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Abstract: Binarized convolutional neural networks (bCNNs) are favored for the design of low-storage,
low-power cardiac arrhythmia classifiers owing to their high weight compression rate. However,
multi-class classification of ECG signals based on bCNNs is challenging due to the accuracy loss
introduced by the binarization operation. In this paper, an effective multi-classifier system is proposed
for electrocardiogram (ECG) signals using a binarized depthwise separable convolutional neural
network (bDSCNN) with the merged convolution–pooling (MCP) method. The binarized depthwise
separable convolution layer is adopted to reduce the increased number of parameters in multi-
classification systems. Instead of operating convolution and pooling sequentially as in a traditional
convolutional neural network (CNN), the MCP method merges pooling together with convolution
layers to reduce the number of computations. To further reduce hardware resources, this work
employs blockwise incremental calculation to eliminate redundant storage with computations. In
addition, the R peak interval data are integrated with P-QRS-T features to improve the classification
accuracy. The proposed bDSCNN model is evaluated on an Intel DE1-SoC field-programmable
gate array (FPGA), and the experimental results demonstrate that the proposed system achieves a
five-class classification accuracy of 96.61% and a macro-F1 score of 89.08%, along with a dynamic
power dissipation of 20 µW for five-category ECG signal classification. The hardware resource usage
of BRAM and LUTs plus REGs is reduced by at least 2.94 and 1.74 times, respectively, compared with
existing ECG classifiers using bCNN methods.

Keywords: binarized depthwise separable convolutional neural network (bDSCNN); ECG; blockwise
incremental calculation; merged convolution–pooling method; multi-classifier; FPGA

1. Introduction

According to the World Health Organization, cardiovascular diseases (CVDs) are
the leading cause of death, having been estimated to cause 17.9 million annual deaths
globally [1,2]. Thus, the detection of CVDs in their early stages can reduce later compli-
cations and save curative costs [3–5]. Unfortunately, early-stage CVDs usually have no
obvious symptoms [6,7] and are easily overlooked. Recent research has shown that detect-
ing early-stage CVDs using electrocardiogram (ECG) sensors [8–11] provides a feasible
solution to realize real-time monitoring and can decrease death rates effectively. As a
result, the development of wearable devices for ECG signal detection and classification has
become a trend and is attracting more attention [12–19].

Limited by local data processing capability, early versions of wearable ECG mon-
itoring devices transmit raw ECG data to health centers via wireless networks [14,20].
Although these central processing approaches can achieve high detection accuracy, con-
tinuous data transmission often consumes noticeable power, thus necessitating frequent
battery recharges. In recent years, developing artificial intelligence (AI) techniques have
provided an alternative way to detect heart arrhythmia on the spot [21–30]. For example,

Sensors 2024, 24, 7207. https://doi.org/10.3390/s24227207 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24227207
https://doi.org/10.3390/s24227207
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0006-0910-9047
https://orcid.org/0000-0001-7454-245X
https://orcid.org/0000-0002-6063-5767
https://doi.org/10.3390/s24227207
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24227207?type=check_update&version=3


Sensors 2024, 24, 7207 2 of 20

an adaptive 1D convolutional neural network (CNN) was deployed to realize feature ex-
traction and classification for five-class ECG signals [23]. Moreover, a fuzzy neural network
with wavelet transform [24] and a two-stage neural network [25] were proposed to detect
premature ventricular beats. Also, a classifier with support vector machine (SVM), random
forest (RF), and k-nearest neighbors (KNN) was presented to identify inter-patient atrial
flutter [26].

Despite the above achievements, characteristics associated with traditional AI, such as
multiple parameters and complex operations, still require noticeable hardware resources
and power consumption, making its application a challenge in medical edge computing
scenarios. Several recent works have focused on hardware implementation [31–37] to
improve the efficiency of ECG classifiers. For example, a hybrid architecture consisting of
long short-term memory (LSTM) cells and multilayer perceptrons (MLPs) was realized in an
embedded device for ECG binary classification [31]. A lightweight spiking neural network
(SNN) model was implemented on a field-programmable gate array (FPGA) platform to
realize a five-classifier for ECG signals [35]. Another five-classifier was designed as an
application-specific integrated circuit (ASIC) by using an artificial neural network (ANN)
structure [36]. Although these systems can classify two or more types of ECG rhythms
with relatively high accuracy, they often involve complex operations, such as numerous
multiplication with floating-point or n-bit fixed-point operations, which could be simplified
for better power performance.

Considering the hardware resources and the power constraints of edge biomedical
devices, using fewer bits for neural networks is desirable when the accuracy requirement
permits. As an extreme case, a binarized CNN (bCNN) is expected to have the most concise
format [38–44]. Due to the reduced bit width, a bCNN requires significantly lower memory
bandwidth and less memory storage compared with its multi-bit CNN counterpart [45].
Several works have shown that bCNNs can achieve reasonable classification accuracy
and high energy efficiency for binary classification of ECG signals [46–48]. For instance, a
bCNN implementation utilized function-merging and block-reuse techniques to distinguish
between ventricular and non-ventricular ectopic beats with a dynamic power of 26 µW [46].
A quantized MLP combined with bCNN was introduced for binary classification and
demonstrated an accuracy of 98.5% [47]. Nevertheless, owing to the extremely low bit
quantization, most previous bCNN works have only focused on the binary classification of
ECG signals and it is still a challenge to realize multi-classification using bCNNs.

To compensate for the accuracy loss of adopting bCNNs for multi-classification, a
higher input data resolution and more nodes per layer, as well as more layers, are re-
quired. However, in order to achieve reasonable accuracy, augmented networks are often
noticeably more complex than the original bCNN. As a speedup strategy, depthwise sepa-
rable convolution (DSC), which breaks a conventional convolution layer into a depthwise
(DW) convolution plus a 1 × 1 pointwise (PW) convolution, has been extensively used
in lightweight CNNs and has been proven to be able to reduce computational resources
significantly [49–53]. A DSC layer was first employed in MobileNet [49] to cut down both
the model size and the number of operations. Then, DSC combined with a CNN was
utilized in ECG classification [52,53] and achieved a noticeable reduction in the number
of convolutional parameters. In addition, DSC was also applied in bCNNs [54,55] to de-
crease the computational complexity of bCNNs for keyword spotting multi-classification
tasks. Thus, for the multi-classification of ECG signals using bCNN, DSC provides a vi-
able approach to reduce the complexity induced by the accuracy compensation network
discussed above.

Adopting a general system-on-a-chip (SoC) architecture [56–58], as shown in Figure 1,
this work proposes a five-type ECG signal classifier utilizing a binarized depthwise separa-
ble convolutional neural network (bDSCNN). While traditional CNNs operate convolution
and pooling sequentially, the proposed method adopts a merged convolution–pooling
(MCP) layer that combines the convolution and pooling layers to reduce the number of op-
erations. Moreover, since the {0, 1} binarization method is utilized, the binarized weights
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and activation coefficients allow the multiplication to be simplified as AND logic, reducing
the hardware resources required for multi-classification.
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Figure 1. The SoC architecture with the bDSCNN model.

Although this paper is only focused on bDSCNN, a complete ECG monitoring system
also requires an analog front-end (AFE) for tasks such as signal amplification, DC blocking,
anti-aliasing filtering, dynamic range alignment, and signal digitization using an analog-
to-digital converter (ADC) [36,46]. Noise control techniques are also needed to remove
various artifacts such as loose lead artifacts, muscle tremor artifacts, etc.

In summary, this paper proposes a bDSCNN model for multi-class ECG signal classifi-
cation implemented in an FPGA platform, with the following features:

1. A bDSCNN model based on the {0, 1} binarization approach and a binarized DSC
(bDSC) layer with optimized hardware resource consumption are adopted. Therefore,
the number of required parameters and computations are decreased compared with a
bCNN model based on {−1, 1} binarization.

2. An MCP method is proposed to eliminate the repetitive computations and achieves an
efficient hardware implementation. It does not introduce any accuracy loss compared
with the traditional processing method.

3. A blockwise incremental calculation is designed to reduce computations and redun-
dant repetitive storage compared with the traditional computation strategy.

4. R peak interval data and P-QRS-T features are fed into the bDSCNN model to improve
the classification accuracy.

The rest of this paper is organized as follows. Section 2 gives the methods, including
model design and hardware design of the bDSCNN model for multi-class ECG signal
classification. The results are listed in Section 3. The discussions are listed in Section 4.
Finally, Section 5 concludes this paper.

2. Methods
2.1. Model Design

The proposed bDSCNN model for multi-class ECG signal classification is first designed
and trained in a software environment and then implemented on an FPGA platform. This
section focuses on the software-based model design process.
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2.1.1. Basic Model Structure

The structure of the bDSCNN model is shown in Figure 2. The inputs of the model
include 2D ECG images and extracted R peak interval data, which are combined together
to improve the classification accuracy. The P-QRS-T features are extracted from 2D ECG
images by using convolution and max-pooling layers, as well as a DSC layer. The R
peak interval data represent the interval of the ECG signal between two adjacent R peaks
(RR) [36]. Finally, these features are fed into the fully connected (FC) layers, followed
by a five-category softmax output layer. Taking the convenience of hardware implemen-
tation into account, the proposed bDSCNN model uses the {0, 1} binarization method,
formulated as

Binarized(x) =

{
1, i f x > 0
0, otherwise

, (1)

where x represents the weights and output values of each layer.

R R R
R-Peak Interval

Convolution + Maxpool Depthwise Separable Convolution

ECG Signal

ECG Image

Flatten

R-Peak Interval

R-Peak Detection

R1 R2

R3

Binarized R-Peaks Interval

RR Interval 

1 0 0

1 1 0 0

0

Softmax

N S V F Q

FC1

FC2

Figure 2. Overall design of the bDSCNN model.

Features of the binarized ECG image are extracted by conventional convolution with
multiple convolution kernels whose kernel size is 3 × 3 and then suppressed by the max-
pooling operation. As a result, a single-channel input image is transformed into multiple-
channel feature maps. As described in Section 1, to maintain the accuracy of multiple
classifications for ECG signals in the bCNN approach, an image with a higher resolution
is required. The additional number of parameters introduced by high-resolution images
must be handled using a more complex model. To decrease the model complexity, a bDSC
layer is used to deconstruct the conventional 3D convolution into a 2D DW convolution
plus a PW convolution. Using N convolution kernels with a kernel size of 3 × 3 for each
channel, a traditional convolution operation is used to yield the number of parameters
of (9 × N) (i.e., (3 × 3) × N), while the parameter number of DSC drops to (9 + N) (i.e.,
(3 × 3) + (1 × 1) × N). If N = 18, a parameter number reduction of six times can
be achieved.

In addition, the batch normalization (BN) layer has been proven to be crucial for the
successful training of bCNN networks, and it can guarantee stable training with a higher
learning rate and model accuracy as well as faster training speed [59–61]. Therefore, BN
layers are inserted after the DSC and the FC layers. The value x is normalized with the BN
layer as

x̂ =
γ(x − µ)√

σ2 + ϵ
+ β, (2)
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where x̂ represents the normalized value of x after the BN layer. γ and β represent the
scaling and translation parameters that need to be learned in the BN layer, respectively.
µ and σ represent the mean and standard deviation, and ϵ is a parameter to prevent the
denominator from being 0.

2.1.2. Database and Software Configuration

The MIT-BIH Arrhythmia Database, developed by the Massachusetts Institute of Tech-
nology and Beth Israel Hospital, is a widely utilized repository containing 48 digitized
electrocardiogram signals of two-channel ambulatory ECG recordings obtained from
47 subjects [62]. These recordings were acquired at a 360 Hz sampling frequency with
11-bit amplitude resolution. This database is used to assess the performances of the pro-
posed model.

According to the protocols established by the Association for the Advancement of
Medical Instrumentation (AAMI) [63], non-life-threatening arrhythmias can be divided
into five main categories: non-ectopic (N), supraventricular ectopic (S), ventricular ectopic
(V), fusion (F), and unknown (Q). In this work, a conditional data grouping scheme [36] is
employed to guarantee sufficient samples in training. For each patient record, 70% of the
data are randomly selected as training data, and the remaining 30% are further divided
into 30% validation data and 70% testing data to continuously monitor the loss of the
bDSCNN model during the training process. Considering the imbalance of the ECG signal
classes for training, various data augmentation schemes have been proposed to balance the
dataset [64–68]. In this work, the Z-score data augmentation method is used to generate
the non-N-type heartbeat data by varying the mean and standard deviation of the Z-score
calculated from the original ECG signals. After dataset expansion, the total number of
heartbeats for training, including N, S, V, F, and Q classes, increases from 56,273 to 217,730,
as shown in Figure 3. The maximum proportion of the heartbeat number to the total
heartbeats decreases from 77.18% to 19.95%, while the minimum proportion increases
from 0.91% to 18.85%. Consequently, the number of samples for each class becomes more
balanced and is more suitable for model training. For validation and testing data, data
augmentation is not performed, and the testing data numbers of N, S, V, F, and Q are 13,001,
583, 1478, 157, and 1696, respectively.

BCNNs require the transformation of 1D ECG signals into 2D images for capturing
spatial structural features. Given the MIT-BIH dataset has R peaks annotated for each
ECG beat, 300 ECG samples are taken around the R peaks (100 and 200 samples on the left
and right of the R peaks), and the R peak interval data are calculated by measuring the
time between consecutive R peaks. The Python 3 programming language and open-source
OpenCV2 library are then employed to transform the samples into an image. The original
and resized ECG images are shown in Figure 4. Larger sizes of ECG images offer more
detail, but require more complex model structures and additional hardware resources.
Smaller-size images lead to simpler model structures and less hardware resources, but
suffer from less distinct P-QRS-T features. Taking both the classification accuracy and the
model complexity into consideration, a binarized ECG image size of 32 × 32 px is chosen.

The proposed bDSCNN model is trained using Python 3.8 with the Keras library on
a 3.20 GHz AMD Ryzen 7 with Nvidia RTX 2050 GPU. The Adam optimizer is chosen,
with starting and ending learning rates of 10−3 and 10−4, respectively. To automatically
determine the epoch size, early stopping techniques are implemented to ensure that the
model does not overfit.
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Type Number of Beats Balance Number of Beats

N 43,433 43,433

S 1862 44,688

V 4849 43,641

F 513 41,040

Q 5616 44,928

Total 56,273 217,730

77.18%

3.31%

8.62%
0.91%

9.98%

N S V F Q

19.95%

20.52%

20.04%

18.85%

20.63%

N S V F Q

(a)

(b)

Figure 3. (a) The numbers of the five original classes and balanced beat subtype for training. (b) The
proportions of the original and balanced data for the five types of beat data in training.

Original ECG N-image

10 × 10 Pixel32 × 32 Pixel 16 × 16 Pixel

Resized ECG N-image

R

P

Q S

T

256 × 256 Pixel

Figure 4. The original ECG N-image and the resized ECG N-image.

2.2. Hardware Design

Using the model structure described in Section 2.1.1, all the layers of the bDSCNN
model are implemented in hardware. In addition to the bDSC method, two other mecha-
nisms are adopted to reduce the usage of hardware resources. First, instead of conducting
convolution and max-pooling operations sequentially, an MCP method that merges the
pooling with the convolution layer is proposed to save the number of operations. Second, a
blockwise incremental calculation is designed by reconstructing the computation process
of feature extraction to reduce computation operations as well as memory access.

2.2.1. MCP Layer Implementation

The MCP method and a comparison of it with the traditional sequential convolution
and pooling method are illustrated in Figure 5. As shown in Figure 5a, the traditional
“baseline” bCNN convolves the image using four identical filters with a kernel size of
3 × 3 and a transposed stride of 1. The elements of the convolution kernel are labeled with
letters A–I. As a result, an input 4 × 4 px matrix whose elements are labeled with numbers
1–16 is converted to a 2 × 2 output feature matrix after the convolution operation. The
subsequent max-pooling down-samples the feature matrix to 1 px by a 2 × 2 pooling kernel.
The traditional convolution contains many repetitive operations, as highlighted by three
different colors. To achieve higher efficiency, those repetitive operations can be saved.
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Figure 5. The proposed MCP method with kernel size of 4 × 4 and transposed stride of 2: (a) the
comparison of parallel computations between “baseline” and MCP methods; (b) the reconstruction
process of the proposed merged convolution–pooling kernel; (c) the comparisons of operation
numbers between the “baseline” and MCP methods.

This work proposes an MCP method that combines convolution and pooling operations
to solve the above problem. The key idea is to reconstruct an equivalent 4 × 4 convolution ker-
nel by merging the original four 3 × 3 kernels. The kernel values of yellow regions that are not
overlapping in traditional convolution are retained. The two neighboring 1 × 2 or 2 × 1 green
overlapping regions are merged using OR operations; for example, J=B|A, K=C|B. The
four 2 × 2 red overlapping regions in traditional kernels are merged using OR operations
as well; for example, M=E|D|B|A. Consequently, the repetitive convolution operations in
traditional convolution are combined, and the number of operations is reduced. With the
reconstructed kernel, the max-pooling layer in the traditional CNN is integrated with the
convolutional layer via OR operations, and a following pooling layer is no longer needed.
Because the new convolution is equivalent to the traditional one from the output perspective,
the MCP method achieves the same accuracy using noticeably fewer operations.

The merged convolution–pooling kernel (MCPK) is constructed as the last step of
the training process, and its calculation procedure is given in Algorithm 1. The algorithm
checks the element position of the original convolution kernel, performs OR computations
for the overlapping regions, and preserves the values for the nonoverlapping regions. If
the weight after transformation is zero, its corresponding branch is pruned. Figure 5b gives
an example to further illustrate the above procedure.

Figure 5c compares the number of operations between the proposed MCP and the
“baseline” methods. One PE in the traditional methods consists of nine AND operations to
realize a convolution operation, and 36 AND operations in total are required to perform
four convolution operations. In contrast, in the proposed MCP method, only one PE, which
contains 16 AND operations, is required. With an MCP kernel as shown in Figure 5b, the
AND operations with “0” as input can be reduced. Figure 6 further provides the detailed
hardware implementation for the pruning process. As a result, 16 AND operations are
reduced to 10 operations, which is 3.6 times less compared with the traditional method.
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Algorithm 1: MCPK Weight Calculation
Symbol:
KCPR: Reconstructed MCPK
KOC: Original convolution kernel
KR: Size of reconstructed MCPK
OI : Overlapping indicator of KCPR
Bit: Bit index of MCPK

Input: KOC
Output: KCPR

1 Initialize KCPR
2 for (Bit = 0 to KR × KR − 1) do
3 if (OI [Bit] == 0) then
4 Preserve the relevant value of KOC and assign the value to KCPR[Bit]
5 else if (OI [Bit] == 1) then
6 Combine the relevant two-overlapping bits of KOC with OR operation and

assign the results to KCPR[Bit]
7 else if (OI [Bit] == 2) then
8 Combine the relevant four-overlapping bits of KOC with OR operation and

assign the results to KCPR[Bit]
9 else

10 Keep the value of KCPR[Bit]
11 end
12 end
13 Prune the 0 elements of KCPR

AND

K
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5
]

M
[1

5
]
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M
[3

]
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M
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Figure 6. Illustration of the pruning process in the MCP method.

Note that the proposed MCP method is not limited to convolution kernels with
3 × 3 size; it can also be applied to kernels with other sizes. The size of the reconstructed
MCPK KR and the stride size SR can be expressed as

KR = KO + (SO × (P − 1)), (3)

SR = SO × SP, (4)

where KO, SO, P, and SP represent the original convolution kernel size, original convolution
stride, pooling size, and original pooling stride, respectively.
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2.2.2. Blockwise Incremental Calculation

To reduce computations and eliminate repetitive storage between the input image
and the first FC (FC1) layer, a blockwise incremental calculation scheme is adopted in the
hardware implementation. The blockwise incremental computation method optimizes
the inference process of the model without changing the parameters and structure, thus
maintaining the same classification accuracy. Different from the traditional layer-by-layer
calculation, in the blockwise incremental calculation process, the input images are reor-
ganized into multiple blocks, and the blocks are processed one at a time through MCP,
DSC-DW, DSC-PW, and FC1 layers until all the blocks are traversed and FC1 results are
derived. The data flow of the blockwise incremental calculation is shown in Figure 7. The
input image is convolved by multiple 4 × 4 MCPKs to form multichannel output feature
maps. Then, the DSC operation is performed with three 3 × 3 DW convolution kernels
and eighteen 1 × 1 × 3 PW convolution kernels to derive a 1 × 1 × 18 DSC feature map.
In the following FC1 layer, the feature map is converted to 32 FC1 intermediate results by
an 18 × 32 FC1 conversion matrix. To cover the full input image, the above operations
are repeated 169 (13 × 13) times, and the results from each iteration are combined and
normalized to derive the final FC1 output result.

The saving of memory by adopting the blockwise incremental calculation can also
be seen from Figure 7, in which the dark gray regions represent optimized storage for
the process of feature extraction, and the light gray regions represent the eliminated
data storage. Instead of storing all of the intermediate features, whose sizes are 32 × 32,
15 × 15 × 3, 13 × 13 × 3, 13 × 13 × 18, and 3,042, for each operation in the traditional
layer-by-layer method, the blockwise incremental calculation only requires 8 × 8, 3 × 3 × 3,
1 × 1 × 3, 1 × 1 × 18, and 18 data blocks to store the intermediate features.

32×32×1

8

8

3

3

15×15×3 13×13×3 13×13×18

1
1

1
1

MCP

Depthwise Pointwise

Eliminated storageOptimized storage Computational direction

4×4×3
3×3×3

MCP Kernel

4×4×
3 Channels

2 Strides

DW Kernel

3×3×
3 Channels

1 Stride

PW Kernel

1×1×3×
18 Channels1×1×3

Input Images

Weight

3042

18

32

FC1

FC1 Output

Flatten

×
169

×32

18

3
0
4
2

32

BN
1

BN
2

BN
32

FC1-BN

10×32

×
169

×
169

10
FC1 Matrix

3042×32

3042

DSC-BN

3×183

Figure 7. Blockwise incremental calculation to eliminate repetitive storage and computations in
the bDSCNN.

Figure 8a,b show the latency of the traditional layer-by-layer calculation and the
blockwise incremental calculation. In the traditional calculation, each layer of the model is
computed independently, and the latency is the sum of the computation time for each layer.
For example, the ‘MCP’ layer performs calculations MC × MC times using the KR × KR × K
MCP kernels. The ‘DSC-DW’ and ‘DSC-PW’ layers perform calculations MD × MD times
using KD × KD × K DW kernels and K × KP PW kernels. In the ‘FC1’ layer, the ‘DSC-PW’
results are calculated MD × MD × KP times by using an MF × 1 matrix. In this work, the
size of the feature map can be calculated by

MC =
1
2
× (M − KR + P), (5)
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MD = MC − KD + 1, (6)

where M, MC, MD, and KD represent the ECG image size, the MCP feature map size, the
DSC feature map size, and the DSC kernel size, respectively. For the traditional calculation
method, the latency (L) can be calculated by

L = M2
C + 2 × M2

D + KP × M2
D, (7)

where KP represents the number of DSC-PW kernel channels.
In the blockwise incremental calculation, the ‘MCP’, ‘DSC-DW’,‘DSC-PW’, and ‘FC1’

blocks are executed sequentially, and the latency is the multiplication results of the computa-
tion time for each block and the number of repetitions of each cycle. For each computation of
the blockwise incremental calculation, the ‘MCP’ block performs calculations for KD × KD
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Figure 8. (a) The latency of traditional layer-by-layer calculation. (b) The latency of blockwise
incremental calculation. (c) Pipeline scheduling for blockwise incremental calculation.

The ‘DSC-DW’ and ‘DSC-PW’ blocks perform calculations once using the same
DW/PW kernels. As for the ‘FC1’ block, the DSC-PW results are calculated KP times
by using the same matrix. Thus, the latency of the blockwise incremental calculation (LB)
can be calculated by

LB = (K2
D + 1 + 1 + KP)× M2

D. (8)

For the model used in this work, the number of latencies L and LB are calculated
to be 3605 and 4901, respectively. To reduce the extra latency introduced by blockwise
incremental calculation, a pipeline scheduling scheme is proposed as shown in Figure 8c,
where the ‘MCP,’ ‘DSC-DW,’ and ‘DSC-PW’ processes for the next block of an input image
are scheduled in parallel with the current ‘FC1’ process. Before adopting the pipeline
scheduling, the time consumption of one single pipeline stage is the sum of the ‘MCP,’
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‘DSC-DW,’ ‘DSC-PW,’ and ‘FC1’ process times. After re-scheduling, the latency becomes
only the sum of the ‘FC1’ process time and the latency LB can be written as

LB = (KP)× M2
D. (9)

Therefore, the latency of the blockwise incremental calculation is reduced to 3042 by us-
ing the pipeline scheduling, which is even less than the layer-by-layer latency. Note that
the same three MCPK configurations for both layer-by-layer and blockwise implementa-
tions are assumed when deriving the above data; latency performances could be further
improved by employing more MCPKs for both implementations.

2.2.3. Batch Normalization

As described in Section 2.1.1, BN allows stable training at larger learning rates to
improve training speed and training accuracy. BN layers are inserted after the DSC, FC1,
and second FC (FC2) layers to achieve better performance in model training. After the
DSC and FC1 layers, the BN layer is followed by a binarized activation layer. The BN
transformation in the hardware can be simplified by combining the BN layer and the
activation layer. Referring to (1) and (2), the combined activation function can be written as

Binarized-BN(x) =

{
1, i f x > ⌊µ − β

√
σ2+ϵ
γ ⌋

0, otherwise
. (10)

Since the direct calculation of µ − β
√

σ2+ϵ
γ demands high hardware resource usage,

the threshold of the function Binarized-BN(x) is calculated in software according to (10)
and then stored in the BRAM block. For example, assuming that µ = 0.8035, β = −2.0248,
σ = 0.9242, γ = 0.7093, and ϵ = 0.0001, the BN layer threshold is calculated to be 3.4418 and
rounded down to 3. The binarized-BN operation is then performed through a comparator
in the hardware using the transformed threshold. As for the FC2-BN layer, the output of
the FC2 is 5 × 5-bits, resulting in 32 possible values for each result. For the purposes of
efficient hardware implementation, the FC2-BN layer is realized as a lookup table whose
entries are calculated by referring to (2) in the software.

2.2.4. Hardware Architecture

The overall hardware architecture of the proposed bDSCNN inference accelerator is
shown in Figure 9. The weights of the proposed model are stored in the external memory
and can be loaded for classification computation via a weight buffer. In addition to the
MCP, DSC, and two FC modules, the system also employs an input buffer to store the input
image and the RR interval data, storage buffers for the MCP, DSC, and FC1 layers, and
an output buffer to store the classification result. The MCP module contains three kernels
and each kernel is calculated with the input block image. The computation of each kernel
is performed using AND gates and a comparator. To derive a 3 × 3 MCP feature map as
shown in Figure 7, the above computation needs to be repeated nine times for one MCPK.

The DSC module consists of three DW convolutions and 18 PW convolutions. Each
DW convolution individually convolves with the corresponding channel of the feature
maps. Each DW convolution also has its own 3 × 3 DW kernel and is implemented with
nine two-input AND gates and a population count (popcount) unit. The PW convolution is
performed by three 4-bit AND gates, one accumulator, and one comparator for each output
channel. The threshold of the comparator is a normalized value transformed by the BN
activation function.
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Figure 9. The overall hardware architecture of the proposed bDSCNN.

The FC1 module consists of 32 blocks, with each block containing a two-input AND
gate, an accumulator, a register, and a comparator. For each block in the FC1 module, to
save the hardware resources, the multiplication of the FC1 input vector and the weight
vector is calculated in multiple cycles, and the result of each cycle is accumulated. Then,
the 32 12-bit results are compared with FC1-BN thresholds to obtain 32 1-bit FC1 outputs.
For the FC2 module, the multiplication of the 32-bit FC1 output and the five 32-bit FC2
weight vectors yields five 5-bit output results. Then, the five results are fed into the FC2-BN
lookup table to obtain five 13-bit FC2-BN layer output results. Finally, the BN results are
compared to obtain the classification result in one-hot format.

3. Results

Based on the structure of the proposed bDSCNN, the model configurations for both
the software and hardware implementations are listed in Table 1. This section provides the
experimental results and comparisons with state-of-the-art works.
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Table 1. Model configurations in software and hardware.

Size

Software Hardware

Layer Weight Output
Format Layer Weight Output

Format
Result-Reg
(Bits)

32 × 32

Input - (32, 32, 1) Input - (8, 8, 1) 64

Conv-Valid 3 × 3 × 3 (30, 30, 3)

MCP 8 + 10 + 13 (3, 3, 3) 27 *
Binarized - -
Max-Pooling - (15, 15, 3)

DSC-DW 3 × 3 × 3 (13, 13, 3) DSC-DW 3 × 3 × 3 (1, 1, 3)
12 *
(3 × 4-bit)

DSC-PW 1 × 1 × 3 × 18 (13, 13, 18)

DSC-PW 126 (1, 1, 18) 18 *
BN-DSC 18 × 4 -
Binarized - -

FC1 13 × 13 × 18 × 32 32

FC1 97,472 32

416
(32 × 12-bit
+ 32-bit)

BN1 32 × 4 -
Binarized - -

FC2 32 × 5 5

FC2 180 5 5
BN2 5 × 4 -
Softmax - 5

* Omitted due to blockwise incremental calculation.

3.1. Model Performance

To verify the effectiveness of the proposed bDSCNN, several models with different
structures are trained, tested, and evaluated by standard metrics including loss, Coperation,
accuracy (Acc), and macro-F1, where loss represents the value calculated by the loss func-
tion. In this work, the loss function is selected as the cross-entropy function. Coperation
represents the number of the convolutional operations of the model. Acc and macro-F1 are
defined as

Acc =
TP + TN

TP + TN + FP + FN
, (11)

Macro-F1 =
1
N

N

∑
i=1

F1-scorei, (12)

where TP, TN, FP, and FN denote true positive, true negative, false positive, and false
negative, respectively. N represents the number of ECG signal classes. For the five-
classifier in this work, N is 5. The F1-score is a standard metric for two classifiers, which is
described as

F1-score =
2 × TP

2 × TP + (FP + FN)
. (13)

In the experiments, the number of channels is selected through an incremental search
based on the classification accuracy and the macro-F1 score. As the number of channels
increases, the accuracy also increases, until it reaches the maximum value, then it declines.
The number of channels at the maximum point is considered to be the optimal choice. As
a result, 3 and 18 are selected as the numbers of channels for the first convolution layer
and the DSC layer, respectively. Table 2 lists the performance comparisons of various
bCNN structures. In Table 2, “NoBN” refers to being without the BN layer. “SC” denotes
that the second convolution layer uses traditional convolution. As Table 2 shows, the
proposed bDSCNN model with the concat RR interval, the BN layer, and the second DSC
convolution layer demonstrates improved performance, achieving a testing loss of 0.1099,
13,689 convolutional operations, an accuracy of 96.61%, and a macro-F1 score of 89.08%.
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The model with the overall best performance is stored and executed on an SoC device
for inference. Intel’s Cyclone V-based DE1-SoC is chosen as the target FPGA platform, and
the weights of the well-trained bDSCNN are stored in its internal BRAM for deployment.

Table 2. The performance enhancements of different model structures for offline learning.

Method Acc (%) Macro-F1 (%) Loss Coperation

No RR
interval
concat

bDSCNN-NoBN 77.28 57.40 1.1677 13,689
bCNN-SC 96.05 86.07 0.1425 82,134
bDSCNN 95.87 85.96 0.1474 13,689

RR
interval
concat

bDSCNN-NoBN 79.97 60.34 1.0521 13,689
bCNN-SC 96.66 89.15 0.1096 82,134
bDSCNN 96.61 89.08 0.1099 13,689

3.2. Algorithm Accuracy

The testing results of the proposed bDSCNN network are shown in Table 3. The
statistics listed in the confusion matrix are the predicted numbers of corresponding ECG
signals. In addition, two-class accuracy, five-class accuracy, macro-F1, sensitivity (Sen),
positive predictive value (Ppv), and specificity (Spec) are also employed to evaluate the
performance of the model.

Table 3. Confusion matrix and evaluation metrics for ECG heartbeats.

Original
Sen (%) Ppv (%) Spec (%) Two-Class

Acc (%)
Five-Class

Acc (%)
Macro
-F1 (%)N S V F Q

Predicted

N 12,718 98 57 20 57 97.82 98.21 94.07 96.96

96.61 89.08

S 134 469 3 0 2 80.45 77.14 99.15 98.50
V 102 15 1410 12 18 95.40 90.56 99.05 98.73
F 29 1 6 125 0 79.62 77.64 99.79 99.60
Q 18 0 2 0 1619 95.46 98.78 99.87 99.43

These criteria are defined as follows:

Sen =
TP

TP + FN
, (14)

Ppv =
TP

TP + FP
, (15)

Spec =
TN

TN + FP
. (16)

As shown in Table 3, the proposed model has a five-class accuracy of 96.61% and a
macro-F1 score of 89.08%. Meanwhile, a maximum F1-score of 98.02% with corresponding
two-class accuracy of 96.96%, a sensitivity of 97.82%, a positive predictive value of 98.21%,
and a specification of 94.07% are achieved.

3.3. Model Complexity and Hardware Resource Usage

The complexity and performance of the bDSCNN model are compared with those
of other reported ECG classification works employing CNN methods in Table 4. As the
table shows, for ECG classifiers that adopt a 1D-CNN with multi-bit input data, more
convolution layers and kernels are necessary to achieve high accuracy. In terms of model
complexity, the bDSCNN model uses only 2 convolution layers and 24 convolution kernels.
The numbers of total kernel parameters and multiply–accumulates (MACs) are reduced to
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108 and 137,547, respectively. By adopting the MCP method, the number of convolution–
pooling operations is reduced from 25,650 to 10,800 in the bDSCNN model, resulting in
a total operation number of 122,697, which is the minimum among similar works. As
for bCNN, this work achieves an increased number of classifications at the cost of higher
input data resolution and more layers. Although the weights and activation values of the
proposed model are compressed to 1 bit for less complexity, the classification accuracy is
comparable to that of other multi-classifiers using multi-bit CNN models.

Table 4. Model complexity and performance evaluation.

TCAS-I
2022 [65]

TBioCAS
2019 [25]

IRBM
2022 [69]

TBioCAS-BP 1

2021 [46] This Work

Convolution Type 1D 1D 2D 2D 2D

Input data
Resolution 16-bit 11-bit 8-bit 1-bit 1-bit

No. of Input
Samples 320 400 64 × 64 16 × 20 32 × 32

No. of Kernels 120 48 170 16 24

No. of Kernel
Parameters 10,180 4848 24,080 144 108

Largest Kernel Size 1 × 5 1 × 15 2 × 2 3 × 3 3 × 3

Method CNN ANN + CNN CNN bCNN bDSCNN

Dataset MIT-BIH MIT-BIH MIT-BIH MIT-BIH MIT-BIH

AAMI Standard No Yes No Yes Yes

No. of MACs 470,820 2 749,620 12,823,040 2 129,969 137,547 (122,697) 4

Multiplication
Precision float-32 float-32 float-32 1-bit 1-bit

Activation ReLU N/A ReLU bTanH Binarized

AccN (%) 99.31 3 98.59 99.58 3 N/A 96.96
AccS (%) N/A 99.10 99.51 3 N/A 98.50
AccV (%) 97.66 3 99.40 99.81 3 97.30 98.73
AccF (%) N/A 99.70 N/A N/A 99.60
AccQ (%) N/A 99.85 N/A N/A 99.43

Output Classes 5 5 5 2 5
1 BP = better performance. 2 Estimated based on model parameters. 3 Classification accuracy in AAMI criteria.
4 Adopting the MCP method.

The performances of several hardware implementations are summarized in Table 5.
As shown in the table, although the MLP approaches show relatively low hardware us-
age, they require additional extractors to extract features that are necessary for successful
classification metrics. At the same time, it can be seen that the bCNN classifiers de-
mand the least hardware resources owing to the binarization of their internal weights and
activation values.

To reduce the extra storage caused by higher image resolution for five-type ECG signal
classification, the blockwise incremental calculation method is employed. This results
in a 90% reduction in the storage of feature maps, from 5285 registers to 542 registers,
compared with the traditional layer-by-layer calculation. Thus, the number of LUTs and
REGs (hardware resources) used in this work is 3799, less than those used in previous
works. The number of DSP blocks used is 0 in this work because the multiplication and
addition operations inside the bCNN are simplified to AND operations.
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In addition, since most binary ECG classifiers mainly distinguish between V and
non-V signals, the comparison metrics for binary classifications are also listed in Table 5.
In this work, the classification accuracy and F1-score are approximately 98.7% and 92.9%,
respectively. The number of clock cycles per classification is 3087. Using the Altera
Powerplay Power Analysis tool, the dynamic power and energy per classification are
evaluated as 20 µW and 617.4 nJ, respectively, when operating at a 100 KHz clock frequency.

Table 5. FPGA performance evaluation of binarized-DSCNN-based heartbeat multi-classifier.

Type TBioCAS
2020 [36]

NCA
2020 [70]

TBioCAS-BP
2021 [46]

TBioCAS-BP
2022 [47] This Work

FPGA Zynq XC7Z020 Artix7 iCE40UP5k iCE40UP5k DE1-SoC

Multiplication
Precision 24-bit Fixed Point 24-bit Fixed Point 1-bit 1-bit 1-bit

Dataset MIT-BIH MIT-BIH MIT-BIH MIT-BIH MIT-BIH

Network Type MLP MLP bCNN MLP + bCNN bDSCNN

Additional Extractor
Needed Yes Yes No No No

No. of Input
Samples 96 N/A 16 × 20 55 32 × 32

DSP Blocks N/A 214 0 8 0

Hardware Resource 6600 9772 4977 6620 3799

Operating Clock
(Hz) 2.5 M 98.2 M 100 K 100 K 100 K

Clock Cycles Per
Classification 6298 * N/A 1141 4794 3087

Dynamic Power
(µW) N/A N/A 26 55 20

Energy Per
Classification (nJ) N/A N/A 320.6 2839.1 617.4

Output Classes 5 2 2 2 5

AccV (%) 99.6 ** 95.0 97.3 98.5 98.7

F1-scoreV (%) N/A N/A 88.9 89.2 92.9

Acc (%) 99.7 ** N/A N/A N/A 96.6

* Calculated from the given data. ** The training data & the testing data are overlapped.

4. Discussion
4.1. Conversion of 1D Signals to 2D Images

In this work, the proposed 2D bDSCNN model is used to classify the ECG signal, which
requires the conversion of 1D ECG signals to 2D images. The reason for the conversion is
that the 2D images can provide additional spatial dimension information compared with
the 1D ECG signal. Meanwhile, processing the 2D images allows for extreme quantization
to 1-bit data width compared with the multi-bit data widths required for processing 1D ECG
signals. This enables the complex multiplication calculations of 1D signals to be simplified
to AND gate operations of 2D images, reducing overall hardware resource consumption.

Although full-bit map image conversion preserves all spatial information, it demands
substantial hardware resources for processing. To reduce hardware resource consumption,
image compression can be employed at the cost of an acceptable classification accuracy
loss. In this work, with both hardware resource consumption and classification accuracy
in consideration, a 32 × 32 px image size is selected to achieve a balanced performance
between model accuracy and hardware complexity.
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4.2. Dataset Splitting Methods

This work splits the MIT-BIH dataset using the patient-specific method, as most
previous hardware-related works did [25,36,46,47,65,70], for fair comparison purposes.
However, in real applications involving new patients, the patient-wise dataset-splitting
method is also frequently used. To further validate the proposed method, a separate model
using the patient-wise splitting scheme [67,68,71] is trained and compared.

As shown in Table 6, the bDSCNN model trained using the patient-specific dataset-
splitting method has a higher accuracy compared with the model trained using the patient-
wise method. At the same time, the model based on the patient-wise dataset needs ad-
ditional convolution kernels to extract features, leading to more complex topologies and
parameters, and thus, more hardware resources and higher classification latency than the
model based on the patient-specific dataset. This performance change might be caused
by the fact that the ECG morphologies are often different among patients, which in turn
leads to a bigger difference between the testing and the training data for the model trained
by the patient-wise dataset. This problem could potentially be solved by the on-chip
learning method, which can fine-tune the model on the fly to adapt to each of the testing
patients [71].

Table 6. Performance comparison between patient-specific and patient-wise dataset splitting methods.

Dataset Splitting
Method Acc (%) No. of

Kernels
No. of Kernel
Parameters

No. of
MACs

Hardware
Resources

Clock Cycles per
Classification

Energy per
Classification (nJ)

Patient-specific 96.6 24 108 122,697 3799 3087 617

Patient-wise 92.1 28 120 146,357 3815 3785 757

5. Conclusions

In this paper, an efficient bDSCNN model was proposed and implemented for the
classification of multi-class ECG signals. The proposed model adopted {0, 1} binarization
method for the convenience of hardware implementation. The MCP method was designed
to achieve the fusion of convolution and pooling operations by reconstructing the MCPK to
reduce the repetitive computations in traditional CNN methods. Meanwhile, a blockwise
incremental calculation was adopted to eliminate redundant storage and computations.
The proposed bDSCNN model was evaluated on an Intel DE1-SoC FPGA and achieved
comparable classification accuracy with less model complexity compared to other multi-
class ECG signal classifiers based on FPGA. The proposed bDSCNN model achieves a
five-class classification of 96.61% and a macro-F1 score of 89.08%, with 3.8k LUTs plus
REGs and dynamic power dissipation of 20 µW.
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