]. This approach leverages the
strengths of both models, potentially achieving high prediction accuracy while enhancing
model interpretability compared to traditional single models. However, the model’s
reliance on conventional ensemble learning techniques may limit its capacity to dynamically
prioritize critical features based on their physiological relevance.

Another recent study [7] proposed a machine learning-based hybrid decision support
system for early heart disease detection. The system addressed missing data using a
multivariate interpolation chain equation and employed a hybrid method combining
a genetic algorithm with recursive feature elimination for feature selection. The study
compared several classifiers, including SVM, NB, LR, RF, and AdaBoost. Their findings
indicated that the random forest classifier achieved the highest accuracy, suggesting its
potential as an effective tool for early heart disease detection. While hybrid approaches offer
potential benefits, they may not effectively leverage the interactive relationships between
different feature types.

2.2. Deep Learning

A cardiovascular disease prediction model using an improved deep belief network
(DBN) architecture was introduced in [8]. This approach combines unsupervised pre-training
with supervised fine-tuning, potentially enhancing model stability and prediction accuracy.
The study reports a classification accuracy of 91.26% on the test dataset, suggesting the
effectiveness of the DBN model for cardiovascular disease prediction. While the DBN
demonstrates effectiveness in specific applications, its reliance on unsupervised pre-training
limits its ability to prioritize relevant features during supervised training dynamically.
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A two-layer CNN architecture for classifying CHD in imbalanced clinical datasets was
proposed in [9]. Their model achieved an accuracy of 77%, demonstrating effectiveness
in CHD classification, particularly for non-CHD cases. The authors compared their CNN
approach to traditional machine learning methods like SVM and random forest, reporting
improved balanced accuracy and overall performance. However, these models typically
process only a single type of data, limiting their effectiveness.

A dual fully connected neural network (DFCNN) approach for high-precision arrhyth-
mia classification was explored in [10]. Their method involved extracting 105 features from
the data and utilizing a two-layer classifier to achieve accurate heartbeat classification.
The study reported high sensitivity and accuracy in arrhythmia detection, particularly for
identifying rare supraventricular premature beats (S-type). However, the model’s reliance
on manual feature engineering and fully connected layers may hinder its ability to identify
the most salient features dynamically.

An automated heartbeat classification system using a combined CNN and LSTM
approach for arrhythmia detection in ECGs was developed in [11]. Their system combined
a CNN and a long short-term memory network (LSTM) to achieve real-time ECG diagnosis.
The study reported an accuracy of 94.20%, suggesting the effectiveness of this deep learning
approach for ECG-based arrhythmia classification. Although practical, this approach
focuses primarily on a single feature type, limiting the ability to prioritize critical features
based on clinical significance dynamically.

A deep learning model combining CNN and LSTM with a dual attention mechanism
for ECG-based arrhythmia classification, was presented in [12]. This approach leverages
the strengths of both CNN and LSTMs: CNN for capturing spatial features and LSTM for
capturing temporal information in ECG data. The dual attention mechanism potentially
enhances the interpretability of the model. The study achieved an accuracy of 98.51% on
the AFDB dataset, suggesting the effectiveness of this approach for arrhythmia detection.
While effective in capturing temporal and spatial dependencies, this method may not fully
leverage the intricate relationships between diverse feature types.

Another study [13] explored a deep learning model for heart disease prediction com-
bining CNN and gated recurrent units (GRUs). Their approach utilized LDA and PCA for
feature extraction from the data. The CNN-GRU model achieved an accuracy of 94.5%,
exceeding the performance of LSTM (92.0%) and CNN-LSTM (93.7%) models on the same
dataset. As effective as this method is, it relies heavily on manual feature selection methods
and may overlook the implicit relationships in the data.

A hybrid deep learning model for heart disease prediction incorporating feature
selection and a deep neural network was proposed in [14]. Their approach utilizes a Ge-
netic Sinusoidal Algorithm (GSA) for feature selection, aiming to optimize the feature set
and potentially improve model performance. The selected features are then fed into a
DPA-RNN+LSTM model for disease prediction. This method potentially reduces computa-
tional cost by eliminating redundant features and achieves high prediction accuracy. This
model is effective, but feature selection using a genetic algorithm can lead to significant
computational overhead.

A novel heart disease prediction framework utilizing a Clustered Bidirectional Long
Short-Term Memory (C-BiLSTM) network was presented in [15]. The C-BiLSTM model,
leveraging bidirectional recurrent neural networks, effectively captured temporal depen-
dencies and long-term memory, outperforming traditional methods on the UCI heart
disease dataset. C-BiLSTM excelled in handling imbalanced datasets, making it a valuable
tool for early heart disease detection. Despite its effectiveness in capturing time-dependent
dependencies, C-BiLSTM may not fully handle the intricate relationships between various
feature types.

A novel hybrid deep learning architecture for early disease risk prediction was pro-
posed in [16]. The model synergistically integrates a Genetic Algorithm for feature selection,
Stacked Autoencoders for dimensionality reduction, and a Softmax classifier for risk predic-
tion. Comparative evaluations against traditional machine learning algorithms, including
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KN, DT, SVM, and CNN, demonstrated the superior performance and generalization ca-
pabilities of the proposed hybrid model. In spite of its effectiveness, the model’s reliance
on stacked autoencoders and genetic algorithms introduces additional complexity and
computational costs.

A novel hybrid deep learning architecture, MDenseNet201-IDRSNet, for early diagno-
sis of cardiovascular disease was introduced in [17]. MDenseNet201, with its dense connec-
tions, efficiently extracts both low-level and high-level features while reducing trainable
parameters. Relief and LASSO algorithms select the most discriminative features, followed
by IDRSNet for classification. MDenseNet201-IDRSNet achieved a remarkable prediction
accuracy on UCI datasets, outperforming existing methods. Although this approach is
practical, its multi-step feature selection process may limit flexibility and adaptability.

3. Method

This study investigates a novel CVD prediction model, FMI-CAECD, which uti-
lizes a multi-input 1D-CNN architecture coupled with EL techniques (see Figure 1). The
FMI-CAECD model architecture comprises three key stages: Feature Extraction, Feature
Enrichment, and Ensemble Prediction module. In the Feature Extraction Module, the model
employs tailored CNN architectures to effectively extract features from various data types,
including numerical, ordinal, and categorical data. The Feature Enrichment Module refines
the feature representation by employing global average pooling and a channel attention
mechanism. The Ensemble Prediction Module comprehensively utilizes the advantages of
three algorithms, XGBoost, LightGBM, and RF, to improve the accuracy and stability of
prediction through multi-model fusion.

Figure 1. FMI-CAECD network architecture.

In addition, to gain further insights into the relationship between features and CVD
risk, this study additionally employed SHAP analysis. SHAP analysis evaluates the impact
of feature permutations on model performance, providing a means to interpret model
predictions and potentially identify key CVD risk factors. This comprehensive approach
contributes to potentially improved model performance and enhanced interpretability.
Understanding these relationships can inform future research on CVD prevention and
treatment strategies.



Sensors 2024, 24, 7160 6 of 19

3.1. Feature Extraction Module

Considering the varied data types and feature structures, this study adopted a multi-
input 1D-CNN architecture to process health data. Processing health data for cardiovascular
disease prediction can be challenging due to the varied data types and feature structures.
A 1D-CNN offers a promising approach for this task [18]. The 1D-CNN can automatically
extract local features from one-dimensional data, potentially reducing the need for extensive
preprocessing and manual feature engineering.

Furthermore, the multi-input 1D-CNN architecture allows processing different data
types through tailored network branches. Each branch utilizes a 1D-CNN potentially
optimized for the corresponding input type (e.g., numerical data, categorical data, ordinal
data). This design can potentially improve the model’s flexibility in handling various data
sources and enhance the overall expressiveness of the model. By optimizing the network
architecture and parameters for each type of data, full utilization of each data dimension is
ensured. The advantage of this multi-input 1D-CNN architecture lies in its high sensitivity
to the intrinsic relationships within the data and its effective capability to learn complex
patterns in health data. The structure of the 1D-CNN primarily consists of convolutional
layers, activation functions, pooling layers, and fully connected layers.

The convolutional layer serves the purpose of feature extraction. It consists of a fixed
number of filters (convolutional kernels) of a fixed size, each of which slides over the input
data or the output from the previous layer, performing convolution operations to extract
local features. The mathematical formulation of our model is given by

xk
j = ∑

i∈Mj

wk
ijx

(k−1)
i + bk

j (1)

here, xk
j denotes the input vector of the convolutional layer; Mj denotes the size of the

sensory field; and wk
ij and bk

j are two trainable parameters, which are the weight and bias
of the convolutional kernel, respectively.

Activation functions introduce non-linearity, enabling the network to learn more
complex feature representations. Considering the gradient vanishing problem, the rectified
linear unit (ReLU) is chosen as the activation function. The mathematical formulation of
our model is given by

f (x) =

{
x, if x > 0
0, otherwise

(2)

where x refers to the output of the convolutional layer.
The pooling layer is mainly used to reduce data dimensionality and enhance the

model’s generalization capabilities. The proposed model employs two pooling strategies:
Max Pooling and Global Average Pooling. The Max Pooling layer reduces feature dimen-
sions by extracting the maximum value within the covered area. The Global Average
Pooling layer simplifies each feature map into a single numerical value by calculating the
average of the entire feature map.

The fully connected layer is located at the end of the network. It synthesizes the
learned local features into global features and maps them to the output space. Each neuron
in the fully connected layer is directly connected to all inputs, and can capture global
patterns in the data.

3.1.1. Numerical Data Processing Branch

In building deep learning models for CVD risk prediction, numerical data (e.g., met-
rics such as height, weight) contain a wealth of health information critical for accurately
predicting CVD risk. To this end, we designed a branch of the network that specializes in
this type of data, and the branch structure includes a one-dimensional convolutional layer,
a ReLU activation function, and a max pooling layer. The one-dimensional convolutional
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layer is the core part of feature extraction. We employ 16 convolutional kernels of size 3,
which effectively explore and extract local patterns and relationships within health data.

After the numerical data processing branch, the output feature vectors will become
more compact and informative, effectively reflecting the interactions among health indica-
tors and their combined effects on CVD risk. This highly abstract feature representation
enhances the model’s depth of understanding of the data and improves the accuracy of
predictions. Moreover, by processing features in this manner, the model can reduce the risk
of misjudgments due to feature redundancy, enhancing the reliability and practicality of
the model.

3.1.2. Categorical Data Processing Branch

The Categorical Data Processing branch processes categorical data related to an in-
dividual’s health status including gender, disease history, etc. The architecture of this
branch mainly contains 3 convolutional layers. The first convolutional layer uses 32 kernels
of size 3 to capture primary relationships and patterns. In comparison, the second and
third convolutional layers employ 64 and 128 kernels, to further deepen the network’s
hierarchy. Each layer is equipped with batch normalization, ReLU activation functions,
and a max pooling layer. The ReLU activation function and batch normalization layer are
used to improve the speed and stability of model training. Max pooling layers reduce data
dimensionality, thereby abstracting higher-level features.

The design of multiple convolutional and pooling layers aims to incrementally extract
and abstract features, with each layer’s depth significantly enhancing the network’s ability
to capture complex and deep patterns in the data. Overall, this multi-layer convolutional
structure enables the categorical data processing branch to efficiently extract critical fea-
tures from high-dimensional data, significantly improving the accuracy of predictions of
CVD risk.

3.1.3. Ordinal Data Processing Branch

In order to process and extract the features of ordinal data types like health status,
smoking status, age group, etc., we have designed a specialized branch for ordinal data
processing. This network architecture configures an embedding layer for each ordinal
feature. Mapping each category to a low-dimensional space is critical for understanding
essential features, such as health status, affecting CVD risk. A splicing layer is immediately
used to combine the embedding outputs of all features into a comprehensive feature vector.
This vector is then fed into a series of one-dimensional convolutional layers. Specifically,
the first one-dimensional convolutional layer uses 32 convolutional kernels of size 3 to
capture local features, followed by a max pooling layer of size 2. This process is repeated
in the second layer of one-dimensional convolution, which uses 64 kernels to enhance the
model’s feature extraction capability further.

The use of this structure allows the network to not only process input data of various
lengths and scales, but also to extract complex and nonlinear patterns from these data that
contribute to CVD risk assessment. Overall, the design of the Ordinal Data Processing
Branch optimizes the processing of ordinal data, which significantly enhances the model’s
predictive accuracy and generalization capabilities in tasks related to predicting CVD.

3.2. Feature Enrichment Module

Integrating information from multiple data sources is crucial in research on predicting
CVD Risk. An innovative Feature Enrichment Module has been designed to amalgamate
features from the Numerical Data Processing Branch, Categorical Data Processing Branch,
and Ordinal Data Processing Branch efficiently. This module aims to enhance the overall
performance and accuracy of the prediction model. A Global Average Pooling layer
processes features extracted through the multi-input one-dimensional convolutional neural
network, simplifying complex multi-dimensional features into one-dimensional vectors to
reduce model complexity.
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Although the multi-input 1D-CNN effectively extracts data features, not all features
are equally important for predicting CVD risk. An innovative channel attention mechanism
has been introduced to enhance the model’s sensitivity to key features. The channel
attention mechanism dynamically adjusts feature weights, optimizing the model’s focus
on key features, thereby improving the accuracy of predictions. This attention mechanism
processes the concatenated comprehensive feature vector F, which has dimensions [Batch
size, C], where C represents the total number of feature channels. Initially, a global average
pooling layer generates feature descriptors for each channel, which are then processed
through two fully connected layers. The first fully connected layer is responsible for
dimension reduction, which helps decrease the model’s parameters and computational
complexity. The second fully connected layer restores the original dimensions and outputs
the importance weights for each channel through a sigmoid activation function. These
weights are multiplied by the feature vector processed through the global average pooling
layer, refining the feature intensity of each channel via element-wise multiplication. This
produces the final optimized feature vector, which is used for subsequent prediction tasks.

Through this attention mechanism, the model can learn and enhance the intensity of
feature channels beneficial for prediction while suppressing those that are not important.
The design of this module thoroughly considers the diversity and complexity of medical
data, ensuring that while maintaining efficiency, the model better captures and utilizes the
key factors affecting CVD risk, providing solid data support for clinical decision-making.

3.3. Ensemble Prediction Module

Through the Feature Enrichment Module, we have successfully integrated complex
features from multiple data sources, such as numerical, categorical, and ordinal data,
generating a comprehensive feature vector that provides a rich information base for further
prediction. The Ensemble Prediction Module incorporates RF, XGBoost, and LightGBM,
selected due to their demonstrated superiority in a comparative experiment (Section 4.3.2).
These models excel in handling complex feature interactions and consistently outperformed
other methods in our study. Combining these models, the Ensemble Prediction Module
harnesses their complementary strengths and mitigates the risk of biases or overfitting
associated with individual models. The following sections describe the selected models
(RF, XGBoost, and LightGBM).

3.3.1. RF

RF is an ensemble classifier composed of many decision trees, analogous to a forest
being a collection of many trees [19]. Each tree is constructed by randomly drawing samples
from the original dataset through bootstrap sampling, ensuring diversity in the training
set. The training process of each tree is independent, and other trees do not influence its
results. RF is predicted by voting on the prediction results of all trees, using the Majority
Voting (MV) mechanism to determine the final category. The mathematical formulation of
our model is given by

RaFoc(p) = MV{Cq(p)}Y
1 (3)

where Cq(p) is the categorization prediction of sample p by the q-th decision tree; MV is
the majority vote of the constructed decision tree.

3.3.2. XGBoost

XGBoost is an efficient machine learning algorithm based on Gradient-Boosted Decision
Trees [20]. Its main characteristics include excellent system performance and rapid execu-
tion speed. The working principle of XGBoost involves progressively building the model,
with each step attempting to correct the errors from the previous step. Specifically, in each
iteration, XGBoost adds a new decision tree, aiming to correct the residuals of all previous
trees. The mathematical formulation of our model is given by

ŷ(t)i = ŷ(t−1)
i + η · ft(xi) (4)
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where ŷ(t)i is the predicted value for the i-th sample after the t-th iteration; ft is the tree
added in the t-th iteration; η is the learning rate; xi is the feature vector.

3.3.3. LightGBM

LightGBM is an efficient learning algorithm based on the gradient boosting framework,
demonstrating high efficiency and effectiveness when handling large-scale data [21]. It is
particularly suitable for classification and regression tasks involving high-dimensional data.
A distinctive feature of LightGBM is its use of a histogram-based decision tree algorithm,
which utilizes histograms for node splitting to reduce memory usage and accelerate compu-
tation. Additionally, LightGBM incorporates a leaf-wise growth strategy, which can more
effectively minimize the risk of overfitting than traditional depth-wise growth strategies.

3.3.4. Model Ensemble

We employ a soft voting mechanism for the model ensemble to enhance the accuracy
and stability of predictions. Soft voting aggregates the probability distributions from the
base models, allowing for a more informed final decision.

Under this mechanism, each classifier Ci outputs a prediction probability for each
possible class label. Specifically, classifier C1 outputs probabilities P1(L0) and P1(L1),
corresponding to labels L0 and L1, respectively. Similarly, classifiers C2 and C3 generate
corresponding probabilities P2(L0), P2(L1) and P3(L0), P3(L1). We calculate the composite
prediction probability for each label through our EL strategy. The mathematical formulation
of our model is given by

P(Li) = arg max
c

3

∑
n=1

wn · Pn(Li) (5)

where Pn(Li) denotes the prediction result of the nth model; i takes the value of 0 or 1 to
indicate whether it is diseased or not; and wn is the weight assigned to the nth model (these
weights can be adjusted according to the performance of the model, here wn = 1/3).

The final category prediction selects the label with the highest integrated probability
(see Figure 2). For example, if P(L0) > P(L1), the final predicted category is L0; conversely,
it is L1. This approach allows the integrated learner to utilize the predictive power of
multiple models, thereby improving the accuracy and reliability of the overall prediction.

Figure 2. Soft voting classifier (ensemble technique).
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3.4. Risk Factor Screening

To identify potential risk factors for CVD patients, we utilized SHAP values to assess
the importance of each feature. SHAP values represent an advanced method for interpreting
models based on the Shapley values from game theory. They quantify the contribution of
various potential risk factors to the predictive outcomes of diseases.

Given a set of features, we first utilize a trained deep learning model to make predic-
tions regarding cardiovascular conditions, and select a representative subset of the data.
We then use the DeepExplainer tool from the SHAP library to calculate the SHAP values
for each sample in this subset. These values can be interpreted as each feature’s positive or
negative impact on the model’s predictive output. The mathematical formulation of our
model is given by

ϕj = ∑
S⊆N\{j}

|S|!(|N| − |S| − 1)!
|N|!

[
fS(x)− fS\{j}(x)

]
(6)

where ϕj represents the SHAP value for feature j, N is the set of all features, and S is any
subset of N excluding feature j. |S| denotes the number of features in subset S, and |N| is
the total number of features. fS(x) is the model f ’s prediction output for input x under the
condition that subset S is included, while fS\{j}(x) is the prediction output when subset S
does not include feature j.

Through SHAP values, we can identify features that significantly influence the risk
of cardiovascular disease, and explore how these features impact disease prediction. This
facilitates a more comprehensive grasp of the potential risk factors.

3.5. Performance Metrics

Model evaluation is crucial as it provides insights into the model’s performance,
strengths, and weaknesses. Therefore, various evaluation metrics widely used in the
literature are employed in this study to assess the proposed model. These metrics include
Accuracy, Sensitivity, Specificity, F1-Score, and AUC. The mathematical formulation of our
model is given by

Accuracy =
TN + TP

TN + FN + TP + FP
(7)

Sensitivity =
TP

TP + FN
(8)

Specificity =
TN

TN + FP
(9)

F1-Score =
2 · TP

2 · TP + FP + FN
(10)

AUC =
1
2

[
TP

TP + FN
+

TN
TN + FP

]
(11)

TP refers to the count of samples for which the model accurately predicts the presence
of cardiovascular disease. FP denotes the number of individuals incorrectly predicted by the
model to have cardiovascular disease despite not having it. TN is the sample correctly identified
by the model as not having cardiovascular disease. FN represents the instances where the model
erroneously predicts individuals with cardiovascular disease do not have the condition.

4. Experiment
4.1. Datasets

This study utilized data from the Behavioral Risk Factor Surveillance System (BRFSS)
2022 [22]. BRFSS is an extensive survey conducted by the Centers for Disease Control and
Prevention (CDC) in the United States. It gathers data on health-related behaviors and
risk factors among the adult population. The survey conducted telephonic interviews with
adults across all states of the United States, gathering data on a variety of health-related
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behaviors, including smoking, alcohol consumption, healthcare utilization, mental health
status, obesity prevalence, and exercise habits. The dataset has a total of 445,132 records
and 326 features.

The BRFSS dataset relies on self-reported information collected through telephonic
interviews, which provides comprehensive coverage of the adult population across the United
States. While self-reported information may not always capture undiagnosed conditions,
such as CVD, the dataset remains a robust and reliable source for population-level health
assessments. The potential impact of such undiagnosed cases is considered minimal about
the dataset’s overall predictive value. While this limitation is common in survey-based data,
the BRFSS still provides valuable insights into CVD risk factors across the population.

4.1.1. Feature Selection

From the initial dataset consisting of 326 features, we performed an in-depth feature
selection based on a combination of literature review and empirical testing. Following a
comprehensive review of the relevant literature [23–26], we identified a set of variables
consistently reported as significant predictors of CVD and related health outcomes. To refine
our feature set, we employed Lasso regression to identify the most relevant variables by
shrinking the coefficients of less essential features. Lasso regression was selected due to
its ability to handle high-dimensional data and prevent overfitting through regularization,
making it ideal for our dataset with numerous initial features. This hybrid approach
enabled us to refine our feature set to 40 critical variables deemed to have substantial
predictive power in our study.

These selected features are categorized into numerical, categorical, and ordinal.
Numerical features represent continuous quantitative measurements that can take a wide
range of values (see Table 1). Categorical features represent distinct groups or classes
without an inherent order (see Table 2). On the other hand, ordinal features capture ordered
categories where the sequence or ranking of the values is meaningful (see Table 3).

These features were preprocessed using appropriate techniques, including reshaping
and embedding, to ensure compatibility with our multi-input model architecture. This
comprehensive approach to feature selection allowed us to build a predictive model that
integrates a diverse set of variables, reflecting various aspects of cardiovascular risk.

Table 1. Description of numerical features.

Feature Type Feature Name Description

Numerical PhysicalHealthDays Number of days with poor physical health
Numerical MentalHealthDays Number of days with poor mental health
Numerical SleepHours Average hours of sleep per night
Numerical HeightInMeters Height in meters
Numerical WeightInKilograms Weight in kilograms
Numerical TotalCholesterol Total cholesterol level
Numerical SystolicBloodPressure Systolic blood pressure (mmHg)
Numerical DiastolicBloodPressure Diastolic blood pressure (mmHg)
Numerical PhysicalActivities Minutes of physical activity per week
Numerical FruitsPerDay Servings of fruits per day
Numerical VegetablesPerDay Servings of vegetables per day
Numerical AlcoholDrinks Number of alcoholic drinks per week
Numerical WaistCircumference Waist circumference (cm)

Table 2. Description of categorical features.

Feature Type Feature Name Description

Categorical Sex Gender
Categorical RaceEthnicityCategory Race/ethnicity
Categorical HadDiabetes Diabetes status
Categorical MARITAL Marital status
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Table 2. Cont.

Feature Type Feature Name Description

Categorical HealthInsurance Health insurance status
Categorical PhysicalDisability Physical disability status
Categorical HadAsthma Asthma diagnosis
Categorical HadKidney Kidney disease diagnosis
Categorical HadCancer Cancer diagnosis
Categorical HadCOPD Chronic obstructive pulmonary disease diagnosis
Categorical HadStroke Stroke history
Categorical FluVaxLast12 Received flu vaccine in the past year
Categorical CholesterolCheck Ever had cholesterol checked
Categorical HIVTesting At risk for HIV
Categorical ImmunizationStatus Immunization status
Categorical COVIDPos COVID-19 vaccination status
Categorical DepressionDiagnosis Diagnosis of depression
Categorical NOPAINS Reasons for physical inactivity
Categorical Exercise Physical activity level

Table 3. Description of ordinal features.

Feature Type Feature Name Description

Ordinal GeneralHealth Self-reported general health status
Ordinal AgeCategory Age category
Ordinal EDUCA Education level
Ordinal INCOME3 Income level category
Ordinal EMPLOY1 Employment status
Ordinal SmokerStatus Smoking status
Ordinal Ecigarette Electronic cigarette use status
Ordinal HealthCareAccess Frequency of accessing healthcare

4.1.2. Imbalance Analysis

High-quality data are essential for developing accurate and reliable prediction models [27].
The telephone survey methodology employed in BRFSS 2022 data collection may have
resulted in a higher prevalence of missing values compared to other data collection methods.
Additionally, a significant portion of respondents either declined to participate in specific
questions, or expressed uncertainty regarding their responses. After implementing rigorous
data cleaning procedures to address missing and rejected inputs, the resulting dataset
comprises 246,016 high-quality records. A meticulous analysis of the dataset reveals that the
distribution of healthy individuals compared to those with cardiovascular disease within
the target variable stands at 94.5% and 5.5%, respectively. This discrepancy underscores
the pronounced imbalance in the target variable of our dataset. To mitigate the issue of
class imbalance within our dataset, we employed oversampling techniques to equalize
the distribution between classes. This strategic adjustment was aimed at enhancing our
model’s predictive accuracy and overall performance (see Figure 3).

In addition to addressing the class imbalance, we conducted an in-depth analysis
of the distribution of the 40 selected features to identify potential imbalances that may
introduce bias into our model predictions. For numerical characteristics, we calculated
descriptive statistics, including the mean, median, standard deviation, skewness, and
kurtosis, to assess whether the distribution of these characteristics showed significant
deviations. For example, AgeCategory showed a higher proportion of individuals aged
above 60, which aligns with the typical age distribution among individuals at higher risk
for CVD. Similarly, TotalCholesterol values exhibited a positively skewed distribution,
with a considerable portion of the dataset having elevated cholesterol levels, reflecting the
known association between high cholesterol and CVD risk.

Frequent distributions were examined for categorical and ordinal features to iden-
tify any categories that were disproportionately represented. Notably, features such as
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SmokerStatus revealed a higher prevalence among CVD patients, which is consistent with
established risk factors. These natural imbalances are expected and align with real-world
health disparities. Therefore, instead of artificially balancing these features, we preserved
their inherent distributions to maintain the validity of the relationships between these
features and CVD risk.

We conducted sensitivity analyses by comparing model performance under differ-
ent data balancing scenarios to assess further the potential impact of feature imbalances
on model predictions. Our findings indicated that retaining the natural distribution of
these features led to more accurate and reliable predictions, reinforcing the importance of
maintaining these natural imbalances.

Figure 3. Comparison of oversampling results.

4.1.3. Correlation Analysis

Additionally, we analyzed the interactions between the dataset features to identify
potential correlations. This examination was essential to understanding the complex
relationships that could influence the model’s predictive capabilities. If multicollinearity
exists among the variables, the model may produce unreasonable results. Therefore, it is
necessary to identify and remove variables that exhibit strong correlations (see Figure 4).

This figure presents a heatmap that illustrates the positive/negative correlations
among the features. Each cell C(i, j) in the grid represents the correlation of the features in
the i-th row and j-th column. The heatmap displays the strength of correlations between
features through varying colors in its cells. Colors closer to yellow indicate stronger
correlations (either positive or negative), while colors closer to purple denote weaker
correlations. From Figure 4, it can be observed that all correlation coefficients are below 0.6,
indicating the absence of highly correlated features. However, one feature pair exhibits
a correlation of 0.69, which suggests a moderate correlation. We carefully assessed this
feature pair and determined that, despite the moderate correlation, both features provide
unique and valuable information to the model. Consequently, all these features will be
input into the proposed method.

The Spearman correlation coefficient is used here to measure the correlation between
features. This method applies to continuous data and ordinal categorical data, effectively
handling non-normal distributions and outliers within the dataset. The Spearman’s rank
correlation coefficient ranges from −1 to 1, where 1 indicates a perfect positive correlation,
−1 indicates a perfect negative correlation, and 0 signifies no correlation. The mathematical
formulation of our model is given by

rs = 1 −
6 ∑ d2

i
n(n2 − 1)

(12)
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here, di represents the difference in ranks of the two variables at the i-th data point, and n
is the total number of data points.

Figure 4. Characteristic correlation heat map.

4.2. Experimental Setup

To avoid randomness, all experiments were subjected to 10-fold cross-validation. The
training of the models was conducted using the ADAM optimizer, which combines the
advantages of momentum techniques and adaptive learning rate adjustment, which is
particularly effective in large-scale datasets and high-dimensional parameter spaces. Due
to its rapid optimization capabilities, in-variance to gradient re-scaling, and the potential
to utilize sparse gradients, significantly enhance the performance of neural networks.
The chosen loss function is binary cross-entropy. This function measures the discrepancy
between the model’s predicted probability distribution and the actual distribution of the
target. The mathematical formulation of our model is given by

L = − 1
N

N

∑
i=1

[
y(i) log(p(i)) + (1 − y(i)) log(1 − p(i))

]
(13)

where y(i) ∈ {0, 1} is the label, and p(i) = σ( f (x(i))) is the model’s predicted probability
that the i-th sample is an upbeat class. This loss function aims to minimize the information
entropy between the predicted probabilities and the actual labels. Optimizing this loss
enables the model to accurately estimate the probabilities of events occurring and not
occurring during predictions.

4.3. Experimental Results

To implement our method, the Python programming language and various commonly
used libraries such as pandas, NumPy, Matplotlib, Seaborn, TensorFlow, Keras, and Scikit-
learn were employed. The execution was performed in Jupyter Notebook, part of the
Anaconda 3 distribution.
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4.3.1. Risk Factor Screening Results

To investigate which features contribute most significantly to the risk of CVD, this
study employed SHAP values to identify the features that have a substantial impact on
cardiovascular risk (see Figure 5).

Figure 5. Importance ranking of features.

The results indicate that the importance of “AgeCategory” is particularly significant,
aligning with our expectations, as age is a significant risk factor for CVD. The risk of CVD
significantly increases with age. “GeneralHealth” also plays a crucial role, reflecting an
individual’s overall health status; generally, better health is associated with a lower risk
of CVD, and vice versa. Other important factors include “SystolicBloodPressure” and
“AlcoholDrinks”, which are well-known contributors to CVD risk, with high blood pressure
and excessive alcohol consumption being established risk factors. Overall, these results
support the perspective that CVD risk assessment must consider a comprehensive array of
factors, including physiological, biological, and lifestyle elements.

4.3.2. High-Performance Filtering Results

In this section, high-performance filtering is used to select the meta-learners selected as
the meta-learners for the ensemble prediction module (see Table 4). This process involves com-
paring various algorithms, including RF, LR, KNN, XGBoost, and LightGBM. Ultimately,
RF, XGBoost, and LightGBM were selected as the meta-learners due to their complementary
strengths and high performance across multiple evaluation metrics.
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Table 4. Results of high-performance filtering.

Method Accuracy (%) Sensitivity (%) Specificity (%) F1-Score (%) AUC (%)

LR 85.56 84.19 85.93 84.11 85.37
KNN 85.70 84.98 87.40 85.50 85.85

XGBoost 85.92 86.27 88.56 85.87 86.33
LightGBM 86.98 86.13 87.84 86.96 88.35

RF 89.26 89.41 90.10 89.24 90.58
EL 92.70 91.98 90.07 92.50 91.65

RF is well-known for its ability to handle high-dimensional data and effectively reduce
overfitting through bagging and feature randomness. XGBoost, on the other hand, em-
ploys gradient boosting to enhance prediction accuracy by iteratively minimizing errors.
LightGBM, a lightweight and highly efficient boosting algorithm, excels at handling large
datasets and imbalanced data distributions. The combination of these models in the ensem-
ble strategy leverages their unique strengths, leading to improved overall performance.

The ensemble learning (EL) approach, which integrates these selected meta-learners,
further enhances predictive accuracy. The EL method outperformed individual models
in nearly all metrics, achieving an accuracy of 92.70%, a sensitivity of 91.98%, and an
AUC score of 91.65%. This superior performance demonstrates the effectiveness of the
ensemble strategy in combining the strengths of multiple algorithms to achieve more
accurate and reliable CVD predictions. By leveraging the complementary characteristics
of RF, XGBoost, and LightGBM, the EL approach optimally balances bias and variance,
improving generalization on unseen data. This complementary nature helps in effectively
capturing diverse data patterns and mitigating individual model limitations.

4.3.3. Comparative Experiment Results

To assess the efficacy of our proposed model, we conducted a comparative analysis
against several state-of-the-art models. The outcomes of these comparisons substantiate
the validity and performance of our approach (see Table 5).

Table 5. Results of comparative experiments.

Reference Method Year Accuracy (%)

Dileep et al. [15] C-BiLSTM 2023 93.57
Vai et al. [14] DPA-RNN+LSTM 2023 94.49

Mandava et al. [17] MDenseNet201-IDRSNet 2024 94.70
Bülbül et al. [16] GA-SAE-Softmax 2024 95.03

Ours FMI-CAECD 97.45

Compared to prior models, the proposed deep learning-based CVD prediction model
outperforms significantly. Achieving an accuracy of 97.45%, our model significantly outperforms
state-of-the-art approaches, including the C-BiLSTM model (93.57%), DPA-RNN+LSTM model
(94.49%), MDenseNet201-IDRSNet model (94.70%), and GA-SAE-Softmax model (95.03%).

The C-BiLSTM model effectively captures temporal dependencies through its bidi-
rectional LSTM architecture, which is beneficial for sequential data analysis. However,
its reliance on sequential feature learning may limit its performance in handling complex
structured datasets with multiple feature types. Similarly, the DPA-RNN+LSTM model
incorporates a dual-path attention mechanism to enhance temporal feature extraction. How-
ever, its architecture is primarily focused on sequential data, and may not fully leverage
the interrelationships between different types of features.

The MDenseNet201-IDRSNet model leverages dense connections to improve feature
learning and information flow, achieving slightly higher accuracy. Despite its effective-
ness in feature extraction, its complex structure may pose challenges regarding model
interpretability. The GA-SAE-Softmax model combines genetic algorithms with stacked
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autoencoders for optimized feature selection and dimensionality reduction, improving
accuracy. However, its reliance on autoencoders may make it sensitive to noise and high
dimensionality in data.

In contrast, our proposed FMI-CAECD model incorporates a multi-input 1D-CNN
architecture that enables the parallel processing of numerical, ordinal, and categorical
data. This design effectively captures complex interrelationships between different feature
types, enhancing feature extraction efficiency. Additionally, integrating a channel attention
mechanism allows the model to dynamically focus on the most informative features, thereby
improving predictive accuracy. This significant improvement validates the superiority of
the FMI-CAECD model in CVD prediction and highlights its notable potential in enhancing
model interpretability and performance.

4.3.4. Ablation Experiment Results

Ablation experiments observe the specific contribution of each part to the overall
predictive performance by systematically removing key modules from the structure. All
experiments are conducted on the same dataset for both training and testing (see Table 6).

Table 6. Results of ablation experiments.

Method Accuracy (%) Sensitivity (%) Specificity (%) F1-Score (%) AUC (%)

CNN 94.76 93.54 92.83 93.67 94.38
CNN+Att 95.61 94.23 91.40 92.51 95.85

Ours 97.45 96.84 95.07 92.44 96.68

The results indicate that models incorporating attention mechanisms and EL out-
perform those using solely multi-input 1D-CNN across all evaluation metrics, including
accuracy, sensitivity, specificity, F1 score, and AUC values. When an attention mechanism
(CNN+Att) was added, the accuracy increased from 94.76% to 95.61%. This shows that
the attention mechanism allows the model to assign higher weights to more informative
features, thereby enhancing the feature representation and more effectively capturing key
patterns. These results demonstrate the effectiveness and superiority of our proposed
method. Especially when dealing with complex datasets, it is capable of delivering more
accurate and robust performance.

5. Conclusions

CVD remains a leading cause of mortality despite significant advancements in medical
technology. This paper proposes a novel approach to CVD prediction. It combines a deep
feature extractor with an integrated predictor, aiming to achieve superior accuracy and
early detection compared to existing methods. The architecture of the deep feature extractor
predominantly employs an enhanced multi-input 1D-CNN tailored for processing diverse
data types. This system integrates a channel attention mechanism to augment feature
enrichment, enhancing the specificity and relevance of the extracted features. An advanced
selection process utilizing high-performance filtering in the prediction segment identifies
three superior meta-learners. This methodical selection is designed to optimize the accuracy
and robustness of the integrated predictive model.

The proposed model’s efficacy is evaluated through a series of experiments conducted
on the BRFSS 2022 dataset. The dataset comprises 246,016 records and 40 features. These
data encompasses a broad range of health-related domains, including lifestyle behaviors,
medical history, socioeconomic factors, and physical assessment findings. Compared to
traditional approaches, our proposed method achieves competitive performance on the
BRFSS 2022 dataset, demonstrating statistically significant improvement on established
metrics such as accuracy, sensitivity, and AUC. We employ the SHAP approach for feature
importance measurement to improve the model’s interpretability and gain insights into
feature importance. Such transparency can facilitate informed decision-making for both
clinicians and patients.
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While the proposed models exhibit promising performance, a comprehensive evalua-
tion requires acknowledging certain limitations. The current study primarily concentrates
on structured tabular data, a common source for clinical decision-making. To broaden
the applicability of these models, future research should investigate the integration of
multimodal data, such as echocardiography or imaging modalities. Such an approach
could provide complementary information, potentially enhancing the generalizability and
robustness of the models.

Another limitation lies in the ensemble learning using multiple learners. While en-
semble methods can enhance prediction accuracy and stability, they often introduce in-
creased computational complexity and resource demands. This can hinder their practical
implementation in real-time or large-scale clinical settings. Future research should ex-
plore strategies for optimizing ensemble methods to balance computational efficiency and
predictive performance.

It should also be noted that the BRFSS dataset is based on self-reported information
collected through telephonic interviews. As a result, there may be instances where indi-
viduals with undiagnosed CVD are not accurately captured. However, given the large
sample size and comprehensive nature of the BRFSS data, the potential impact of such
misclassification is considered minimal.
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