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Abstract: The progress of 3D instance segmentation techniques has made it essential for several
applications, such as augmented reality, autonomous driving, and robotics. Traditional methods
usually have challenges with complex indoor scenes made of multiple objects with different occlusions
and orientations. In this work, the authors present an innovative model that integrates a new adaptive
n-shifted shuffle (ANSS) attention mechanism with the Generalized Hough Transform (GHT) for
robust 3D instance segmentation of indoor scenes. The proposed technique leverages the n-shifted
sigmoid activation function, which improves the adaptive shuffle attention mechanism, permitting
the network to dynamically focus on relevant features across various regions. A learnable shuffling
pattern is produced through the proposed ANSS attention mechanism to spatially rearrange the
relevant features, thus augmenting the model’s ability to capture the object boundaries and their
fine-grained details. The integration of GHT furnishes a vigorous framework to localize and detect
objects in the 3D space, even when heavy noise and partial occlusions are present. The authors
evaluate the proposed method on the challenging Stanford 3D Indoor Spaces Dataset (S3DIS), where
it establishes its superiority over existing methods. The proposed approach achieves state-of-the-
art performance in both mean Intersection over Union (IoU) and overall accuracy, showcasing its
potential for practical deployment in real-world scenarios. These results illustrate that the integration
of the ANSS and the GHT yields a robust solution for 3D instance segmentation tasks.

Keywords: activation functions; attention mechanisms; generalized Hough transform; 3D
instance segmentation

1. Introduction

In computer vision, 3D instance segmentation has become a critical component, es-
pecially in applications such as autonomous vehicles, robotics, and virtual reality [1].
Compared with 2D segmentation, 3D segmentation offers a more complete understanding
of a scene because 3D data have richer geometric scale and shape data with less back-
ground noise [2]. Within indoor environments, the ability to precisely detect and delineate
individual objects in a 3D scene is very important because it helps to recognize and interact
with the objects present [3]. Nevertheless, there are challenges posed by the different object
sizes, scales, occlusions, orientations, and so on in the point cloud data. The most impor-
tant problem in 3D instance segmentation is the capacity to extract and represent various
features from point clouds. Point clouds are known to be irregular and unordered [4]. This
sets a major challenge for conventional deep learning architectures because of their reliance
on grid-like data structures. Lately, researchers have introduced point-based networks
(PointNet [5] and PointNet++ [6]), which not only directly operate on point clouds but also
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overcome the limitations of voxelization. However, these methods still battle to handle
complex scenes with multiple overlapping objects and capture long-range dependencies.

In this work, the authors propose a novel approach that combines the strength of
the adaptive n-shifted shuffle (ANSS) attention mechanism and the Generalized Hough
Transform (GHT) for 3D instance segmentation. The proposed ANSS uses an n-shifted
sigmoid activation function that dynamically adjusts the focus of the network on relevant
regions of the point cloud. This mechanism enhances the model’s ability to distinguish
between objects with similar geometric features by adaptively reshuffling the feature space,
resulting in more accurate segmentation. Moreover, the n-sigmoid activation function also
helps mitigate the vanishing gradient problem by maintaining a more stable gradient flow
during backpropagation. This further improves the learning process, particularly in deeper
layers, leading to better performance in complex 3D segmentation tasks.

The proposed n-shifted sigmoid activation function plays a crucial role in the attention
mechanism. It is, in fact, an evolution from the n-sigmoid activation function, which
provides a smooth and differentiable tool to oversee the attention weights [7] but here is
in the range [−1, 1]. By shifting the sigmoid function, the authors allow the network to
fine-tune its focus on the feature space’s various parts, so the overall performance of the
attention mechanism is enhanced.

The incorporation of GHT [8] further strengthens this model with the provision of a
vigorous structure that localizes and detects various objects within the 3D environment.
GHT is remarkably effective when it comes to object orientation and partial occlusions,
which makes it essential for handling challenging segmentation tasks [8].

The authors evaluate the proposed model on the Stanford 3D Indoor Spaces Dataset
(S3DIS), a widely used benchmark dataset for 3D instance segmentation. The experiments
prove that the proposed approach outperforms state-of-the-art methods in both mean
Intersection over Union (IoU) and overall accuracy. The combination of ANSS and GHT
results in a model that is not only more accurate but also more robust to the challenges
posed by 3D instance segmentation.

In summary, the contributions of this work are that it achieves the following:

• Introduced an innovative attention mechanism, the ANSS attention, which improves
the model’s capacity to concentrate on relevant parts of the 3D space, thus capturing
subtle details better than conventional approaches.

• Reformulated and improved the n-sigmoid activation function to enable the model
to output values in the range of [−1, 1], which allows the representation of negative
relationships between features and actively suppresses conflicting features (negative
values near −1).

• Reformulated the Generalized Hough Transform with deep learning integration and
the addition of a new attention mechanism for 3D instance segmentation.

• Improved the 3D object detection performance on 3DSIS, a benchmark dataset.

The rest of this paper is organized as follows: Section 2 reviews the related work on
3D instance segmentation, focusing, among others, on attention mechanisms and Hough
Transform-based methods. Section 3 details the architecture of the proposed model, in-
cluding the ANSS attention module and its integration with GHT. Section 4 presents the
experiments and results, where a discussion on the potential future research directions is
included, and Section 5 concludes this paper.

2. Related Works
2.1. Point-Based Networks

Three-dimensional instance segmentation has greatly evolved in recent years, with
an increasing number of techniques that aim to tackle the difficulties posed by 3D point
cloud data [9–11]. Early approaches relied heavily on voxelization, converting point
clouds into a structured grid format that could be processed using 3D convolutional neural
networks (3D CNNs) [12]. Models such as VoxelNet [13] and MinkowskiNet [14] have
laid the groundwork for 3D segmentation by leveraging the power of CNNs to extract
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features from volumetric data. But these methods suffer from high computational costs and
memory ineptitudes because of the sparsity of point cloud data, leading to the point-based
network’s expansion.

PointNet and its successor, PointNet++, marked a significant shift in point cloud
processing. The innovation of PointNet was to directly operate on raw point clouds by
means of a series of multi-layer perceptrons (MLPs) to learn point-wise features, followed
by a max-pooling operation to aggregate global features. PointNet++ went further and
integrated hierarchical feature learning, allowing the network to capture local structures
at multiple scales. These methods demonstrated the potential of directly processing point
clouds, but they also highlighted the limitations of MLP-based architectures in capturing
complex spatial relationships.

2.2. Attention Mechanisms

Because of the limitations of the PointNet-based models, researchers explored attention
mechanisms [15]. Attention mechanisms have become central to current deep learning
models, especially in natural language processing and computer vision [16]. The ability to
dynamically focus on relevant parts of the input data has proven instrumental for tasks
that require fine-grained understanding [17]. In the context of 3D instance segmentation,
attention mechanisms have been used to enhance the model’s capability to differentiate
between objects with comparable geometric features. Methods such as the Point Attention
Network (PAN) [18] and Point Transformer [19] have incorporated attention layers to better
capture long-range dependencies and context within point clouds.

Shuffle attention [20] is an advanced variant of the traditional attention mechanisms
that enhances the model performance by rearranging feature maps before applying at-
tention. The idea is to introduce a shuffling operation that diversifies how the model
interprets the input data, encouraging it to look at features in new, varied ways. This
reshuffling enhances the model’s discriminative power, making it more effective at learning
and distinguishing complex patterns within the data.

2.3. Generalized Hough Transform

This is another critical component of the proposed model. GHT is a well-established
technique for detecting shapes and patterns in images, traditionally used in 2D computer
vision tasks. Its extension to 3D has been explored in various works [21–24], particularly
for object detection and pose estimation [25–27]. The strength of GHT lies in its robustness
to variations in object orientation and partial occlusions, making it an ideal choice for
challenging 3D instance segmentation tasks. Recent works have integrated GHT with
deep learning models to improve their ability to localize objects within 3D scenes [28,29].
However, these approaches often rely on handcrafted features or are limited to specific
object categories.

2.4. Activation Functions

Activation functions are critical components of deep learning models, as they intro-
duce non-linearity and help networks learn complex patterns [30]. Traditional activation
functions, such as sigmoid, ReLU (Rectified Linear Unit) [31], ELU [32], and Tanh [33],
have been widely used across various deep learning tasks. Sigmoid and Tanh are bounded
functions, with sigmoid mapping values to the range [0, 1] and Tanh to [−1, 1]. These
bounded ranges, however, have led to issues such as vanishing gradients, especially in
deep networks. ReLU, on the other hand, introduced an unbounded, piecewise linear
function, allowing faster convergence in many cases, but also introduced issues like dead
neurons when the activation remains zero for negative inputs.
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3. The Proposed Adaptive n-Shifted Shuffle (ANSS) Attention Integrated with the
Generalized Hough Transform (GHT)

This proposed model combines the innovative ANSS and the GHT (Figure 1). From
an input point cloud, the network (Figures 1 and 2) predicts the object instance masks by
leveraging an innovative ANSS to improve the 3D GHT. The full model consists of two
main parts: the ANSS attention mechanism and the GHT with the PointNet backbone
where objects in the 3D scene are instantiated. FCs are fully connected layers.
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Figure 1. Three-dimensional n-shifted ANSS GHT network architecture. ANSS is made of the AS
(adaptive shuffle) in orange, nρ (n-sigmoid) in grey, and SA (adaptive shuffle attention) in light blue.

Figure 2. The detailed ANSS module of the proposed method.

The adaptive n-shifted shuffle (ANSS) mechanism combines three components (adap-
tive shuffle (AS), n-shifted sigmoid activation function (nρ), and shuffle attention SA)
(Figure 2) to prioritize and rearrange feature focus across spatial regions to improve seg-
mentation in complex 3D scenes. The GHT implements robust 3D object detection and
localization using PointNet and a GHT module.

Table 1 below showcases the sizes and detailed layers of the proposed model. The
GHT here does not explicitly perform a voting process like traditional Hough Transform
approaches [34–37].
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Table 1. Detailed breakdown of the layer sizes and shapes of the ANSS GHT model.

Layer Name Type Input Shape Output Shape Parameters

FC1 Dense (128 units) (batch_size, 4096, 3) (batch_size, 4096, 128) 512
BN1 BatchNormalization (batch_size, 4096, 128) (batch_size, 4096, 128) 512
FC2 Dense (256 units) (batch_size, 4096, 128) (batch_size, 4096, 256) 33.024
BN2 BatchNormalization (batch_size, 4096, 256) (batch_size, 4096, 256) 1024

ANSS Attention Layer (batch_size, 4096, 256) (batch_size, 4096, 256) 8576 (approx.)
FC3 Dense (num_classes) (batch_size, 4096, 256) (batch_size, 4096, num_classes) Depends on num_classes
GHT GHT Layer (batch_size, 4096, 256) (batch_size, 4096, num_classes) 10,240 (approx.)

3.1. Adaptive n-Shifted Shuffle (ANSS)

The ANSS comprises three components, which are the nρ (n-shifted sigmoid), AS
(adaptive shuffle), and SA (shuffle attention).

3.1.1. n-Shifted Sigmoid Activation Function

The n-shifted sigmoid activation function represents a pivotal innovation in the ar-
chitecture of the ANSS GHT model, contributing to its effectiveness in complex tasks like
segmentation and object detection.

a. n-sigmoid activation function

The n-Sigmoid ρ (Equation (1)) [7] is a variant of the standard sigmoid function, where
the steepness of the curve is controlled by a factor n:

ρ(x, n) =
α

1 + enx+β
(1)

where n is a constant that depends on α and results from the computation of the integration
of the derivative, and β is the offset parameter that centers the input domain x, while α ∈ R
is the logistic growth rate parameter.

This function allows more flexibility in controlling the slope of the activation curve.
This added flexibility enables better control over how the model responds to different
magnitudes of input values, which can be beneficial in scenarios where precise feature
scaling is required.

b. n-shifted sigmoid activation function

The n-shifted sigmoid function nρ in equation (Equation (2)) is an evolution from the
n-sigmoid activation function that is designed to address its limitations by shifting the
output range to [−1, 1]. Mathematically, it is expressed as

nρ(x, n) =
2

1 + e(−nx+β)
− 1 (2)

where n is a constant that depends on α and results from the computation of the integration
of the derivative, and β is the offset parameter that centers the input domain x, while α ∈ R
is the logistic growth rate parameter.

Unlike the n-sigmoid, which outputs values between [0, 1], this shifted version is
symmetrical around zero, producing values in the range [−1, 1]. This symmetry can
improve gradient flow and model convergence by allowing both positive and negative
responses to the input data.

c. Benefits of the n-shifted sigmoid function in attention mechanisms

In the context of attention mechanisms, the n-shifted sigmoid function offers several
advantages, as follows:

• An enhanced representation of the negative relationships: In traditional attention
mechanisms, the sigmoid function (Equation (3)) is in the range [0, 1], which restricts
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the model to positive relationships. However, with n-shifted sigmoid (Equation (4)),
the range is [−1, 1], expressing both positive and negative relationships between
features. This is particularly useful in occluded spaces where the presence of one
feature may inhibit or contradict another.

The standard sigmoid function:

ρ(x) =
1

1 + e−x → ρ(x)ϵ[0, 1] (3)

To shift this range to [−1, 1], the authors introduced the n parameter and rescaled
the output:

nρ(x, n) =
2

1 + e(−nx+β)
− 1 (4)

With this adjustment, nρ(x, n) now outputs values in the range [−1, 1], allowing the
model to recognize negative relationships where attention needs to be reduced or negated.

• An improved attention weight: The n-shifted sigmoid broader range [−1, 1] allows
for finer-grained attention weights, where values can represent both strong positive
influence (near 1) and strong negative influence (near −1).

The weighted attention A is calculated by applying nρ(x, n):

A(f) = f·nρ(x, n) (5)

• Here, the following hold:

# When nρ(x, n) ≈ 1, f receives amplified attention.
# When nρ(x, n) ≈ −1, f is actively suppressed, giving the model suppressive

control over attention weights.

• An enhanced model stability and training: The n-shifted sigmoid broader range can
help improve gradient flow and stability during training by mitigating the vanishing
gradient problem. With the traditional sigmoid, outputs are restricted to [0, 1], and as
x → ±∞, the gradient ρ′(x) → 0, causing gradients to vanish.
With n-shifted sigmoid, this issue is reduced, mainly because the output range [−1, 1]
allows for more substantial gradients, even for large inputs, and the shift parameter n
can be adjusted during training, adapting the activation to changing input distributions.

• An adaptability to complex tasks: Its ability to handle both positive and negative
activations makes it particularly well suited for these tasks. This function enables the
model to perform the following:

# Delineate Boundaries: Since the output can be negative, boundaries between
contrasting regions can be clearly distinguished.

# Identify Complex Patterns: The shift allows flexibility in the model’s attention
distribution, helping it handle intricate and variable spatial arrangements.

# Mathematical Intuition for Boundary Delineation: When a region with high
contrast (boundary) is encountered, n-shifted sigmoid can amplify positive fea-
tures on one side of the boundary while suppressing features on the other side.

For a feature map F with a boundary between regions R1 and R2, the attention weights
(Equation (6)) from nρ(x, n) will enhance FR1 while attenuating FR2, yielding

A(F ) = [n ρ(FR1) ≈ 1, nρ(FR1) ≈ −1 (6)

This adaptability allows the model to effectively learn complex spatial relationships,
leading to more accurate segmentation and classification in 3D scenarios.
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3.1.2. Adaptive Shuffle Pattern

The adaptive shuffle (AS) component is designed to dynamically rearrange or shuffle
feature channels in response to the input’s spatial characteristics. This allows the network
to create diverse feature representations without altering the spatial dimensions.

Assume the input feature map is X ϵ ℜC×H×W , where C is the number of channels,
and H and W are spatial dimensions.

After applying convolution:

X′ = conv1 × 1(X) ϵ ℜC′×H×W

Then, the feature map X′ is split into G groups:

X′ = {X1, X2, . . ., XG}, where Xi ϵ ℜC ′/G×H×W

The channels within each Xi are then shuffled according to a learned or fixed shuffle
pattern. This shuffle enhances spatial diversity by mixing features across different channels.

Once each group’s channels have been shuffled, the groups {X1, X2, . . ., XG} are
concatenated back together along the channel dimension to form the final shuffled feature
map. This new feature map retains the original spatial dimensions H and W but now has a
rearranged channel structure that is more spatially diverse:

Xshuffled = concat (X1, X2, . . ., XG) ∈ ℜC ′×H×W

This concatenation step completes the adaptive shuffle operation, yielding a trans-
formed representation of the original input where the channels have been adaptively
rearranged to better represent the spatial complexities of the data.

The adaptive shuffling approach provides several key advantages, such as enhanced
spatial diversity (where the network can represent spatial details more effectively by cap-
turing subtle variations and dependencies in the input data), more flexible representation
learning (where the use of a learned shuffle pattern allows the model to adapt its channel
rearrangements to specific features within the data), and stable spatial consistency (where
it allows diverse feature recombination without losing structural integrity).

3.1.3. Adaptive n-Shifted Shuffle Attention (ASA)

The proposed attention mechanism uses Global Average Pooling (GAP) to aggregate
global information over the input features in its channel attention, just like the original
shuffle attention (SA).

Instead of using two scaling and shifting parameters, the ANSS feeds the pooled
features through a fully connected layer (Dense layer), followed by another dense layer to
generate a channel-wise attention vector.

Xdense1 = W1 · GAP(X)+b1, Xdense2 = W2 · Xdense1 + b2,

After generating the adaptive attention vector, a custom n-shifted sigmoid activation
function is applied to scale the output to a range of [−1, 1] rather than [0, 1]. Moreover,
the adaptive shuffle attention module introduces a trainable shuffle pattern (the adaptive
shuffle—Section 3.2.2), which is learned during training and allows the model to reorganize
or reorder the channels dynamically, contrary to the fixed shuffling operator in the original
shuffle attention.

The adaptive shuffle (AS) pattern is learned during training, allowing the model to
reorder channels as follows:

1. Split the feature map into groups: X′ = {X1, X2, . . ., XG}, where each Xi ∈ ℜC/G×H×W

2. Shuffle the channels within each group based on a learned pattern.
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This adaptive shuffling enables effective information flow across channels, enhancing
feature interactions over varying orientations and scales. After reordering, the attention
vector scales the input features elementwise:

Xoutput = X⊙adaptive shuffle attention vector.

Unlike the original SA, the adaptive shuffle attention focuses on channel-wise attention
and omits a separate spatial attention branch, concentrating on enhancing or suppressing
specific features dynamically. The Adaptive Shuffle is designed to dynamically rearrange
or shuffle feature channels in response to the input’s spatial characteristics. This allows the
network to create diverse feature representations without altering the spatial dimensions.

3.2. Generalized Hough Transform (GHT)
3.2.1. PointNet Backbone for 3D Point Cloud Processing

As the core model used for point cloud classification and segmentation tasks, PointNet
(a groundbreaking approach in the field of 3D point cloud processing) operates directly on
raw 3D point cloud data without needing voxelization or multi-view projections.

Traditional approaches to 3D data often involve converting point clouds into voxel
grids or meshes, which can be computationally expensive and may lead to loss of informa-
tion. PointNet addresses these challenges with a novel architecture specifically designed
for unordered point sets by leveraging permutation invariance, point feature encoding, and
transformation learning. The key innovation of PointNet is its ability to directly process raw
point cloud data, bypassing the need for preprocessing steps like voxelization or meshing.

Since its introduction, PointNet has inspired several advancements and extensions,
including PointNet++ (which improves local feature learning by incorporating hierarchical
structures) [6] and various integrations with advanced neural network components.

3.2.2. GHT Module

The GHT is traditionally a technique used in object detection to locate objects in images
by mapping features to a reference point, such as an object’s center. In its classical form,
GHT involves a “voting” mechanism where object features vote for potential positions of the
object’s template, making it robust to variations in scale, rotation, and other transformations.

However, in this proposed model, the GHT is designed to work within a deep learning
framework using 3D data.

a. GHT as a deep learning framework

The Generalized Hough Transform (GHT) has been revised for integration into a deep
learning framework to generate the proposed Adaptive n-shifted sigmoid Generalized
Hough Transform (ANSS GHT) approach. This reformulation involves modifications to
make the process differentiable, scalable, and trainable within a neural network structure.
Here is how:

- Differentiable Generalized Hough Transform: In its classic form, the GHT maps
points in an image or 3D space to a parameter space and only relies on discrete
operations that are not inherently differentiable, making backpropagation in
a neural network impossible. So, the GHT can be modified to work with con-
tinuous probability density functions, so the vote accumulation in the Hough
space becomes a continuous, smooth function. This is achieved by differentiable
functions (SoftMax, sigmoid, n-shifted sigmoid, . . . for smoother accumulation
of votes, enabling gradients to be propagated).

- Adaptation of the “voting” process: Instead of hand-crafted features for mapping
points to the Hough space, a neural network learns the optimal feature repre-
sentations. Here, in the ANSS GHT, the n-shifted sigmoid function definitely
allows scaling the voting intensities based on learned parameters, dynamically
adapting to various spatial patterns and contexts in the 3D space.
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- Integration with convolutional and attention mechanisms: The reformulated
GHT benefits from convolutional layers to extract hierarchical features from the
3D input. By using a convolutional backbone, the network can efficiently capture
both local and global contexts.

b. GHT for object detection

Instead of relying on an explicit voting process, the GHT learns and aggregates local
geometric information directly from the 3D point cloud data so that the model can infer
object boundaries, centers, and other key features without the need for a traditional voting
mechanism to generate instance masks.

By combining GHT with point features extracted from PointNet, the model can effec-
tively perform object detection in 3D space. The GHT module processes these point features,
learning to recognize object shapes and their spatial relationships. Convolutional layers
and pooling operations are applied to capture fine-grained geometric details, enabling
the model to locate objects even in cluttered or partially observed environments. This
represents a pivotal innovation in the architecture of the ANSS GHT model, contributing to
its effectiveness in complex tasks like segmentation and object detection.

4. Experiments and Results

To validate the effectiveness of the proposed 3D ANSS GHT instance segmentation
method, the authors designed a comprehensive set of experiments.

4.1. Dataset and Evaluation Metrics

The dataset used for this research is the Stanford 3D Indoor Spaces Dataset (S3DIS)
dataset [38], which consists of multiple 3D point clouds representing different indoor
environments. It includes various object categories like chairs, tables, walls, and other
furniture types, offering a challenging and realistic scenario for 3D instance segmentation.

In fact, the S3DIS dataset boasts six hefty indoor areas from three different buildings.
It involves several annotated objects inside a variety of different rooms. Figure 3 represents
the six areas of the dataset.
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Various metrics, such as mean Intersection over Union (IoU), overall accuracy, robust-
ness in noisy or occluded environments, and inference time, were used to evaluate the
model’s performance.

4.1.1. Data Preprocessing

The dataset was preprocessed to normalize the point clouds. Techniques used involved
down sampling for computational efficiency, normalization of coordinates, and color
augmentation. A grid subsampling technique was chosen to reduce the computational load
while retaining important geometric details.

4.1.2. Implementation Details

The model was trained on a GPU using the NVIDIA T4 set on a batch size of 32 and an
initial learning rate of 0.001. A custom loss, called custom sparse SoftMax cross-entropy loss
function, is implemented. Unlike standard SoftMax cross-entropy loss, which computes the
loss across all possible classes, sparse SoftMax cross-entropy focuses on the sparse nature
of the label data. This approach reduces the computational overhead and improves the
model’s focus on relevant points, thereby enhancing segmentation accuracy.
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A learning rate scheduler was implemented to reduce the learning rate as the training
progressed. Adam optimizer with gradient clipping is used to prevent exploding gradients.
To enhance the model’s generalization capabilities and improve its performance on unseen
variations in point cloud data, data augmentation techniques (point cloud rotation, jittering,
random flip) were employed.

4.2. Results and Analysis
4.2.1. Average Recall (AR)

Mean average recall (mAR) is a metric mostly used to evaluate object detection and
segmentation. It provides a measure of how well a model can detect relevant instances
across different categories, averaged over all relevant objects. The mAR score is calculated
by first finding the average recall (AR) for each object category and then averaging these
AR scores across all categories. The proposed model achieved a mean AR of 71.61%,
outperforming 3D BoNet (46.7%) and 3D-MPA (64.1%). The ANSS attention mechanism
enabled the model to capture fine-grained details, particularly for small objects like chairs
and monitors, which often pose a challenge in instance segmentation tasks.

Per-class instance segmentation results are shown in Table 2, which reports the mean
average recall (mAR) scores when compared with other methods (3D-BoNet and 3D-MPA)
on the various 13 individual classes. In most papers, the clutter class is not included, since
it refers to miscellaneous objects that cannot fit into a specific and well-defined category.
It also can vary greatly between different rooms and areas and introduces noise in the
evaluation process.

Table 2. Per-class 3D instance segmentation scores on S3DIS. The bold data shows the best performing
methods while the underlined ones indicate the second-best performing methods.

S3DIS
6-FoldCV Ceiling Floor Wall Beam Column Window Door Table Chair Sofa Bookcase Board mAR

3D BoNet [39] 61.8 74.6 50.0 42.2 27.2 62.4 58.5 48.6 64.9 28.8 46.5 28.6 46.7
3D MPA [40] 68.4 96.2 51.9 58.5 77.6 79.8 69.5 32.8 75.2 71.1 68.2 38.2 64.1

SGPN [41] 58.42 83.6 42.2 25.6 7.15 42.73 45.2 38.25 47.0 0.00 13.5 31.68 31.68
Ours 73.15 97.8 81.82 56.5 71.1 68.7 80.4 59.65 79.8 61.75 64.65 63.75 71.61

Improvement 4.75 1.6 29.08 - - - 10.9 11.05 4.6 - - 22.55 7.5

In the S3DIS dataset, there are six areas. Area 5 and Area 6 are particularly interesting
because they are often used as test sets in 3D segmentation tasks where they pose unique
challenges. Area 5 contains a variety of room types, making it more challenging for models
trained on other areas, while Area 6 plays an important role in contributing to the dataset’s
overall diversity, containing its own set of unique indoor environments.

In Table 2, the best method and second-best method for each class are highlighted in
bold font and underscore, respectively. In most cases, our method won and ranked second
in other classes. The last line in Table 1 shows, when our method won, the improvement
for each class achieved on the second-ranked method. Therefore, the proposed approach
outperforms most state-of-the-art methods.

Table 3 reports scores on both Area 5 and six-fold cross-validation results. The metric
is mean average recall (mAR) at an IoU threshold of 50%.

Table 3. Three-dimensional instance segmentation mAR@50 scores on S3DIS Dataset on mAR@50%.

Methods S3DIS 6-Fold CV S3DIS Area 5

3D-BoNet [39] 47.6 40.2
ASIS [42] 47.5 42.4

3D-MPA [40] 64.1 58.0
PartNet [43] 43.4 -

3D ANSS GHT (Ours) 71.61 72.54
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It is reported an increased recall of 14.57 mAR@50% (Area 5) and 7.5 mAR@50% (six-
fold cross-validation) from the 3D-MPA and of 32.34 mAR@50% (Area 5) and 24.1 mAR@50%
(six-fold cross-validation) from the 3D-BoNet, which means the proposed approach detects
significantly more objects while simultaneously achieving higher precision.

4.2.2. Accuracy

The mean Average Precision (mAP) is a popular metric used to evaluate the perfor-
mance of object detection and instance segmentation. It combines both precision and recall
to provide a balanced measure of a model’s accuracy and its ability to find all the relevant
objects across multiple categories and Intersection over Union (IoU) thresholds.

In terms of accuracy, the proposed model achieves a mean Average Precision at 50%
Intersection over Union (IoU), i.e., mAP@50% of 69.87%, compared with 66.7% with ASIS
and 63.6% with 3D-MPA, for instance, on the 3DSIS six-fold CV. The superior accuracy
is due to the combination of ANSS and GHT, allowing the model to better distinguish
between overlapping objects, as seen in Table 4.

Table 4. Three-dimensional instance segmentation scores on Area 5 and 6-fold cross-validation results
on mAP@50%. The bold data shows the best performing methods while the underlined ones indicate
the second-best performing methods.

Methods S3DIS 6-Fold CV S3DIS Area 5

3D-BoNet [39] 65.6 57.3
ASIS [42] 63.6 55.3

3D-MPA [40] 66.7 63.1
3D ANSS GHT (Ours) 69.87 69.34

This paper reports scores on Area 5 and six-fold cross-validation results. The metric
is mAP and mAR at an IoU threshold of 50%. The IoU is computed on per-point instance
masks. This paper reports on the per-class mAP segmentation scores using the S3DIS
dataset [34], as can be seen in Table 5. This paper reports the best results in nearly all
categories. The conclusion is that this proposed method can detect significantly more
objects with a higher precision.

Table 5. Per-class 3D instance segmentation mAP@50 scores on S3DIS.

S3DIS CV Ceiling Floor Wall Beam Column Window Door Table Chair Sofa Bookcase Board mAP

3D BoNet [39] 88.5 89.9 64.9 42.3 48.0 93.0 66.8 55.4 72.0 49.7 58.3 80.7 65.66
3D MPA [40] 95.5 99.5 59.0 44.6 57.7 89.0 78.7 34.5 83.6 55.9 51.6 71.0 66.7

SGPN [41] 78.15 80.27 48.90 33.6 16.9 49.6 44.48 30.33 52.22 23.12 28.50 28.62 42.9
3D-BEVIS [44] 71.00 96.70 79.37 45.10 64.38 64.3 70.15 57.22 74.22 47.92 57.97 59.27 65.66

Ours 71.5 98.75 80.25 55.6 68.3 67.8 78.3 59.7 76.9 58.5 63.34 59.5 69.87
Improvement - - 0.88 10.5 3.92 - - 2.48 - 2.6 5.04 - 3.17

The results of each class demonstrate that the n-shifted ANSS GHT is a powerful
method in 3D instance segmentation.

4.2.3. Robustness to Noise

Even after adding Gaussian noise to the point clouds, this proposed model maintained
a high mAP@50 at 66.74%, showing a marginal degradation compared with its original non-
noisy performance, which is 69.87%. Table 6 shows the comparison among the concerned
methods on the degradation when noise is present. Our method is the most robust,
since it displays the smallest degradation on mAP@50%. This suggests that the ANSS
GHT architecture has strong robustness in handling noisy inputs because of the adaptive
nature of the model’s attention mechanism, which dynamically shifts and adapts based on
input features.
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Table 6. Gaussian noise addition comparison of various 3D segmentation models. The bold
data shows the best performing methods while the underlined ones indicate the second-best
performing methods.

Model mAP@50% mAP@50% (When Noise Added) Degradation

3D-BoNet [39] 66.7 61.3 5.4
3D-BEVIS [44] 65.6 60.5 5.1

SGPN [41] 42.9 35.6 7.3
3D ANSS GHT (Ours) 69.87 66.74 2.13

By focusing on important features and downplaying irrelevant noise, the model
remains effective despite the added perturbations. The small decline in mAP@50 indicates
that the architecture can successfully isolate valuable spatial information from noise, leading
to minimal impact on its object detection and segmentation capabilities.

In contrast, models like 3D BoNet [39], which rely heavily on predefined feature
extractors, or ASIS [42] and 3D-MPA [40], which may not dynamically adjust feature
weights in response to noise, exhibit larger performance degradations (Table 6). Thus, the n-
shifted shuffle attention mechanism provides a notable advantage in scenarios where point
clouds are noisy or incomplete, reinforcing its utility in real-world 3D segmentation tasks.

4.2.4. Inference Time

The Inference time is the time required for a trained machine learning model to process
new, unseen data and generate a prediction. In 3D instance segmentation or object detection,
inference time is measured from the moment the model receives an input (e.g., a 3D point
cloud or an image) until it provides a prediction, such as labels or bounding boxes. The
ANSS GHT method has an average inference time of 28.17 ms (Table 7). To benchmark the
computation time with other state-of-the-art 3D instance segmentation methods and make
a fair comparison, the authors ran the proposed framework on GPU using the NVIDIA T4.
SGPN takes 170 ms, while 3D-MPA takes 300 ms. However, the detectionNet [41] takes
739 ms on an Nvidia Titan X GPU.

Table 7. Computation speed comparison of n-sigmoid and n-shifted sigmoid activation functions on
the 3D ANSS GHT and other 3D models using S3DIS dataset using S3DIS dataset.

Model Activation Function Inference Time (ms)

3D ANSS GHT n-Sigmoid 29.35
n-shifted Sigmoid 28.17

3D-MPA [40] - 300
SGPN [41] - 170

DetectionNet [45] - 739

4.3. Ablation Studies
4.3.1. Impact of n-Shifted Sigmoid

Experiments were conducted to investigate the impact of replacing the n-shifted
sigmoid activation function with the standard ReLU [31] and other sigmoid functions
(Table 8). The model with n-shifted sigmoid consistently outperformed other versions,
achieving a mean AP improvement of 26.47% over ReLU, 15.7% over ELU [32], 28.57% over
the original sigmoid activation function, and 6.52 over the n-sigmoid activation function.
This shows that the smooth and adaptive behavior of the n-shifted sigmoid allows the
model to refine attention weights more effectively.
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Table 8. Effects of other activation functions on the 3D ANSS GHT using the S3DIS dataset. The
bold data shows the best performing methods while the underlined ones indicate the second-best
performing methods.

Model Activation Function mAP@50%

3D ANSS GHT

Original Sigmoid 41.3
ReLU 43.4
ELU 54.17

n-Sigmoid 63.35
n-Shifted Sigmoid 69.87

4.3.2. Impact of the ANSS Attention

To isolate the impact of the ANSS attention module, the authors first trained a version
of the model without any attention mechanism, then with the normal shuffle attention,
and finally with the inclusion of the ANSS. The mean AP dropped by 7.34% to 62.53%,
confirming that the shuffle attention module plays a crucial role in enhancing feature
discrimination, adaptive feature weighing, and model flexibility (Table 9).

Table 9. Effects of attention mechanism on the 3D ANSS GHT using the S3DIS dataset. The
bold data shows the best performing methods while the underlined ones indicate the second-best
performing methods.

Model Attention Mechanism mAP@50%

3D ANSS GHT
No Attention 62.53

ANSS 69.87
Traditional Shuffle 66.29

4.3.3. Impact of the Generalized Hough Transform (GHT)

Removing GHT from the architecture led to a 19.2% decrease in accuracy (mAP),
particularly in scenes with significant occlusions or varied object orientations. Figure 4
shows that in the scene in Area_6 lounge_1, the occluded objects are not clearly demarcated,
as opposed to when using the ANSS GHT (Figure 3). This demonstrates that GHT with
an attention mechanism is essential for handling complex scenes with multiple objects
and occlusions.
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and the original point cloud (middle). The model without GHT (right) found it difficult to partially
segment all the chairs and even the wall and the curtain borders.

4.4. Visualization of Segmentation Results
4.4.1. Qualitative Results

The authors provide visual examples of segmented scenes. Figure 5 shows the seg-
mented scenes where the model successfully segments between objects, such as a table
partially occluded by a chair.
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4.4.2. Failure Cases

The model occasionally struggled with objects that have very similar geometric struc-
tures but differ in texture or color, such as distinguishing between a sofa and a chair in
certain cases. These failures highlight potential areas for further improvement (Figure 6).
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Figure 6. Example of a failure segmentation scene. Inside the door, the couches are not correctly
segmented regarding the floor carpet.
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4.5. Discussion

The results of this research indicate that the integration of the ANSS attention mecha-
nisms and the GHT provides a powerful framework for 3D instance segmentation. The
results of this research indicate that the integration of the ANSS attention mechanisms and
the GHT provides a powerful framework for 3D instance segmentation.

The extensive experiments on the Stanford 3D Indoor Spaces Dataset (S3DIS) demon-
strate that the proposed approach achieves state-of-the-art performance, with significant
improvements in mean IoU, overall accuracy, robustness to noise, and inference time, and
the impact of using the n-shifted sigmoid together with the adaptive shuffle attention has
been tremendous. Additionally, the model exhibits strong resilience to noise and occlusion,
maintaining high performance even under challenging conditions.

4.5.1. Impact of the n-Shifted Sigmoid Activation Function

The authors evaluated the effect of replacing the n-shifted sigmoid activation function
in the ANSS block with other activation functions. They considered four other activation
functions—the original sigmoid, ReLU, ELU, and n-sigmoid—and compared them with the
n-shifted sigmoid. Replacing the n-shifted sigmoid in the SE block with other well-known
activation functions sizably reduced the model’s performance. This shows that the smooth
and adaptive behavior of the n-shifted sigmoid does allow the model to refine attention
weights more effectively.

4.5.2. Impact of the ANSS Attention Module

To more effectively evaluate the impact of the ANSS attention module, the authors first
trained a version of the model without the innovative attention mechanism and then with
the normal shuffle attention without adding the innovative adaptive nature. Experiment
results show that the shuffle attention module plays a crucial role in enhancing feature
discrimination, adaptive feature weighing, and model flexibility because the model with
the ANSS displayed excellent results.

4.5.3. Impact of the Generalized Hough Transform (GHT)

The authors experimented with the complete removal of the GHT from the proposed
architecture. This led to a sharp decrease in accuracy. Clearly, GHT with an attention
mechanism is essential for handling complex scenes with multiple objects and occlusions.

4.5.4. Future Research Directions

In the future, several avenues could be explored, such as the integration of additional
geometric information into the attention mechanism. Another avenue would be ANSS
GHT model optimization for real-time applications. The final possible avenue would
be multi-modal approaches that combine point cloud data with other sensor inputs. By
incorporating these features, the model will be able to better differentiate objects with
similar shapes but different orientations or textures.

5. Conclusions

In this paper, the authors presented an innovative model that integrates a new adaptive
n-shifted shuffle (ANSS) attention mechanism with the Generalized Hough Transform
(GHT) for robust 3D instance segmentation of indoor scenes. The proposed technique uses
the n-shifted sigmoid activation function, which improves the adaptive shuffle attention
mechanism, permitting the network to dynamically focus on relevant features across
various regions.

The integration of these components into a cohesive model enables it to outperform
existing 3D instance segmentation methods, particularly in handling complex indoor scenes
with multiple objects, noise, and occlusions.

Experiments conducted on the proposed method using the challenging Stanford 3D
Indoor Spaces Dataset (S3DIS) proved its superiority over existing methods. The proposed
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approach achieves state-of-the-art performance in both mean Intersection over Union (IoU)
and overall accuracy. These results illustrate that the integration of the ANSS and the GHT
is a good answer for improved 3D instance segmentation tasks.

Author Contributions: Conceptualization, D.B.M.; methodology, D.B.M.; software, D.B.M.; valida-
tion, D.B.M.; formal analysis, S.D. and Q.L.; investigation, D.B.M.; resources, D.B.M.; data curation,
D.B.M.; writing—original draft preparation, D.B.M.; writing—review and editing, S.D. and Q.L.;
supervision, S.D.; project administration, S.D.; funding acquisition, S.D. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Research Foundation of South Africa (Grant
Numbers SRUG2203291049 and 145975), Kunming University Foundation (No. YJL2205), and the
Foundation of Yunnan Province Science and Technology Department (No. 202305AO350007).

Data Availability Statement: The dataset used for this study is openly available https://rgbd.cs.
princeton.edu (accessed on 6 November 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Yasir, S.M.; Sadiq, A.M.; Ahn, H. 3D Instance Segmentation Using Deep Learning on RGB-D Indoor Data. Comput. Mater. Contin.

CMC 2022, 72, 5777–5791. [CrossRef]
2. He, Y.; Yu, H.; Liu, X.; Yang, Z.; Sun, W.; Anwar, S.; Mian, A. Deep Learning Based 3D Segmentation: A Survey. arXiv 2021,

arXiv:2103.05423v5.
3. Rani, A.; Ortiz-Arroyo, D.; Durdevic, P. Advancements in point cloud-based 3D defect classification and segmentation for

industrial systems: A comprehensive survey. Inf. Fusion 2024, 112, 102575. [CrossRef]
4. Zhang, Q.; Peng, Y.; Zhang, Z.; Li, T. Semantic Segmentation of Spectral LiDAR Point Clouds Based on Neural Architecture

Search. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5403811. [CrossRef]
5. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3D classification and segmentation. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660.
6. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Proceedings

of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30.
7. Mulindwa, D.B.; Du, S. An n-Sigmoid Activation Function to Improve the Squeeze-and-Excitation for 2D and 3D Deep Networks.

Electronics 2023, 12, 911. [CrossRef]
8. Tsai, D.-M. An improved generalized Hough transform for the recognition of overlapping objects. Image Vis. Comput. 1992, 15,

877–888. [CrossRef]
9. Zong, C.; Wang, H.; Wan, Z. An improved 3D point cloud instance segmentation method for overhead catenary height detection.

Comput. Electr. Eng. 2022, 98, 107685. [CrossRef]
10. Sun, Y.; Zhang, X.; Miao, Y. A review of point cloud segmentation for understanding 3D indoor scenes. Vis. Intell. 2024, 2, 14.

[CrossRef]
11. Yang, S.; Hou, M.; Li, S. Three-Dimensional Point Cloud Semantic Segmentation for Cultural Heritage: A Comprehensive Review.

Remote Sens. 2023, 15, 548. [CrossRef]
12. Bello, S.A.; Yu, S.; Wang, C.; Adam, J.M.; Li, J. Review: Deep Learning on 3D Point Clouds. Remote Sens. 2020, 12, 1729. [CrossRef]
13. Zhou, Y.; Tuzel, O. Voxelnet: End-to-end learning for point cloud based 3d object detection. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4490–4499.
14. Choy, C.; Gwak, J.; Savarese, S. 4D spatio-temporal convnets: Minkowski convolutional neural networks. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3075–3084.
15. Qiu, S.; Wu, Y.; Anwar, S.; Liu, C. Investigating Attention Mechanism in 3D Point Cloud Object Detection. In Proceedings of the

2021 International Conference on 3D Vision, London, UK, 1–3 December 2021; pp. 403–412. [CrossRef]
16. Niu, Z.; Zhong, G.; Yu, H. A review on the attention mechanism of deep learning. Neurocomputing 2021, 452, 48–62. [CrossRef]
17. Geng, P.; Lu, X.; Hu, C.; Liu, H.; Lyu, L. Focusing Fine-Grained Action by Self-Attention-Enhanced Graph Neural Networks with

Contrastive Learning. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 4754–4768. [CrossRef]
18. Feng, M.; Zhang, L.; Lin, X.; Gilani, S.Z.; Mian, A. Point attention network for semantic segmentation of 3D point clouds. Pattern

Recognit. 2020, 107, 107446. [CrossRef]
19. Zhao, H.; Jiang, L.; Jia, J.; Torr, P.H.; Koltun, V. Point transformer. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 16259–16268.
20. Zhang, Q.L.; Yang, Y.B. Sa-net: Shuffle attention for deep convolutional neural networks. In Proceedings of the ICASSP 2021–2021

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021;
pp. 2235–2239.

https://rgbd.cs.princeton.edu
https://rgbd.cs.princeton.edu
https://doi.org/10.32604/cmc.2022.025909
https://doi.org/10.1016/j.inffus.2024.102575
https://doi.org/10.1109/TGRS.2023.3284995
https://doi.org/10.3390/electronics12040911
https://doi.org/10.1016/S0262-8856(97)00033-4
https://doi.org/10.1016/j.compeleceng.2022.107685
https://doi.org/10.1007/s44267-024-00046-x
https://doi.org/10.3390/rs15030548
https://doi.org/10.3390/rs12111729
https://doi.org/10.1109/3DV53792.2021.00050
https://doi.org/10.1016/j.neucom.2021.03.091
https://doi.org/10.1109/TCSVT.2023.3248782
https://doi.org/10.1016/j.patcog.2020.107446


Sensors 2024, 24, 7215 17 of 18

21. Khoshelham, K. Extending generalized hough transform to detect 3D objects in laser range data. In Proceedings of the ISPRS
Workshop on Laser Scanning, Espoo, Finland, 12–14 September 2007; Volume 36, p. 206.

22. Fernández, A.; Umpiérrez, J.; Alonso, J.R. Generalized Hough transform for 3D object recognition and visualization in integral
imaging. JOSA A 2023, 40, C37–C45. [CrossRef]

23. Du, S.; van Wyk, B.J.; Tu, C.; Zhang, X. An Improved Hough Transform Neighborhood Map for Straight Line Segments. IEEE
Trans. Image Process. 2010, 19, 573–585. [CrossRef]

24. Tu, C.; van Wyk, B.J.; Djouani, K.; Hamam, Y.; Du, S. A Super Resolution Algorithm to Improve the Hough Transform. In
Image Analysis and Recognition. ICIAR 2011; Lecture Notes in Computer Science; Kamel, M., Campilho, A., Eds.; Springer:
Berlin/Heidelberg, Germany, 2011; Volume 6753. [CrossRef]

25. Muench, D.; Huebner, W.; Arens, M. Generalized Hough transform based time invariant action recognition with 3D pose
information. In Optics and Photonics for Counterterrorism, Crime Fighting, and Defence X; Optical Materials and Biomaterials in
Security and Defence Systems Technology XI; SPIE: Bellingham, WA, USA, 2014; Volume 9253, pp. 165–175.

26. Strzodka, R.; Ihrke, I.; Magnor, M. A graphics hardware implementation of the generalized hough transform for fast object
recognition, scale, and 3D pose detection. In Proceedings of the 12th International Conference on Image Analysis and Processing,
Mantova, Italy, 17–19 September 2003; pp. 188–193.

27. Tu, C.; Van Wyk, B.; Hamam, Y.; Djouani, K.; Du, S. Vehicle Position Monitoring Using Hough Transform. IERI Procedia 2013, 4,
316–322. [CrossRef]

28. Liao, B.; Li, J.; Ju, Z.; Ouyang, G. Hand gesture recognition with generalized hough transform and DC-CNN using realsense.
In Proceedings of the 2018 Eighth International Conference on Information Science and Technology (ICIST), Cordoba, Spain;
Granada, Spain; Seville, Spain, 30 June–6 July 2018; pp. 84–90.

29. Qi, C.R.; Litany, O.; He, K.; Guibas, L.J. Deep hough voting for 3D object detection in point clouds. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9277–9286.

30. Zhao, Z.; Feng, F.; Tingting, H. FNNS: An Effective Feedforward Neural Network Scheme with Random Weights for Processing
Large-Scale Datasets. Appl. Sci. 2022, 12, 12478. [CrossRef]

31. Agarap, A.F. Deep Learning using Rectified Linear Units (RELU). arXiv 2018, arXiv:1803.08375.
32. Trottier, L.; Giguere, P.; Chaib-draa, B. Parametric Exponential Linear Unit for Deep Convolutional Neural Networks. In

Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico,
18 December 2017.

33. LeCun, Y. Generalization and network design strategies. In Connectionism in Perspective; Pfeifer, R., Schreter, Z., Fogelman, F.,
Steels, L., Eds.; Elsevier: Amsterdam, The Netherlands, 1989.

34. Chiu, S.-H.; Liaw, J.-J. An effective voting method for circle detection. Pattern Recognit. Lett. 2005, 26, 121–133. [CrossRef]
35. Guo, S.; Pridmore, T.; Kong, Y.; Zhang, X. An improved Hough transform voting scheme utilizing surround suppression. Pattern

Recognit. Lett. 2009, 30, 1241–1252. [CrossRef]
36. Singh, C.; Bhatia, N. A Fast Decision Technique for Hierarchical Hough Transform for Line Detection. arXiv 2010, arXiv:1007.0547.
37. Jiang, L.; Xiong, H. Coding-based hough transform for pedestrian detection. In Proceedings of the 2017 IEEE 17th International

Conference on Communication Technology (ICCT), Chengdu, China, 27–30 October 2017; pp. 1524–1528. [CrossRef]
38. Armeni, I.; Sener, O.; Zamir, A.R.; Jiang, H.; Brilakis, I.; Fischer, M.; Savarese, S. 3D Semantic Parsing of Large-Scale Indoor Spaces.

In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30
June 2016; pp. 1534–1543. [CrossRef]

39. Yang, B.; Wang, J.; Clark, R.; Hu, Q.; Wang, S.; Markham, A.; Trigoni, N. Learning object bounding boxes for 3d instance
segmentation on point clouds. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC,
Canada, 8–14 December 2019; Volume 32.

40. Engelmann, F.; Bokeloh, M.; Fathi, A.; Leibe, B.; Nießner, M. 3D-mpa: Multi-proposal aggregation for 3D semantic instance
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
13–19 June 2020; pp. 9031–9040.

41. Wang, W.; Yu, R.; Huang, Q.; Neumann, U. Sgpn: Similarity group proposal network for 3D point cloud instance segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 2569–2578.

42. Wang, X.; Liu, S.; Shen, X.; Shen, C.; Jia, J. Associatively segmenting instances and semantics in point clouds. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4096–4105.

43. Mo, K.; Zhu, S.; Chang, A.X.; Yi, L.; Tripathi, S.; Guibas, L.J.; Su, H. Partnet: A large-scale benchmark for fine-grained and
hierarchical part-level 3D object understanding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 909–918.

https://doi.org/10.1364/JOSAA.482640
https://doi.org/10.1109/TIP.2009.2036714
https://doi.org/10.1007/978-3-642-21593-3_9
https://doi.org/10.1016/j.ieri.2013.11.045
https://doi.org/10.3390/app122312478
https://doi.org/10.1016/j.patrec.2004.09.037
https://doi.org/10.1016/j.patrec.2009.05.003
https://doi.org/10.1109/ICCT.2017.8359886
https://doi.org/10.1109/CVPR.2016.170


Sensors 2024, 24, 7215 18 of 18

44. Elich, C.; Engelmann, F.; Kontogianni, T.; Leibe, B. 3D bird’s-eye-view instance segmentation. In German Conference on Pattern
Recognition; Springer International Publishing: Cham, Switzerland, 2019; pp. 48–61.

45. Deng, Z.; Latecki, L.J. Amodal detection of 3D objects: Inferring 3D bounding boxes from 2D ones in RGB-depth images. In
Proceedings of the CVPR, Honolulu, HI, USA, 21–26 July 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Related Works 
	Point-Based Networks 
	Attention Mechanisms 
	Generalized Hough Transform 
	Activation Functions 

	The Proposed Adaptive n-Shifted Shuffle (ANSS) Attention Integrated with the Generalized Hough Transform (GHT) 
	Adaptive n-Shifted Shuffle (ANSS) 
	n-Shifted Sigmoid Activation Function 
	Adaptive Shuffle Pattern 
	Adaptive n-Shifted Shuffle Attention (ASA) 

	Generalized Hough Transform (GHT) 
	PointNet Backbone for 3D Point Cloud Processing 
	GHT Module 


	Experiments and Results 
	Dataset and Evaluation Metrics 
	Data Preprocessing 
	Implementation Details 

	Results and Analysis 
	Average Recall (AR) 
	Accuracy 
	Robustness to Noise 
	Inference Time 

	Ablation Studies 
	Impact of n-Shifted Sigmoid 
	Impact of the ANSS Attention 
	Impact of the Generalized Hough Transform (GHT) 

	Visualization of Segmentation Results 
	Qualitative Results 
	Failure Cases 

	Discussion 
	Impact of the n-Shifted Sigmoid Activation Function 
	Impact of the ANSS Attention Module 
	Impact of the Generalized Hough Transform (GHT) 
	Future Research Directions 


	Conclusions 
	References

