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Abstract: This study focuses on the classification of six different macrofungi species using advanced
deep learning techniques. Fungi species, such as Amanita pantherina, Boletus edulis, Cantharellus cibarius,
Lactarius deliciosus, Pleurotus ostreatus and Tricholoma terreum were chosen based on their ecological
importance and distinct morphological characteristics. The research employed 5 different machine
learning techniques and 12 deep learning models, including DenseNet121, MobileNetV2, ConvNeXt,
EfficientNet, and swin transformers, to evaluate their performance in identifying fungi from images.
The DenseNet121 model demonstrated the highest accuracy (92%) and AUC score (95%), making it
the most effective in distinguishing between species. The study also revealed that transformer-based
models, particularly the swin transformer, were less effective, suggesting room for improvement in
their application to this task. Further advancements in macrofungi classification could be achieved
by expanding datasets, incorporating additional data types such as biochemical, electron microscopy,
and RNA/DNA sequences, and using ensemble methods to enhance model performance. The
findings contribute valuable insights into both the use of deep learning for biodiversity research and
the ecological conservation of macrofungi species.

Keywords: macrofungi classification; deep learning; DenseNet121; fungi identification; machine
learning models

1. Introduction

Macrofungi, a group of fungi producing prominent fruiting bodies above or below the
ground, represent an immense diversity within the species Basidiomycota and Ascomycota
under the kingdom Fungi. These fruiting bodies, commonly known as mushrooms, are eas-
ily identifiable in natural environments and are vital components of forest ecosystems [1].
Macrofungi sustain ecosystem functionality by contributing to nutrient cycling, soil forma-
tion, and complex biotic interactions with other organisms [2]. To date, over 56,000 species
of macrofungi have been documented worldwide, highlighting their remarkable biodiver-
sity and ecological significance. Notably, approximately 1000 species are considered toxic,
while more than 2000 species are edible, providing nutritional value and supporting food
security for both humans and forest fauna [2–5].
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Among the diverse macrofungi, many species exhibit unique ecological relationships
and have significant cultural, nutritional, or toxicological relevance. For instance, Amanita
pantherina, also known as the panther cap, is associated with coniferous and deciduous
woodlands and has a storied history in mystical practices due to its psychoactive compo-
nents, ibotenic acid and muscimol [6,7]. In contrast, Boletus edulis, or porcini, is one of the
most popular wild edible mushrooms, valued for its rich nutritional content, including
proteins, vitamins, and essential minerals [8]. Similarly, Cantharellus cibarius, the chanterelle,
is cherished not only for its flavor and culinary value but also for its significant levels of
bioavailable vitamin D2, crucial for human health [9].

Other notable macrofungi include Lactarius deliciosus, or the delicious milk cap, which
plays an essential ecological role as an ectomycorrhizal partner in pine forests, promoting
their growth and health [10]. Likewise, Pleurotus ostreatus, commonly known as the oyster
mushroom, is not only a commercially important edible species but also contributes to
environmental sustainability through the bioconversion of agricultural waste [11,12]. In
contrast, Tricholoma terreum, previously considered a desirable edible species, has been
re-evaluated due to potential health risks linked to rhabdomyolysis, underscoring the
complex interplay between macrofungi and human health [13].

The advancement of machine learning (ML) and computer vision technologies is
revolutionizing macrofungi identification and classification, offering significant advantages
over traditional taxonomic methods. Conventional identification requires extensive ex-
pertise and can be time-consuming, whereas ML-based systems can rapidly analyze large
datasets, discerning even subtle morphological variations with high precision [14,15]. Such
technological integration accelerates species identification and enhances accessibility for
non-experts through user-friendly mobile applications, thereby reducing misidentification
risks and promoting broader public engagement in fungal biodiversity [16]. Furthermore,
incorporating environmental data into ML models enhances ecological studies, contribut-
ing to the conservation of macrofungal species [17]. The synergy between researchers and
citizen scientists has proven instrumental in creating high-quality datasets essential for
effective conservation strategies.

The current research aims to leverage deep learning (DL), an advanced subset of
artificial intelligence, to classify six distinct macrofungi species, namely Amanita pantherina,
Boletus edulis, Cantharellus cibarius, Lactarius deliciosus, Pleurotus ostreatus, and Tricholoma
terreum. These species were selected based on their ecological significance and diverse
morphological characteristics. The development of a DL model for the rapid and accurate
identification of these species will support scientific research and enhance public aware-
ness and engagement, ultimately contributing to the conservation and sustainable use of
macrofungal biodiversity.

2. Materials and Methods

In this study, datasets were generated using naturally captured images, subsequently
labeled for the training of artificial intelligence (AI) algorithms (Figure 1). Data deemed
unsuitable for training purposes were excluded from the final dataset. The images were
then converted into the PNG format, with a resolution of 300 dpi to ensure consistency
across the dataset. Given the requirement for a large and suitable dataset for AI algorithm
training, additional data were sourced from open access repositories to supplement the
natural data. Specifically, open-source data (www.gbif.org, accessed on 8 October 2024)
accounted for no more than 25% of the total data for each mushroom species. Detailed
information regarding the sources and characteristics of the datasets derived from these
open sources is presented in Table 1. The primary objective was to train AI algorithms;
thus, the images were not presented in their raw form within the article. Considering the
substantial data requirements for effective AI training, it became evident that obtaining
a dataset of the required size solely from natural shots would be impractical. Therefore,
publicly available datasets were utilized to bridge this gap and meet the necessary data
volume for robust AI training.

www.gbif.org
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Figure 1. Overview of datasets utilized for training AI algorithms, presented from a
macroscopic perspective.

Table 1. Type names of datasets taken from open sources, source name, percentage share of the taken
dataset in the entire used dataset, and the technical specifications of the sources.

Mushroom Species
Name Source Percentage of Photographs

Taken from Source Photo Type Resolution

Amanita pantherina Global Core Biodata Resource <25% JPG 300 dpi

Boletus edulis Global Core Biodata Resource <20% JPG 300 dpi

Cantharellus cibarius Global Core Biodata Resource <25% JPG 300 dpi

Lactarius deliciosus Global Core Biodata Resource <25% JPG 300 dpi

Pleurotus ostreatus Global Core Biodata Resource <25% JPG 300 dpi

Tricholoma terreum Global Core Biodata Resource <25% JPG 300 dpi

Deep learning has evolved significantly since its early foundations in the 1940s. The
concept of artificial neurons, introduced by Warren McCulloch and Walter Pitts [18], laid the
groundwork for neural networks, followed by Frank Rosenblatt’s perceptron in 1957 [19].
However, neural networks faced limitations, particularly with non-linear problems, which
led to a decline in interest after criticisms in the late 1960s. The field resurged in the 1980s
with the reintroduction of backpropagation by Geoffrey Hinton and colleagues [20], al-
lowing multi-layer networks to be trained more effectively. Despite early progress, deep
learning faced computational and data limitations until the 2000s, when breakthroughs
like Hinton’s deep belief networks and Alex Krizhevsky’s convolutional neural networks
(CNNs) [21] in the 2012 ImageNet competition demonstrated the power of deep architec-
tures. The availability of GPUs and large datasets accelerated these advancements. The
late 2010s saw further breakthroughs with the development of generative models like
GANs and transformers, which revolutionized fields like image generation and natural
language processing. Today, deep learning thrives due to improved algorithms, big data,
and computational power, driving innovation across industries from healthcare to robotics.



Sensors 2024, 24, 7189 4 of 22

In this study, 5 different machine learning techniques, logistic regression, Support Vector
Machine (SVM), k-Nearest Neighbors (k-NN), decision tree, and random forest algorithms,
and 12 different deep learning methods, ConvNeXtBase [22], ConvNeXtSmall [22], ConvNeXt-
Large [22], EfficientNetB [23], EfficientNetB3 [23], EfficientNetB7 [23], DenseNet121 [24],
InceptionV3 [25], InceptionResNetV2 [26], MobileNetV2 [27], ResNet152 [28], Xception [29],
and swin transformers (shifted window transformers) [30] were used for the classification
of six different fungi species.

2.1. ML

Logistic regression [31] is a linear model used for binary classification tasks. It esti-
mates the probability that a given input belongs to a specific class by applying the logistic
function to a linear combination of the input features. The output is a probability score
between 0 and 1, which is then used to classify the instance. It works best when the classes
are linearly separable and is easy to implement and interpret. However, it may struggle
with more complex relationships in the data.

SVM [32] is a powerful classification algorithm that seeks to find the optimal hyper-
plane that best separates the classes in the feature space. It works by maximizing the margin
between data points from different classes. SVM is effective in high-dimensional spaces
and with non-linearly separable data when using kernel tricks. Despite its power, SVM can
be sensitive to noisy data and may require the careful tuning of parameters (such as the
choice of kernel) to achieve optimal performance.

k-NN [33] is a non-parametric, instance-based learning algorithm that classifies a
new data point based on the majority class among its “k” nearest neighbors. It does not
assume any underlying distribution of the data, making it versatile. However, k-NN can
be computationally expensive with large datasets, and it is sensitive to the choice of “k”
and the distance metric. It also tends to struggle with noisy data, as each neighbor’s class
significantly impacts the result.

Decision tree [34] is a tree-structured model that splits the data into subsets based on
feature values, making decisions using a series of if-then conditions. Each internal node
represents a feature, each branch represents a decision rule, and each leaf node represents
an outcome (class label). Decision trees are highly interpretable but prone to overfitting,
especially if the tree grows too deep. They are non-linear models and work well for both
classification and regression tasks.

Random forest [35] is an ensemble learning method that builds multiple decision trees
during training and merges their predictions to improve accuracy and reduce overfitting.
Each tree is built using a random subset of features and data points, which introduces
variability and makes the model more robust than a single decision tree. Random forest
can handle large datasets with higher dimensionality but may become less interpretable
due to the combination of multiple trees.

2.2. DL

ConvNeXtBase [22] is a modern convolutional neural network (CNN) architecture
designed as an evolution of traditional CNNs, integrating ideas from transformer models
while maintaining the efficiency and simplicity of CNNs. Developed by Facebook AI
Research, it adopts design principles from the vision transformer (ViT), such as using
large kernel sizes and layer normalization, while refining conventional CNN elements.
ConvNeXtBase is known for its strong performance in image classification tasks, achieving
competitive results with transformers on large-scale datasets like ImageNet, while being
more computationally efficient for vision tasks. This model balances high accuracy and
efficiency, making it suitable for a variety of visual recognition applications.

ConvNeXtSmall [22] is a variant of the ConvNeXt architecture, designed to offer a
more lightweight and efficient model for image classification and other vision tasks. Like
ConvNeXtBase, it builds on traditional CNN structures while incorporating innovations
inspired by transformer models, such as large kernel sizes and layer normalization. Con-
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vNeXtSmall maintains a balance between computational efficiency and accuracy, making it
well-suited for scenarios where lower computational cost is important, but strong perfor-
mance on tasks like object recognition is still required. It delivers competitive results on
benchmarks like ImageNet, offering a good trade-off between speed and performance for
real-world applications.

ConvNeXtLarge [22] is a larger and more powerful variant of the ConvNeXt archi-
tecture, designed for high-performance image classification and visual recognition tasks.
Like its smaller counterparts, ConvNeXtLarge combines the strengths of traditional con-
volutional neural networks with design elements from vision transformers, such as large
kernel sizes, layer normalization, and attention mechanisms. It is more computationally
intensive but delivers top-tier performance, particularly on large-scale datasets like Ima-
geNet. ConvNeXtLarge is particularly well-suited for tasks that demand higher accuracy
and robustness, often outperforming other models in terms of precision while maintaining
the efficiency associated with CNN-based architectures.

EfficientNetB0 [23] is the smallest model in the EfficientNet family of convolutional
neural networks, designed to achieve high accuracy while being computationally effi-
cient. Developed by Google, EfficientNetB0 uses a novel compound scaling method that
uniformly scales network depth, width, and resolution to optimize performance. This
approach allows the model to achieve excellent results on benchmarks like ImageNet with
significantly fewer parameters and lower computational costs compared to traditional archi-
tectures. EfficientNetB0 is particularly useful in resource-constrained environments where
both accuracy and efficiency are essential, making it ideal for mobile and edge applications.

EfficientNetB3 [23] is a larger and more powerful variant within the EfficientNet
family, designed to balance accuracy and efficiency using Google’s compound scaling
method. Like EfficientNetB0, it scales depth, width, and resolution uniformly, but with
more layers and higher resolution inputs, leading to improved performance on tasks such
as image classification. EfficientNetB3 achieves better accuracy than smaller models like B0
while still being more computationally efficient compared to other architectures of similar
accuracy. It is well-suited for scenarios where higher accuracy is needed but computational
resources are somewhat limited, offering strong performance on benchmarks like ImageNet
with manageable resource requirements.

EfficientNetB7 [23] is the largest and most powerful model in the EfficientNet family,
designed for high-performance tasks where maximizing accuracy is a priority. Like other
EfficientNet models, it uses Google’s compound scaling method to effectively scale up
the network’s depth, width, and input resolution. EfficientNetB7 offers superior accuracy
on image classification benchmarks like ImageNet, often achieving state-of-the-art results.
However, due to its larger size and higher computational demands, it requires more
resources compared to smaller models like EfficientNetB0 or B3. EfficientNetB7 is best
suited for tasks that demand high precision and where computational resources are more
readily available.

DenseNet121 [24] is a convolutional neural network model that belongs to the DenseNet
(Densely Connected Networks) family, introduced to improve information flow between
layers. Unlike traditional architectures where layers are connected sequentially, DenseNet121
connects each layer to every other layer in a feed-forward manner. This dense connectivity
encourages feature reuse, reduces the vanishing gradient problem, and improves parameter
efficiency, allowing the model to be relatively compact while maintaining high performance.
DenseNet121 has 121 layers and is particularly effective for image classification tasks,
offering strong results on benchmarks like ImageNet while requiring fewer parameters
and less computational power than other deep models, such as ResNet. Its efficient
design makes it well-suited for various computer vision applications, especially when
computational resources are limited.

InceptionV3 [25] is a deep convolutional neural network architecture that is part of
Google’s Inception family, known for its efficient use of computational resources. It builds
on the earlier versions of Inception by refining the “Inception module” concept, where
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multiple convolutional filters of different sizes are applied to the same input in parallel.
This allows the network to capture a wider range of spatial features, increasing its ability to
recognize complex patterns in images. InceptionV3 introduces additional improvements,
such as factorized convolutions (splitting a large convolution into smaller ones), grid
reduction techniques, and the use of batch normalization to improve training speed and
accuracy. It is highly effective for image classification tasks and has achieved strong results
on large-scale datasets like ImageNet, offering a good balance between high accuracy and
computational efficiency. InceptionV3 is widely used in real-world applications, such as
object detection and image analysis, especially when resources are constrained but high
performance is required.

MobileNetV2 [27] is a convolutional neural network architecture designed specifically
for efficient performance on mobile and resource-constrained devices. Introduced by
Google, it improves on the original MobileNet by using an inverted residual structure and
linear bottlenecks, which help to reduce computational cost while maintaining accuracy.
The key innovation in MobileNetV2 is the “inverted residual block”, which expands the
input channels first, applies depthwise separable convolutions, and then compresses the
output back down, allowing for more efficient processing. MobileNetV2 is highly efficient
in terms of both speed and memory usage, making it ideal for applications like real-
time image recognition on mobile devices or edge computing. Despite its lightweight
nature, it performs well on benchmarks like ImageNet, offering a good trade-off between
performance and efficiency for mobile AI tasks.

ResNet152 [28] is part of the ResNet family, which introduced the concept of residual
connections to address the vanishing gradient problem that commonly occurs in very deep
networks. These connections enable the network to “skip” layers, allowing the model to
learn residual mappings instead of direct mappings, which improves training efficiency
and accuracy as depth increases. ResNet152, with 152 layers, is one of the deeper variants,
utilizing bottleneck blocks to reduce the computational cost while preserving model capac-
ity. This design allows ResNet152 to achieve high accuracy on challenging tasks, such as
image classification on ImageNet, while remaining computationally efficient compared to
earlier deep networks. Its robustness and scalability have made it a popular backbone for
various computer vision applications, including object detection and image segmentation.

InceptionResNetV2 [26] is a hybrid convolutional neural network architecture that
combines the strengths of the Inception and Residual networks. This model builds on the
concepts introduced in both the InceptionV3 and ResNet architectures, aiming to enhance
performance on image classification tasks while maintaining computational efficiency.

Xception [29] is a deep convolutional neural network architecture that builds upon
the ideas of depthwise separable convolutions, which were popularized by MobileNets.
Introduced by François Chollet, Xception stands for “Extreme Inception” and is designed
to enhance model efficiency and performance by separating the spatial and channel-wise
convolutions. The architecture consists of a series of depthwise separable convolutions fol-
lowed by pointwise convolutions, allowing the model to learn rich feature representations
while significantly reducing the number of parameters compared to traditional convolu-
tional layers. Xception has achieved state-of-the-art results on image classification tasks,
particularly on benchmarks like ImageNet. Its design emphasizes efficient computation
and parameter utilization, making it well-suited for both high-performance applications
and deployment in resource-constrained environments. This architecture has influenced
subsequent models and is widely used in various computer vision applications, including
image classification, object detection, and transfer learning.

Swin transformers [36] are a novel vision transformer architecture developed by Mi-
crosoft Research, designed to enhance performance on a variety of computer vision tasks
while maintaining computational efficiency. This architecture utilizes a hierarchical struc-
ture that processes images at multiple scales, making it particularly effective for tasks
such as image classification, object detection, and semantic segmentation. A key feature
of swin transformers is their use of shifted windows, which divides the input image into
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non-overlapping windows and performs self-attention within these windows. By shifting
the windows at each layer, the model captures cross-window interactions, allowing it to
learn relationships between different parts of the image more effectively. Additionally, the
hierarchical representation builds feature maps of varying resolutions, capturing both fine
and coarse details, while windowed self-attention reduces the computational burden typi-
cally associated with global self-attention mechanisms. Swin transformers have achieved
state-of-the-art results on benchmark datasets like ImageNet, COCO, and ADE20K, demon-
strating their effectiveness across various computer vision applications and representing a
significant advancement in applying transformer architectures to vision tasks.

The all-selected DL models each offer unique strengths that make them valuable for a
diverse range of tasks. ConvNeXt models (Base, Small, Large) represent a modernized ver-
sion of traditional CNNs, combining the simplicity of convolutions with updates inspired
by ViTs, making them efficient and scalable. EfficientNet (B0, B3, B7) uses a specialized
scaling method to balance accuracy and computational efficiency, offering excellent per-
formance with relatively low resource demands. DenseNet121 optimizes feature reuse
by connecting each layer to all previous layers, leading to efficient learning with fewer
parameters. InceptionV3 and InceptionResNetV2 are designed to capture multi-scale fea-
tures, with the latter combining Inception’s multi-scale processing and ResNet’s residual
connections for improved gradient flow and deeper model training. MobileNetV2 focuses
on lightweight architecture, making it ideal for limited computational resources. ResNet152
is a deep network that uses residual connections to ensure stable training and strong
performance, even with considerable depth. Xception builds on Inception by replacing
standard convolutions with depthwise separable convolutions, offering both efficiency and
high accuracy. Finally, swin transformers introduce a transformer-based architecture that
efficiently processes images using hierarchical patching, making it well-suited for capturing
long-range dependencies in vision tasks. Together, these models provide a broad spectrum
of approaches, covering traditional CNNs, efficient neural network designs, and modern
transformer-based architectures. Also, they have been widely adopted and validated on
popular benchmark datasets, such as ImageNet.

2.3. Metrics

The models, ConvNeXtBase, ConvNeXtSmall, ConvNeXtLarge, EfficientNetB0, Effi-
cientNetB3, EfficientNetB7, DenseNet121, InceptionV3, InceptionResNetV2, MobileNetV2,
ResNet152, and Xception, were fine-tuned using consistent parameter settings. The Adap-
tive Moment Estimation (ADAM) optimizer [37] was employed with a learning rate of
0.0001, and the models were trained for 20 iterations.

All experiments were conducted on Google Colaboratory, a cloud-based platform that
allows users to write and execute Python code for free, widely used by data scientists, ma-
chine learning practitioners, and researchers. To ensure balanced training, equal numbers
of data samples were used for each macrofungi species during both training and testing.
Given the limited number of available images, 4-fold cross-validation was implemented.
This widely used technique is particularly beneficial when working with small datasets, as
it divides the data into k equal-sized subsets (folds). The model is trained and validated
across k iterations, with a different fold used for validation and the remaining k-1 folds
used for training in each round. At each iteration, the model is trained on most of the
data and tested on the reserved fold, providing insight into its performance. This process
continues until every fold has been used once for validation. Afterward, the results from
all iterations are averaged to give a more reliable estimate of the model’s generalization
performance. Importantly, the training and testing datasets were kept completely separate,
ensuring that no images used for training were included in the testing set.

The effectiveness of all the methods applied was evaluated based on several key
performance metrics, including accuracy, which measures the overall correctness of the
predictions, precision, which assesses the proportion of correctly identified positive in-
stances out of all predicted positives, and recall, which evaluates the model’s ability to
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identify actual positive cases. Additionally, the F1-score was used to provide a harmonic
mean between recall and precision, giving a balanced measure of the model’s performance,
especially on imbalanced datasets. Lastly, the AUC (Area Under the ROC Curve) was in-
cluded to assess the model’s capability to distinguish between positive and negative classes
across varying decision thresholds, with a higher AUC indicating better discriminatory
power. The equations for accuracy, precision, recall and F1-score metrics are presented in
Equation (1), Equation (2), Equation (3), and Equation (4), respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TN + FP
(2)

Recall =
TP

TP + FN
(3)

F1 − score =
2 × (Precision × Recall)

Precision + Recall
(4)

In Equations (1)–(3), the terms TP, FP, TN, and FN are defined as follows [38]:

• TP (true positives) corresponds to instances where a diseased condition is accu-
rately predicted.

• FP (false positives) occurs when a healthy sample is incorrectly identified as diseased.
• TN (true negatives) refers to cases where healthy samples are correctly classified.
• FN (false negatives) pertains to instances where a diseased condition is wrongly

classified as healthy.

Additionally, the Grad-CAM (Gradient-weighted Class Activation Mapping) [39] tech-
nique was employed to analyze the specific areas of the images that the models prioritized
during the inference process. Neural networks are composed of multiple interconnected
layers with numerous parameters that are adjusted during training to process and interpret
input data. However, understanding how the models generate outputs from the given
inputs can be challenging, often leading to a lack of transparency and reduced confidence
in their predictions. Grad-CAM is a powerful visualization method designed to interpret
the decision-making processes of convolutional neural networks. It is particularly useful in
image classification tasks, as it highlights the regions of an image that are most influential
in the model’s prediction. In Grad-CAM visualizations, red regions represent the areas
where the model is most focused, meaning that the network uses these regions to form
its prediction. Conversely, blue regions signify areas of lesser importance, indicating that
the model pays minimal attention to these parts when making its decision. This technique
enhances the interpretability of CNNs, offering insights into how the model processes
visual data and providing a clearer understanding of its decision-making process.

3. Results

This section outlines the experiments carried out and the results obtained from
the study.

The ML models were carefully configured with parameters to provide a balance
between accuracy, robustness, and computational efficiency. The parameter settings for
these models were set as follows:

For logistic regression:

• Solver = liblinear
• Maximum iteration = 1000
• Regularization parameter C = 1.0

For SVM:

• Kernel = Radial Basis Function (RBF)
• Regularization parameter C = 1.0
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• Probability = true

For k-NN:

• N neighbors = 5
• weights = distance
• metric = Minkowski with p = 2

For decision tree:

• maximum depth = 10
• minimum samples split = 10
• minimum samples leaf = 5

For random forest:

• N estimators = 100
• Maximum depth = 10
• Minimum samples split = 10
• Minimum samples leaf = 5
• Maximum features = sqrt

When Table 2 is examined, logistic regression and SVM emerged as the best-performing
models, both achieving an accuracy of 0.60, with balanced precision and recall scores of
0.60. Their F1-scores were slightly lower, at 0.58 and 0.56, respectively, reflecting small
trade-offs between precision and recall. Both models showed good discriminatory power,
with AUC values of 0.70 for logistic regression and 0.71 for SVM. On the other hand, k-NN
performed poorly across all metrics, with an accuracy of only 0.45, a low F1-score of 0.40,
and an AUC of 0.50, indicating no better performance than random guessing. The decision
tree model also showed weak results, with an accuracy of 0.48 and a similar F1-score of 0.48,
though its AUC was slightly higher at 0.53. Random forest performed moderately, with
an accuracy of 0.57 and an AUC of 0.60, showing better performance than decision tree
but still falling short of logistic regression and SVM. Overall, logistic regression and SVM
offered the best trade-off between precision and recall, as well as the strongest ability to
distinguish between classes, while k-NN and decision tree struggled with lower accuracy
and AUC scores. The overall results indicate that traditional methods struggle to achieve
high accuracy or robust class separation in this context. Therefore, they would generally be
considered moderate-to-poor performers for this task; more advanced methods, like deep
learning, were applied to the problem.

Table 2. Experimental results for ML.

Accuracy Precision Recall F1-Score AUC

Logistic regression 0.60 0.60 0.60 0.58 0.70

SVM 0.60 0.60 0.60 0.56 0.71

k-NN 0.45 0.42 0.45 0.40 0.50

Decision tree 0.48 0.47 0.48 0.48 0.53

Random forest 0.57 0.57 0.57 0.54 0.60

In DL algorithms for data preprocessing, all images were resized to a uniform resolu-
tion to fit the input requirements of the selected models, ensuring consistency across the
dataset. Images were also normalized by scaling pixel values to the [0, 1] range, which helps
improve model convergence by ensuring that input features have similar scales. Addi-
tionally, the dataset was checked for any corrupted or mislabeled images, and appropriate
corrections were made.

Regarding data augmentation, we employed horizontal and vertical flipping, as
well as random rotations. These techniques were chosen to introduce variability in the
orientation of the fungi images, helping the models learn to recognize fungi from different
angles and perspectives. By augmenting the data in this way, we aimed to improve the
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model’s robustness and generalization capabilities, ensuring it can handle variations in the
positioning of fungi in real-world settings. These straightforward augmentation methods
were applied during training to prevent overfitting and improve model performance on
unseen data.

Following the data augmentation process, a series of experiments were conducted to
assess the effectiveness of transfer learning-based models, namely ConvNeXtBase, Con-
vNeXtSmall, ConvNeXtLarge, EfficientNetB0, EfficientNetB3, EfficientNetB7, DenseNet121,
InceptionV3, InceptionResNetV2, MobileNetV2, ResNet152, Xception, and swin transform-
ers, in predicting six different fungi species automatically.

In Figure 2, the validation accuracy graphs of the models are presented. The most
successful models from the EfficientNet and ConvNeXt families have been included in
the graph.
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Upon examination of Figure 2, among the evaluated models, DenseNet121 demon-
strates the highest validation accuracy, converging rapidly to near-perfect performance,
thereby indicating its robustness and efficiency. EfficientNetB7 also achieves com-
mendable performance, attaining a level of accuracy that is highly competitive, though
marginally lower than that of DenseNet121. ConvNeXtLarge exhibits strong performance
but does not quite attain the validation accuracy observed with DenseNet121 and Effi-
cientNetB7. The remaining models—InceptionV3, MobileNetV2, Xception, ResNet152,
and InceptionResNetV2—converge to relatively high accuracy values; however, they fall
short when compared to the leading models. Notably, most of the models stabilize in terms
of accuracy after approximately 10 to 15 iterations, suggesting that additional training
beyond this point yields limited gains. In conclusion, DenseNet121 is distinguished by its
superior accuracy, followed closely by EfficientNetB7, while the other architectures achieve
comparable but slightly lower levels of performance.

The performance of these models was thoroughly evaluated to determine their accu-
racy in classification tasks. The results of these experiments are summarized in Table 3,
which compares the predictive performance of each model based on various metrics, while
Figure 3 displays the ROC (Receiver Operating Characteristic) curves. As in Figure 2, the
most successful networks from the ConvNeXt and EfficientNet families are included in
this graph.
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Table 3. Experimental results for DL.

Models Accuracy Precision Recall F1-Score AUC

ConvNeXtBase 0.87 0.87 0.87 0.87 0.87

ConvNeXtSmall 0.88 0.87 0.87 0.87 0.87

ConvNeXtLarge 0.89 0.89 0.90 0.90 0.90

EfficientNetB0 0.82 0.78 0.78 0.79 0.80

EfficientNetB3 0.82 0.78 0.78 0.78 0.80

EfficientNetB7 0.89 0.90 0.88 0.89 0.90

DenseNet121 0.92 0.94 0.90 0.92 0.95

InceptionV3 0.84 0.73 0.73 0.73 0.80

MobileNetV2 0.90 0.93 0.90 0.90 0.92

Xception 0.90 0.92 0.90 0.90 0.90

ResNet152 0.87 0.92 0.82 0.87 0.90

InceptionResNetV2 0.90 0.92 0.87 0.90 0.90

Swin transformers 0.64 0.75 0.60 0.63 0.60
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When interpreting Table 3 in the context of classifying six different types of fungi, sev-
eral insights can be drawn regarding the effectiveness of the various models. DenseNet121
stands out as the top performer, achieving an accuracy of 0.92 and an AUC of 0.95. This
indicates that DenseNet121 is particularly effective at distinguishing between different
fungi types while minimizing both false positives and false negatives. Its high precision and
recall scores further suggest its ability to accurately identify the correct fungi species with
a high degree of reliability. The ConvNeXt models also demonstrate strong performance,
with ConvNeXtLarge reaching an accuracy of 0.89. The similar performance of ConvNeXtS-
mall and ConvNeXtBase, both achieving accuracy rates above 0.87, indicates that even the
smaller variants of this model are capable of effectively classifying fungi. MobileNetV2
and Xception, each achieving 0.90 accuracy, further underscore their suitability for this
classification task. These models strike a balance between high accuracy and computa-
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tional efficiency, which is crucial when deploying classification systems in real-world or
resource-constrained settings. In contrast, the EfficientNetB0 and B3 models, both scoring
0.82, appear to struggle with accurately classifying fungi images. Their lower precision and
recall scores indicate a higher likelihood of misclassifications. However, EfficientNetB7 per-
forms better, with an accuracy of 0.89, suggesting that scaling the EfficientNet architecture
can lead to improved performance in fungi classification tasks. InceptionV3 demonstrates
a more modest accuracy of 0.84, and its lower precision suggests it may face difficulties in
reliably differentiating between various fungi types, making it less ideal for this particular
task. ResNet152, with an accuracy of 0.87, proves capable of handling the complexities of
fungi classification, making it a reliable option for researchers. However, swin transformers
perform poorly, achieving an accuracy of only 0.64. This indicates that this architecture
may not be suitable for fungi classification, potentially due to its limitations in capturing
the subtle, nuanced features necessary for differentiating fungi types in RGB images.

Considering the ROC curves, DenseNet121 and MobileNetV2 demonstrate the best
performance, with curves closest to the top-left corner, indicating a strong balance between
high true-positive rates and low false-positive rates. InceptionResNetV2 also performs
well, achieving nearly comparable results. EfficientNetB7, ConvNeXtLarge, Xception,
and ResNet152 show decent though slightly less effective performance, with their ROC
curves positioned further from the top-left corner. InceptionV3 has the weakest ROC curve,
indicating a higher false-positive rate and a generally lower ability to distinguish between
classes. Overall, DenseNet121 and MobileNetV2 are the top performers, while InceptionV3
is the least effective in this comparison.

High accuracy rates do not necessarily indicate that models are making inferences
based on the correct features. To address this, Grad-CAM (Gradient-weighted Class Activa-
tion Mapping) visualizations were generated for the three images presented in Figure 4.
Figure 5 presents the Grad-CAM heatmaps for ConvNeXt, Figure 6 for EfficientNet, Figure 7
for DenseNet121, InceptionV3, and InceptionResNetV2, and Figure 8 for the MobileNetV2,
ResNet152, and Xception models, allowing for an analysis of the specific regions from
which the models derive their predictions. These visualizations provide critical insight into
the areas of the images that influence the models’ classification decisions, facilitating the
identification of potential misinterpretations or incorrect focal points.
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Upon a detailed examination of the Grad-CAM images, it becomes evidently clear that
DenseNet121 emerges as the most effective model for fungi classification. The Grad-CAM
visualizations provide insight into the model’s ability to focus on the relevant regions
of the images, highlighting its superior capability to correctly identify critical features
associated with different fungi types. In contrast, the ConvNeXt models, which incorpo-
rate transformer-based architectures, exhibit less effective visual attention patterns. This
suggests that transformer-based models, as reflected by ConvNeXt’s visualizations, are
not well-suited for this specific task of fungi classification. The limited efficacy of trans-
formers in this domain is further corroborated by the notably poor performance of the
swin transformer model, which struggles to capture the distinguishing features of the fungi
images. In comparison, MobileNetV2 demonstrates significant efficacy, ranking just behind
DenseNet121. The Grad-CAM visualizations for MobileNetV2 suggest that it successfully
focuses on important image regions, supporting its relatively strong performance met-
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rics. This indicates that while MobileNetV2 may not reach the same level of accuracy as
DenseNet121, it remains a highly competent model for fungi classification, especially in
scenarios where computational efficiency is also a priority. Overall, the Grad-CAM analyses
provide valuable insight into how these models perform, reinforcing the idea that mod-
els like DenseNet121 and MobileNetV2 are more suitable for this classification task than
transformer-based architectures such as swin transformer. Swin transformers, like other
transformer-based architectures, are designed to capture long-range dependencies by pro-
cessing images in non-local patches, which works well for tasks with large-scale or global
features. However, fungi images often consist of fine-grained textures and intricate local
patterns that require precise, detailed feature extraction. CNNs, with their convolutional
filters, are inherently better suited for such tasks, as they focus on local features, allowing
them to more effectively capture the subtle structural details found in fungi. Additionally,
transformer models typically perform optimally with large datasets, where their ability
to model long-range dependencies can be fully exploited. Given that the dataset used in
this study may not have been large or diverse enough, it is possible that swin transformers
struggled to generalize, leading to overfitting or suboptimal performance.

To elucidate the robustness of the DenseNet121 and MobileNetV2 networks, which
demonstrated the highest performance metrics, their effectiveness in classifying individual
mushroom species and their performance on images contaminated with Gaussian noise
were also evaluated.

Gaussian noise was introduced to the images across a Signal-to-Noise Ratio (SNR)
range of 10 to 60 (10, 20, 30, 40, 50, 60) [40] to simulate various levels of degradation and
evaluate model robustness under differing noise intensities. The detailed assessment of
model performance focused primarily on experiments conducted at the highest noise levels
within this range, as these levels present a more rigorous and challenging test of the models’
capacity to maintain accuracy in adverse conditions. Figure 9 presents images with noise
applied at different levels.
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The metrics in Table 4 indicate that the models are highly proficient in distinguishing
between different fungal species, exhibiting minimal performance variance across cate-
gories. This consistency demonstrates the model’s suitability for applications requiring
accurate and reliable detection and the classification of diverse fungal species.
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Table 4. Results of DenseNet121 and MobileNetV2 on fungal species.

Model Accuracy Precision Recall F1-Score

Amanita pantherina

DenseNet121

0.92 0.94 0.9 0.92
Boletus edulis 0.918 0.94 0.9 0.92
Cantharellus cibarius 0.92 0.94 0.9 0.918
Lactarius deliciosus 0.92 0.94 0.9 0.92
Pleurotus ostreatus 0.92 0.94 0.9 0.918
Tricholoma terreum 0.92 0.94 0.9 0.92

Amanita pantherina

MobileNetV2

0.9 0.93 0.9 0.9
Boletus edulis 0.899 0.92 0.899 0.899
Cantharellus cibarius 0.899 0.928 0.899 0.899
Lactarius deliciosus 0.9 0.93 0.9 0.9
Pleurotus ostreatus 0.9 0.93 0.9 0.9
Tricholoma terreum 0.9 0.93 0.9 0.9

Since deep networks are inherently capable of performing well on noisy images, noisy
images did not need to be included during the training phase. Incorporating noise into
the training data could obscure the networks’ true robustness by enabling them to learn
specific noise patterns, rather than relying on their intrinsic capacity to handle noisy inputs.
This approach allows for a more objective evaluation of the models’ resilience to noise, as
any performance on noisy images in the testing phase reflects the models’ innate robustness
rather than adaptive learning to noise during training. Evaluation across individual SNR
values, ranging from 20 to 60, as well as for all noise levels combined, consistently yielded
performance metrics of 0.89 or higher. This consistency across varying noise intensities
indicates a high degree of stability in model performance, demonstrating that even in
the presence of significant noise interference, the models retained strong accuracy and
predictive power.

The performance of DenseNet121 on SNR 10 noisy images, with an accuracy of 0.90,
a precision of 0.89, a recall of 0.89, an F1-score of 0.90, and an AUC of 0.91, indicates
that the model remains robust and effective even under challenging conditions. The
high accuracy and balanced precision and recall demonstrate that DenseNet121 maintains
a strong ability to correctly classify noisy inputs while minimizing false positives and
false negatives. The F1-score of 0.90 reinforces the model’s capacity to handle noisy data
effectively, as it shows a good balance between precision and recall. Additionally, the
AUC of 0.91 reflects a high degree of separability between classes, indicating that the
model can still distinguish between different categories despite the presence of noise.
Overall, these results suggest that DenseNet121 is resilient to Gaussian noise and retains
a high level of performance, making it suitable for applications where data may not
always be clean or noise-free. Similarly, the performance metrics of MobileNetV2 on
SNR-10 noisy images indicate a robust classification ability, with an accuracy of 0.87,
reflecting that the model correctly identified 87% of instances in the dataset despite the
noise. The F1-score, also at 0.87, demonstrates a well-balanced performance, effectively
managing both precision and recall, which is crucial for applications where false positives
and false negatives are significant. With a precision value of 0.90, the model indicates a high
likelihood of correctness when predicting positive classes, thereby minimizing erroneous
classifications. Meanwhile, a recall of 0.87 signifies that the model successfully detects
87% of actual positive instances, underscoring its effectiveness in identifying the target
class. Finally, an AUC of 0.90 highlights MobileNetV2’s strong discriminatory power,
illustrating its capability to distinguish between positive and negative instances across
different classification thresholds. Collectively, these metrics suggest that MobileNetV2
performs reliably in classification tasks. Figure 10 shows the Grad-CAM colorization of
DenseNet121 and MobileNetV2 on SNR-10 noisy images.
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In summary, the results indicate that models DenseNet121 and MobileNetV2 are
well-equipped to tackle the challenges of classifying RGB images of fungi, while models
such as ML and swin transformers may require further optimization to be viable for
this task. Future work could explore whether increasing the dataset size or employing
hybrid architectures might help improve the performance of transformer-based models
for fungi classification. Furthermore, applying image enhancement [41] techniques to
low-quality fungi images could be explored to assess their potential impact on enhancing
model performance.

4. Discussion

The results of this study demonstrate the effectiveness of deep learning models in the
classification of mushrooms, with findings that align well with the existing literature on
similar applications. DenseNet121, EfficientNet, and MobileNet emerged as the key models
capable of handling the complexity and heterogeneity of mushroom image data, with
DenseNet121 consistently proving the most effective. Specifically, DenseNet121 achieved
high reliability across multiple studies, with reported accuracy rates reaching 98% [42–44].
This consistency highlights its strong capacity to capture essential features for accurate
fungi classification. The observed performance differences between models, particularly
during the training phases, underscore the importance of selecting appropriate architectures
for tasks involving complex image data.

Convolutional neural networks (CNNs) have shown significant potential in plant
disease detection and similar image classification tasks, and this study affirms their utility
for fungal species identification [45–47]. For instance, CNN-based models have previously
demonstrated high classification accuracy in detecting diseases such as rice blight, achieving
rates up to 97.7% [45]. Such success translates well to the context of fungal infections,
suggesting CNN models are powerful tools for agricultural disease management and
ecological studies involving fungi [45–47].

A critical factor affecting the performance of deep learning models is the size and
diversity of the training dataset. As widely evidenced in previous research, larger and
more varied datasets contribute substantially to the accuracy and generalizability of deep
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learning models [48–50]. In this study, expanding the dataset through augmentation
techniques improved classification accuracy and enhanced the models’ robustness. These
methods have successfully minimized misclassification rates and facilitated the more
efficient detection of fruit body emergence, particularly when the models are trained on
constrained datasets. By enhancing accuracy, these approaches ensure that the detection
process remains reliable and effective even with limited data [51,52].

In addition to deep learning, methods such as transfer learning and ensemble modeling
provide significant advantages in fungal classification and detection. By leveraging pre-
trained models on large datasets, transfer learning enables accurate classification even
when training data are scarce. It has been noted that models using transfer learning
often outperform those trained from scratch by a margin of 10–15%, consistent with the
results obtained here [53–55]. Ensemble modeling approaches also showed significant
promise; combining multiple models (e.g., the DEX ensemble comprising DenseNet121,
EfficientNetB7, and Xception) reduced classification errors and achieved accuracy up to
98%, enhancing the precision of ecological monitoring [53–59].

DenseNet121 emerged as the most effective model in this study, achieving the highest
accuracy of 0.92 and an AUC of 0.95, indicating its superior ability to distinguish between
different types of fungi with minimal false positives and negatives [43–58]. Its strong
precision and recall metrics further reinforce its utility in accurately identifying fungi
species, making it highly reliable for classification tasks. Similarly, ConvNeXtLarge also
demonstrated solid performance, although its overall accuracy of 0.89 fell slightly behind
DenseNet121 [59–62]. Visual analyses using Grad-CAM, however, indicated that ConvNeXt
models exhibited less effective attention on crucial features, particularly compared to
DenseNet121. This highlights a limitation of current transformer-based architectures, as
they may lack the sensitivity required for detailed feature extraction in fungal image
classification [63,64].

The performance of transformer-based models varied significantly. While ConvNeXtS-
mall and ConvNeXtBase showed moderate success, the swin transformer performed poorly,
achieving an accuracy of only 0.64 [65–67]. These findings suggest that, in their current
form, transformer architectures are not as suitable for this task compared to CNN-based
models. Further optimizations or architectural modifications might be necessary to enhance
their applicability in fungal classification [67–75].

Among the CNN models tested, MobileNetV2 demonstrated high performance with
an accuracy of 0.90. Its computational efficiency makes it an attractive option for practical
use, particularly in resource-constrained environments [75–78]. The Grad-CAM visualiza-
tions for MobileNetV2 indicated its capability to focus on relevant regions in the images,
reinforcing its efficacy for the task. Xception also performed well, with an accuracy of 0.90,
though other models like InceptionV3, with an accuracy of only 0.84, struggled to match
this level of performance [79–81]. The EfficientNet family showed mixed results; while
EfficientNetB7 achieved an accuracy of 0.89, models like EfficientNetB0 and EfficientNetB3
performed less effectively, with an accuracy of around 0.82 [82–85].

ResNet152, achieving an accuracy of 0.87, demonstrated its ability to handle the
complexities of the dataset, although it was outperformed by more recent models such as
DenseNet121 and MobileNetV2 [86]. This suggests that newer architectures with more
advanced feature extraction capabilities provide better solutions for complex biological
imagery tasks [87].

In summary, this study highlights the effectiveness of DenseNet121 and MobileNetV2
for fungi classification, as evidenced by their quantitative performance and visual attention
analyses using Grad-CAM [88]. DenseNet121’s superior ability to capture crucial image
features, coupled with MobileNetV2’s computational efficiency, makes them highly suitable
for practical deployment. However, the limited effectiveness of traditional ML techniques
and transformer-based architectures, particularly the swin transformer, indicates the need
for further refinement or optimization in this domain.
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5. Conclusions

This study investigated the application of deep learning models for classifying six
different macrofungi species using RGB images. The comparative analysis demonstrated
that DenseNet121 was the most effective model, achieving the highest accuracy (92%)
and AUC (95%) scores. MobileNetV2 also proved to be a strong contender, offering a
good balance of performance and computational efficiency. These results indicate that
DenseNet121 and MobileNetV2 are well-suited for practical fungi classification tasks,
particularly in environments with limited computational resources.

Transformer-based models, however, particularly the swin transformer, did not per-
form as well as CNN-based models in this study. Their relatively poor performance
underscores transformers’ challenges in distinguishing between complex fungal features
in RGB images. This suggests they may require further optimization or modification for
practical use in this domain.

For future research, expanding and diversifying the dataset is recommended to im-
prove the generalizability of the models. The use of ensemble learning techniques, com-
bining the strengths of different models, could further enhance classification accuracy.
Moreover, integrating additional data types, such as biochemical properties, scanning
electron microscopy (SEM), and light microscopy images, may offer deeper insights into
fungal features, improving model performance. Incorporating RNA/DNA sequencing
data would also allow for genetic-level identification, providing a more comprehensive
understanding beyond just morphological classification. These advancements could lead to
more precise and reliable methods for ecological monitoring and agricultural management
of fungi.
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