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Abstract: This research introduces a cutting-edge approach to traffic infrastructure digitization,
integrating UAV oblique photography with LiDAR point clouds for high-precision, lightweight 3D
road modeling. The proposed method addresses the challenge of accurately capturing the current
state of infrastructure while minimizing redundancy and optimizing computational efficiency. A
key innovation is the development of the TJYRoad-Net model, which achieves over 85% mIoU
segmentation accuracy by including a traffic feature computing (TFC) module composed of three
critical components: the Regional Coordinate Encoder (RCE), the Context-Aware Aggregation Unit
(CAU), and the Hierarchical Expansion Block. Comparative analysis segments the point clouds into
road and non-road categories, achieving centimeter-level registration accuracy with RANSAC and ICP.
Two lightweight surface reconstruction techniques are implemented: (1) algorithmic reconstruction,
which delivers a 6.3 mm elevation error at 95% confidence in complex intersections, and (2) template
matching, which replaces road markings, poles, and vegetation using bounding boxes. These
methods ensure accurate results with minimal memory overhead. The optimized 3D models have
been successfully applied in driving simulation and traffic flow analysis, providing a practical and
scalable solution for real-world infrastructure modeling and analysis. These applications demonstrate
the versatility and efficiency of the proposed methods in modern traffic system simulations.

Keywords: transportation infrastructure digitization; semantic segmentation of road point cloud;
lightweight road infrastructure reconstruction

1. Introduction

With the advancements in 3D laser scanning systems and unmanned aerial vehicle
(UAV) photogrammetry technologies [1], these efficient, accurate, and large-scale data
acquisition methods have been widely applied in various areas, including national key
engineering construction, emergency responses to natural disasters, land surveillance, and
smart city development. Three-dimensional laser scanning and UAV aerial photography
technologies enable the creation of high-quality urban 3D GIS models and provide strong
support for smart city construction when combined with BIM technology. GIS-based urban
road scene models can serve smart city development, while three-dimensional models of
mountainous road slopes can be used to analyze changes in terrain and geomorphology, as
well as for disaster warning and monitoring. The digitalization of transportation infras-
tructure has provided strong technical support for intelligent transportation, autonomous
driving, and digital twins. However, the current level of digitalization in transportation
infrastructure is not high due to various factors such as equipment and technology lim-
itations. There is further research needed for developing systematic, streamlined, and
high-precision operational approaches for the rapid digitalization of infrastructure, taking
into account the unique characteristics of the infrastructure itself.
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In the field of point cloud semantic segmentation, the segmentation of road infrastruc-
ture from large-scale point cloud data still presents certain challenges due to the inherent
complexity and diversity of traffic scenes. In the existing research, Dinesh et al. [2] em-
ployed histogram analysis to process depth data line by line and extract point cloud data
that form the road surface. Qiu et al. [3] utilized the RANSAC method to obtain a road
plane and solve the road geometry based on prior knowledge of road width and con-
tinuity. Region-growing algorithms primarily utilize the normal vectors and curvature
of point clouds to group together similar points and form regions, making them one of
the commonly used algorithms for point cloud semantic segmentation. Rabbani et al. [4]
proposed an alternative method, which involves selecting the residuals of seed points’
planes and then using estimated point normals and residuals to select growing regions.
Among the model fitting-based methods, a commonly used algorithm is the RANSAC
method introduced by Bolles et al. [5]. The RANSAC method [6] iteratively estimates math-
ematical model parameters from observed data containing outliers and randomly selects a
minimal subset of data points to extract shape primitives, constructing candidate shapes.
The RANSAC algorithm only utilizes the spatial information of point clouds and is greatly
influenced by density and accuracy. On the other hand, clustering-based segmentation
algorithms use different features for clustering depending on the adaptive scene, requiring
more prior knowledge. With the advancement of computer processing power and the
increasing adoption of machine learning and deep learning techniques, a range of novel
approaches for point cloud semantic segmentation have emerged. Initially, point cloud
semantic segmentation was primarily based on machine learning theory. One approach is
point-based classification, exemplified by Hackel et al. [7], who created a scale pyramid
based on density, generated a 144-dimensional feature vector, and trained a classifier for
direct classification of outdoor scene point clouds. Weinmann et al. [8] performed nearest-
neighbor analysis and extracted features for classification purposes. Another approach is
segmentation-based classification, which involves segmenting the point cloud data and
subsequently classifying the segmented point clouds. Binin et al. [9] established point
adjacency relationships based on normal vectors and utilized support vector machines
for classification. The field of image segmentation has seen remarkable progress with the
continuous advancements in deep learning. Consequently, certain ideas and methods have
been adapted and applied to point cloud segmentation. Currently, deep learning networks
for point clouds can be broadly categorized into three groups:

(a) Deep learning networks utilizing 2D projection: Lawin et al. [10] and other researchers
align 3D laser point clouds with 2D images, projecting the 3D point clouds onto
2D pixels. They then employ convolutional algorithms from the image domain
for semantic segmentation. Boulch et al. [11] integrate multi-view projection with
pretrained models for point cloud classification. However, these methods in this
category encounter limitations due to the loss of spatial information during the
projection process, affecting their overall effectiveness.

(b) Convolutional neural networks utilizing 3D voxelization: In order to address the
spatial information loss in projection methods, Dniel et al. [12] propose the VoxNet
model, which voxelizes point clouds and combines them with 3D convolutional
neural networks. Gernot et al. [13] introduce the OctNet network model, employ-
ing an unbalanced octree and 3D convolutional neural networks. These methods
tackle the spatial structural patterns of point clouds, effectively addressing issues
of permutation and rotation invariance. However, they solely focus on the spatial
information of point clouds [14], resulting in some information wastage and potential
for further optimization.

(c) Individual point-based network models: To address large-scale point cloud semantic
segmentation, Hu et al. [15] and Fan et al. [16] propose the RandLA-Net and SCF-Net,
respectively. These networks utilize random sampling methods during the encoding
process to reduce point cloud density and optimize memory usage. They outperform
PointNet [17] and PointNet++ [18] in segmenting large-scale point clouds. However,



Sensors 2024, 24, 7222 3 of 34

current deep learning-based point cloud segmentation in road scenes mainly focuses
on extracting individual objects. Tao et al. [19] combine learning-based (PointNet++)
and non-learning-based (P4UCC) methods for large-scale segmentation of road infras-
tructure point cloud models. The results indicate that classifying smaller targets such
as cars and poles remains challenging due to the limited dataset size [20].

In the field of multi-source point cloud fusion, registration based on the inherent fea-
tures of the point clouds is typically required. To enhance the performance of the traditional
iterative closest point (ICP) algorithm in unstructured environments, Yao et al. [21] pro-
posed an improved iterative closest point algorithm that utilizes the similarity-of-curvature
features in point clouds. They aimed to address the limitations of the traditional ICP. Ren
et al. [22] introduced a hue-based color point cloud registration algorithm that demon-
strates robustness under various lighting conditions. This algorithm incorporates color
information to improve registration accuracy compared to the ICP. Sui et al. [23] proposed
a deep learning model based on a three-dimensional Siamese convolutional neural network
to tackle the point cloud registration problem caused by data noise or incompleteness. For
registering large point clouds with low accuracy and slow speed, Xu et al. [24] presented
an improved iterative closest point algorithm that combines the RANSAC and the ISS. This
algorithm achieves a faster registration speed compared to other methods.

Point cloud surface reconstruction can be categorized into three types: parameter-
based surface reconstruction [25], geometry-based triangulation, and implicit surface re-
construction methods. Hoppe et al. [26] proposed using B-spline surfaces to construct the
corresponding surface normals of the object to be reconstructed. Kazhdan et al. [27] intro-
duced the Poisson surface reconstruction algorithm, which takes a global approach to point
clouds and offers better reconstruction flexibility and accuracy compared to radial-basis
functions. Xu et al. [28] developed a fully automated method for reconstructing large-scale
scenes using multi-site point clouds. Gao et al. [29] achieved the fusion of ground and aerial
point clouds by linking matched point pairs from the ground to the air with their original
trajectories and bundle adjustment. Li et al. [30] used a multi-view projection method to
detect holes in TLS point clouds and extracted corresponding data from the registered
dense matching point clouds to fill the gaps. Thus, existing scholars have achieved the
fusion of heterogeneous point cloud data through the registration of disparate point clouds.

Current 3D reconstruction and semantic segmentation technologies for transportation
infrastructure face challenges in balancing lightweight design, high accuracy, and realistic
representation. Existing semantic segmentation networks, though effective in general
environments, often struggle in large-scale traffic scenes where they fail to capture the
intrinsic characteristics of infrastructure elements accurately. These networks typically lack
the capacity to recognize and learn features unique to transportation point clouds, such
as the continuity of road markings, the planar nature of road surfaces, and the structural
characteristics of traffic poles and signage. Additionally, the absence of a mature, integrated
workflow for processing and reconstructing complex scenes limits the applicability of
these methods in real-world traffic environments. Addressing these gaps, TJYRoad-Net,
proposed in this paper, is a semantic segmentation network specifically developed for
large-scale traffic point clouds, demonstrating strong performance in segmenting extensive
traffic scenes. Designed to effectively capture and leverage critical infrastructure features,
TJYRoad-Net lays a solid foundation for accurate 3D reconstruction tailored to various
infrastructure elements, thus supporting realistic modeling and further enabling advanced
applications in transportation infrastructure digitization.

The integration of UAV oblique photogrammetry and LiDAR data is crucial due to
the complementary strengths and limitations of each data source. UAV photogrammetry
offers extensive coverage, capturing entire buildings, complete trees, and other features
that might be partially absent in LiDAR scans. However, photogrammetry is limited by
a lower accuracy and can exhibit deformation in reconstructing trees, poles, and other
small structures, with noticeable noise on road surfaces. Conversely, LiDAR provides high-
precision data, accurately capturing detailed features near road surfaces but is restricted in
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range, often scanning only one side of buildings. Combining these two sources allows us
to leverage the high accuracy of LiDAR with the wide coverage of UAV photogrammetry,
producing a highly accurate and realistic model that is both comprehensive and true to
real-world dimensions.

This study combines 3D laser scanning technology and multi-angle aerial photography
using UAVs to collect data on transportation infrastructure. By segmenting the image-
derived and laser-derived point clouds separately, followed by targeted fusion for different
types of transportation infrastructure, this approach achieves higher accuracy compared
to direct large-scale scene fusion. It integrates laser point clouds and image matching
point cloud data to digitize infrastructure. By addressing technical challenges related
to point cloud acquisition, segmentation, fusion, and surface reconstruction specific to
transportation infrastructure characteristics, this study aims to generate lightweight yet
realistic models tailored to various transportation application requirements. These models
can be utilized for tasks such as driving simulations and traffic simulations, enhancing the
accuracy and efficiency of digitalization in infrastructure and facilitating future research in a
more convenient and efficient manner. This study aims to contribute to the comprehensive
digitalization of transportation infrastructure. The overall study follows the technical
roadmap depicted in Figure 1.
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2. Materials and Methods
2.1. Acquisition of Point Clouds from UAV-Based Oblique Imagery

Using camera-enabled UAV and 3D laser scanners separately, tasks are conducted
within a certain range. The five-flight route mode (comprising one nadir flight and four
oblique flights at 45-degree angles in the four cardinal directions) is utilized to capture
aerial images of road infrastructure from multiple angles and collect image data. The
Multi-View Stereo (MVS) and Structure From Motion (SFM) algorithms are employed to
obtain complete and dense point clouds of the road infrastructure. Additionally, a vehicle-
mounted laser scanner is used to acquire laser point clouds of the road infrastructure that
have high overlap with the image data area.

The way to generate image point clouds is to carry out motion recovery structure SFM
(Structure From Motion) for tilted images. Estimating the pose information of the tilted
image and creating the object structure information of the spatial scene determines the
spatial and geometric relationship of the target according to the dynamic movement of the
camera, thus transforming the two-dimensional image information into three-dimensional
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spatial depth information and completing the three-dimensional reconstruction of the
road infrastructure point cloud. DJI Terra can directly generate 3D models using oblique
photogrammetry; however, for large-scale transportation scenes, it often produces gaps and
streaking artifacts in model details close to the ground, especially around infrastructure
like signs and trees (see https://www.dji.com/dji-terra, accessed on 15 June 2023).

This paper uses the DJI Matrix M300RTK and Zenmuse P1 gimbal camera for data
acquisition, as shown in Figure 2; the technical specifications are shown in Table 1.
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Table 1. Technical specifications for UAV data acquisition.

Parameter Specification

UAV Model DJI Matrice M300 RTK
Camera Model Zenmuse P1

Sensor Type Full-frame
Focal Length 35 mm F2.8 LS ASPH

Image Resolution 45 million pixels (8192 × 5460)
Pixel Size 4.4 µm

Plane Accuracy (RTK) ±3 cm
Elevation Accuracy (RTK) ±5 cm

Field of View (FOV) 63.5◦

Ground Sampling Distance (GSD) 0.75 cm/pixel (at 60 m altitude)
Altitude (Flight Height) 60 m

Survey Area 21,810 m2

Longitudinal Overlap 80%
Lateral Overlap 70%

Taking the Jiading Campus of Tongji University in Shanghai as the photogrammetry
area, the survey area includes three main campus roads—Tongjia Road, Tongyi Road, and
Jiasan Road—as well as the façades of five buildings—Tongda Museum, Kaiwu Museum,
Ningyuan Museum, Decai Museum, and Zhixin Museum—and the network RTK is turned
on throughout the photography process, and the isochronous interval photography mode
is adopted; a total of 194 orthophotos and 623 oblique images are obtained.

Once all the feature points from the road infrastructure images are extracted, a pairwise
matching of these feature points is required. However, using the brute-force matching
algorithm in this scenario is computationally expensive due to the large amount of feature
information and the high number of feature points in the traffic scene images. Instead,
the approximate nearest-neighbor feature matching (ANN feature matching) method is
more suitable for situations with a large number of matching points, as it reduces the
time complexity and computational load. In this study, the bidirectional ANN matching
method is employed to match the feature points in the traffic scenes. The bidirectional
ANN algorithm improves the matching accuracy with a slight increase in matching time.
The steps of the bidirectional ANN algorithm are outlined below:

• A feature point in image P1 corresponding to the feature point s2 with the smallest
distance in image P2 is obtained by the FLANN [31] algorithm (FLANN is designed to

https://www.dji.com/dji-terra
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quickly perform nearest-neighbor searches in high-dimensional spaces, which makes
it suitable for large-scale image-matching tasks by efficiently constructing an initial
set of matching point pairs) to construct the initial matching point pair (s1,s2), and
then, the smallest distance is taken out of all the matching point pairs, and the metric
parametric D is set, and if the smallest distance of the matching point pair is less
than D, then s2 is regarded as a candidate matching point for s1. Otherwise, the next
feature point matching of image P1 is performed, and s1 is rejected, so as to obtain the
matching point pairs of image P1 and image P2.

• Similarly, the feature points of image P2 are processed similarly to the previous step,
and the matching point pairs of image P2 and image P1 are obtained. The candidate
point s3 in image P1 that matches with s2 of image P2 is compared and judged, and if
s3 is the same point as s1, the matching is successful; otherwise, it is rejected.

• This process is repeated for all feature points in both images, resulting in a robust
set of matched points that have been verified from both directions. The bidirectional
matching process effectively filters out ambiguous or incorrect matches, improving the
overall accuracy of the feature matching process and ensuring more reliable alignment
of the infrastructure features.

Camera Motion Estimation and Point Cloud Generation

After obtaining a set of matched traffic scene feature points, the camera motion
between two frames can be recovered using the correspondence of these 2D image points.
This involves calculating the rotation parameter R translation parameter t between two
frames of traffic scene images, denoted as P1 and P2. Assuming the camera centers of the
two frames are O1 and O2, respectively, and that a feature point s1 in image P1 corresponds
to a feature point s2 in image P2, under the condition of correct feature point matching,
these two points represent the projections on two imaging planes of the same traffic scene.
According to the principle of epipolar constraint, their relationship can be expressed
as follows:

x2ST
2 K−TEK−1S1 = ST

2 FS1 = 0 (1)

The motion estimation of the UAV camera can be simplified into the following two steps:

• The essential matrix E and the fundamental matrix F are calculated using the pixel
positions of the matched feature points to estimate the geometric relationship between
the two frames.

• By utilizing the essential matrix E and fundamental matrix F, the camera motion, rep-
resented by the rotation parameter R and translation parameter t, can be determined.
These matrices provide crucial information about the geometric transformation be-
tween the two camera frames and enable accurate estimation of the camera’s position
and orientation changes.

In this paper, the seven-point method is employed to estimate the essential matrix
E. The AC-RANSAC method is utilized for outlier rejection in the feature point matches.
AC-RANSAC is a variant of RANSAC that estimates stable model parameters by comput-
ing residuals and then evaluates the reliability of the model using the Number of False
Alarms (NFA) evaluation function. Compared to RANSAC, AC-RANSAC requires fewer
parameters and enables direct and objective comparison of model differences, thereby
obtaining the best model.

Once the elements of the essential matrix E are obtained, they are subjected to singular
value decomposition (SVD), and by substituting them into any point, R and t can be
calculated. Triangulation is employed to derive the spatial positions and depth information
of the feature points, allowing the mapping of the feature points to the 3D space and
obtaining a sparse point cloud representation of the traffic scene.

The sparse reconstruction results in optimized UAV camera poses and a sparse point
cloud that provides an initial representation of the overall shape of the road infrastructure.
However, it may not accurately capture surface details such as cracks and potholes on
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the road. Consequently, the road infrastructure is reconstructed in a dense manner by
employing depth map calculation and fusion techniques. This process involves estimating
the depth information for each pixel in the scene and combining multiple depth maps
to generate a dense representation of the traffic scene. The resulting dense point cloud
accurately captures the geometric details of the road infrastructure. In Figure 3, the complete
process of generating a large-scale point cloud of transportation infrastructure using oblique
photography is described.
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2.2. Acquisition of Point Clouds Based on Vehicle-Mounted LiDAR Scanning

Data collection experiments were conducted using the IP-S2 mobile laser scanning
system developed by Topcon, Japan. The hardware components of the IP-S2 system consist
of three SICK laser scanners, six LADYBUG panoramic CCD cameras, dual-frequency GPS
GLONASS positioning receivers, an inertial navigation unit, and two wheel encoders. The
laser scanners have a measurement accuracy of up to 35 mm and a range of up to 30 m.
The cameras have a resolution of 1600 × 1200 pixels. The dynamic measurement accuracy
of the GNSS unit is within the range of 10 mm to 15 mm.

Data collection was conducted using the IP-S2 mobile laser scanning system developed
by Topcon, Japan. The technical specifications of the system are summarized in Table 2.

A selected section of Tongjia Road and Jiasan Road was chosen as the experimental
area for data collection, and a path planning was performed. The center points of manhole
covers and the corners of road markings were used as control points for calibration. The
data collection was conducted at a speed of approximately 40 km/h, with efforts made to
maintain a constant speed and drive along the center of the lane to ensure a certain degree
of overlap with the UAV survey area.

After completing the field data collection, encrypted data from each component can
be obtained. This includes the following:

• Laser point cloud data stored in the order of 3D spatial coordinates and reflection
intensity, with the file extension .ips;
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• Three-hundred-and-sixty-degree panoramic images generated by the LADYBUG cam-
eras, with the file extension .pgr;

• Vehicle attitude and positioning data, with the file extension .ips.

Table 2. Technical specifications for LiDAR data acquisition.

Parameter Specification

System Model Topcon IP-S2
Laser Scanners 3 × SICK laser scanners

Camera 6 × LADYBUG panoramic CCD cameras
Positioning System Dual-frequency GPS GLONASS

Inertial Navigation Unit Included
Wheel Encoders 2 units

Laser Measurement Accuracy ±35 mm
Laser Range Up to 30 m

Camera Resolution 1600 × 1200 pixels
GNSS Dynamic Measurement Accuracy 10–15 mm

Total Survey Distance 1.8 km

These data are processed using Geoclean software, version 1.2. The processing steps in-
clude vehicle body masking, GNSS and vehicle attitude information processing, panoramic
image generation, coordinate generation, and point cloud coloring. Finally, the point cloud
representation of the road infrastructure is obtained, as shown in Figure 4.
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2.3. Semantic Segmentation of Road Infrastructure Point Cloud

The road infrastructure point cloud is subjected to semantic segmentation using a deep
learning approach. Based on the requirements analysis, the network architecture suitable
for road traffic point cloud scenes needs to have the following characteristics:

• Lightweight grid design: The network should be computationally efficient, have
low memory usage, and be capable of directly processing large batches of three-
dimensional point clouds of the road infrastructure without the need for voxelization,
scene segmentation, or other unnecessary pre-processing or post-processing operations.

• Effective local scene feature learning module: It should incorporate a progressive
expansion of the receptive field to learn the complex and diverse geometric structures
of road traffic scenes.

• Efficient and memory-friendly point cloud downsampling method: Continuous down-
sampling of the point cloud should be employed to ensure that the network can adapt
to the available GPU memory and computational power.
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Based on the aforementioned requirements, this paper proposed the TJYRoad-Net
network to perform segmentation on both image-based point clouds and laser-based
point clouds.

2.3.1. TJYRoad-Net

The TJYRoad-Net framework, specifically designed for large-scale road traffic scenes,
introduces a novel architecture to handle the challenge of semantic segmentation in complex
and high-density point cloud environments. It improves segmentation performance for
large-scale road infrastructure datasets, particularly those generated from oblique drone
imagery. The structure of the network is shown in Figure 5.
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In Figure 5a, the input point cloud has a point count and feature dimension of N and
X, respectively, with the feature dimension then expanded to 8. TJYRoad-Net employs an
encoder–decoder architecture with skip connections, similar to U-Net. It begins with a fully
connected layer that processes the input point clouds, expanding the feature dimensions
from X to 8, where N denotes the number of input points. In the subsequent sections of
the figure, the network extracts point-wise features through four downsampling and four
upsampling layers. In the final stage, three fully connected layers, along with a Dropout
layer, generate the semantic predictions for each point.

During the encoding phase, traffic feature computing (TFC) modules and random
sampling (RS) modules progressively reduce the point cloud size to 1/4, 1/16, 1/64,
and 1/256 of its original size, while increasing the feature dimensions to 32, 128, 256,
and 512, retaining rich feature information. In the decoding phase, instead of trilinear
interpolation, the K-nearest-neighbors (KNN) algorithm is employed to find neighboring
points, and upsampling is performed using nearest-neighbor interpolation (US). Skip
connections are utilized to combine low-level features from the encoding stage with high-
level features in the decoding stage, helping to minimize information loss. Finally, a shared
MLP is used to reduce the feature dimensionality before output. After encoding and
decoding, the 8-dimensional features are mapped to specific classes via fully connected
layers. The TFC module is the critical component of the TJYRoad-Net network. Figure 5b,c
depict its structure.

The TFC module is composed of three sub-modules: the Regional Coordinate Encoder
(RCE), Context-Aware Aggregation Unit, and Hierarchical Expansion Block. By incorpo-
rating the normal vector information into spatial local encoding, the RCE is optimized for
understanding structural characteristics in large-scale road traffic scenes.

(a) Enhanced RCE module: This sub-module’s main function is to encode the spatial
information of the original point cloud at multiple scales, allowing the network to
capture spatial structural details within each point’s local neighborhood in traffic
scenes. By integrating the multi-scale neighborhood sampler (MSNS), the module
samples neighboring points at different scales to better capture varying geometric
structures. Specifically, for a given point Pi, MSNS performs neighborhood sam-
pling at multiple levels using k-nearest neighbors (KNN) with varying values of km
for each scale m. This approach is inspired by the hierarchical feature learning in
PointNet++ [18], where multi-scale grouping (MSG) is used to capture both fine- and
large-scale features within point clouds:
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Nkm
i =

{
Pj
∣∣j ∈ KNN(Pi, km)

}
(2)

where Nkm
i denotes the neighbors of point Pi at the m-th scale. This multi-scale sampling

enables the model to capture both fine-grained and large-scale structures.
The dynamic weighting module (DWM) further enhances the encoding process by

dynamically adjusting the importance of each sampled neighbor based on its spatial
relationships with the central point. This mechanism is inspired by the self-attention
mechanism commonly used in models like the Transformer [32], which allows the network
to assign varying weights to features based on their relevance. In our case, the weight wij
assigned to a neighboring point Pj of Pi is computed as a function of their relative spatial
position and distance:

wij = so f tmax
(

f
(
∥Pi − Pj∥,∠

(
NP, Pj − Pi

)))
(3)

where ∥Pi − Pj∥ represents the Euclidean distance between points Pi and Pj, and
∠
(

NP, Pj − Pi
)

denotes the angle between the normal vector NP of point Pi and the vec-
tor from Pi to Pj. The dynamic weighting helps the network prioritize more significant
neighbors based on their geometric relationships.

The spatial information encoded by the RCE module includes the following:

• Three-dimensional coordinates of point P, denoted as PK
i ;

• Three-dimensional coordinates of neighboring points, denoted as Pi − PK
i ;

• Spatial relationships between point P and its neighbors Euclidean distance between
point P and neighboring points, denoted as ∥Pi − PK

i ∥;
• Normal vector information of point Pi, denoted as NP.

Finally, the Multi-Layer Perceptron (MLP) encodes these spatial and geometric features.
The resulting feature rK

i for each point Pi is computed as follows:

rK
i = MLP

(
Pi ⊕ PK

i ⊕
(

Pi − PK
i

)
⊕ ∥Pi − PK

i ∥ ⊕ NPi ⊕ wij

)
(4)

The enhanced RCE module significantly boosts the model’s segmentation performance,
primarily through the contributions of the MSNS and the DWM:

• MSNS: MSNS allows the model to capture both fine-grained and large-scale structural
features by sampling neighboring points at multiple scales. This enables the network
to adaptively capture diverse geometric structures, such as the continuity of road
markings and the planar nature of road surfaces, which are crucial in traffic scenes.
By extracting neighborhood features at different levels, MSNS enhances the model’s
ability to recognize various infrastructure elements more accurately.

• DWM: The DWM dynamically assigns importance to neighboring points based on their
spatial relationship to the central point. This adaptive weighting emphasizes critical
local features, such as traffic poles and signage, while downplaying less relevant points.
Inspired by attention mechanisms, DWM improves the model’s focus on essential
features, leading to higher accuracy in segmenting complex traffic environments.

Together, MSNS and DWM enrich the RCE module’s feature encoding capabilities,
resulting in more precise and reliable segmentation of large-scale traffic scenes.

(b) Context-Aware Aggregation Unit: This unit aggregates features from the neighboring
points produced by the RCE. Rather than relying on conventional max-pooling or
average-pooling, the CAU employs a multi-head self-attention (MHSA) mechanism.
MHSA enables the model to capture different aspects of local features from multiple
perspectives by using multiple attention heads. Each attention head focuses on a
distinct subspace of the features, allowing for a more comprehensive aggregation.
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For a given point Pi, multiple attention heads h ∈ {1, 2, . . . , H} compute independent

attention scores
∧

Ch
i for each neighboring point Pj at scale k:

∧
Ch

i =

{ ∧
ch,1

i ,
∧

ch,2
i , · · · ,

∧
ch,k

i , · · · ,
∧

ch,K
i

}
(5)

where
∧

ch,k
i represents the attention score assigned to the k-th neighbor by the h-th attention

head. Each attention head independently aggregates the local features, and the final output
is obtained by concatenating the results from all attention heads and passing them through
a linear transformation.

To further enhance the aggregation, a hierarchical attention mechanism is introduced.
In this mechanism, local attention is first applied within each head to capture short-range
relationships, followed by a global attention that aggregates the results of the heads to
capture long-range dependencies across the entire neighborhood. This hierarchical attention
setup ensures that both local and global spatial relationships are preserved during feature
aggregation.

The final aggregated feature sk
i for each point Pi is computed as a weighted sum of the

neighboring point features, considering both the attention scores from the heads and the
global attention weights:

sk
i =

H

∑
h=1

g

(
∧

ch.k
i , Wh

)
(6)

where Wh are the learnable weights for the h-th attention head. The global attention layer
combines the outputs from each head to form the final aggregated feature. This combined
multi-head self-attention and hierarchical attention approach is inspired by similar tech-
niques used in models such as RandLA-Net [15], where attention-based mechanisms are
applied to enhance feature aggregation in large-scale point clouds.

The Context-Aware Aggregation Unit further enhances model performance by incor-
porating MHSA and a hierarchical attention approach. The MHSA mechanism enables the
model to capture multiple representations of local features from different perspectives by
utilizing multiple attention heads. Each head independently captures unique aspects of
the input, providing a richer and more nuanced understanding of complex traffic scene
elements, such as the varied textures and shapes of different infrastructure components.
Meanwhile, the hierarchical attention approach balances local and global contextual infor-
mation. By creating separate channels for local and global attention, the model is able to
maintain a broader view of the scene structure while preserving important localized details.
This dual focus allows the network to more accurately differentiate between nearby objects
with similar features, such as road markings and building façades. Together, these attention
mechanisms significantly boost the segmentation precision of TJYRoad-Net, particularly in
large-scale and densely structured traffic environments.

(c) Hierarchical Expansion Block: This sub-module is designed to expand the receptive
field of each point. Downsampling is crucial for processing large-scale road traffic
point cloud scenes, as random sampling reduces time and space complexity. How-
ever, this can lead to information loss at certain critical points. Therefore, expanding
the receptive field for each point becomes essential. To address this, the Hierarchi-
cal Expansion Block stacks multiple RCEs and Context-Aware Aggregation Units
(CAUs) with skip connections, forming a hierarchical structure that enhances feature
aggregation and preserves important spatial information.

In the final CAU layer of this block, dilated convolutions with dilation rates of 2, 4,
and 6 are applied to further increase the receptive field without increasing the number of
neighboring points K. These dilated convolutions allow the network to capture larger-scale
spatial dependencies across the point cloud, making it more efficient than simply increasing
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K. By introducing multiple dilation rates, the network can simultaneously capture fine-
grained and large-scale features, helping to mitigate the loss of information caused by
downsampling.

The block includes shared MLP layers before and after processing, merging the output
features with those from the input point cloud. This final aggregation combines the
information from both the hierarchical structure and the expanded receptive field, resulting
in a more comprehensive and informative representation of the road traffic scene.

2.3.2. Object Segmentation Based on Transfer Learning

Conventional machine learning techniques for semantic segmentation typically de-
mand unique data annotation for each distinct objective. Consequently, training the model
needs to be performed separately for each objective, resulting in repetitive processes. This
approach is time-consuming and labor-intensive. In contrast, transfer learning enables the
transfer of model parameters obtained from training on existing datasets to a new model
in a certain way, thereby accelerating the convergence speed and training efficiency of the
new model. Additionally, training the new model while optimizing the parameters of the
old model improves training and prediction accuracy, as shown in Figure 6.
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Fine-tuning, a commonly used method in transfer learning, builds on the core concept
of transfer learning, which involves retraining a model that has already been pretrained
on a similar dataset. In this paper, fine-tuning experiments are conducted based on the
enhanced TJYRoad-Net following these steps:

• Train the enhanced TJYRoad-Net network model using the source domain dataset to
obtain the source model for point cloud segmentation.

• Construct a new TJYRoad-Net model, referred to as the target model, by replicating
the entire architecture and parameters of the source model, except for the output layer,
which includes the encoder and decoder.

• Add an output layer to the target model with the number of classes specific to the
target dataset and randomly initialize the parameters of this output layer.

• Train the target model using the target dataset. Select the decoding layers near the
output layer within the hidden layers, and perform fine-tuning with a smaller learning
rate while retraining the output layer.

The fine-tuning process for TJYRoad-Net is illustrated in Figure 7. This approach
leverages the pretrained model’s learned features from large-scale road traffic point cloud
data, while adapting to the specific requirements of the new target dataset with minimal
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adjustments to the network’s deeper layers, thereby maintaining efficiency and accuracy in
point cloud segmentation.

To take advantage of open-source datasets containing annotated point cloud in-
formation, the Semantic3D [33] (http://www.semantic3d.net/) and SemanticKITTI [34]
(http://www.semantic-kitti.org/) datasets were chosen as the source domain datasets.
For the target domain, a smaller-scale annotation process was performed, resulting in the
creation of a training set and a validation set. The annotated classes include lane markings,
road surfaces, vegetation areas, vehicles, poles, trees, and buildings, which are assigned
numbers ranging from 0 to 6.
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2.4. Fusion of Multi-Source Infrastructure Point Cloud

Aligning multiple point clouds in terms of spatial–temporal and reference consistency
is a necessary prerequisite for extracting geometric information and conducting 3D model-
ing applications on road assets. The precise registration of laser point clouds and image
point clouds is crucial for achieving spatial–temporal and reference unification.

2.4.1. Fusion Requirements Analysis

After conducting a comparative analysis of laser scanning point clouds and image
point clouds, this study concludes that laser point clouds, equipped with Global Posi-
tioning System (GPS) and inertial navigation system data, exhibit superior accuracy and
stability in comparison to image point clouds. Therefore, they are suitable as a basis for
precision correction during the point cloud fusion stage. On the other hand, image point
clouds possess richer texture information and more comprehensive scene coverage, making
them useful for compensating for the viewpoint limitations of laser point cloud data and
providing additional scene details [35].

Considering the higher noise level in image point clouds compared to vehicle-mounted
laser point clouds, it is suggested that the vehicle-mounted laser point clouds are treated as
the target point cloud during the registration process. On the other hand, the image point
clouds should be considered as the point cloud requiring registration. To achieve accurate
alignment, a coarse-to-fine registration process is recommended.

http://www.semantic3d.net/
http://www.semantic-kitti.org/


Sensors 2024, 24, 7222 15 of 34

2.4.2. Coarse Registration

Figure 8 showcases the image point cloud and laser point cloud before the registration
process takes place, where it can be observed that the two point clouds have the same scale
in the coordinate space, eliminating the need for scaling operations. Only certain rotation
and translation transformations are required to complete the registration process.
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The RANSAC algorithm is applied in this study for the coarse registration of point
clouds. The steps involved in this process are as follows:

• Identify at least three pairs of corresponding points between the source and target
point clouds to establish an initial set of correspondences.

• Randomly select three pairs from the correspondence set to compute a preliminary
rigid transformation matrix.

• Use this transformation to assess each correspondence pair by calculating distance
errors, classifying pairs as inliers if the error is below a specified threshold and as
outliers otherwise.

• Repeat the random selection and transformation computation multiple times, tracking
the number of inliers for each iteration. The model yielding the maximum number of
inliers is retained as the optimal transformation.

• The final rigid transformation matrix, representing the best fit for coarse registration,
is shown below:

[R|T] =


0.062 −0.998 0.007 372.009
−0.994 −0.062 −0.091 530.377
−0.091 −0.012 −0.996 32.770

0 0 0 1


2.4.3. Fine Registration

Fine registration requires the point cloud to be in an ideal initial position and entails a
significant overlap between the two point clouds. The ICP algorithm is utilized for fine
registration between the laser and image point clouds in this study. Furthermore, since the
point clouds of the traffic scene have been accurately segmented into different semantic
labels (achieving 86% accuracy for the laser point cloud and 90% for the image point cloud),
it becomes possible to employ different registration approaches based on the segmentation
outcomes of distinct semantic labels.

The part of the point clouds with the highest overlap between the laser and image
point clouds is the road surface, which is crucial for subsequent infrastructure 3D modeling
and applications. Hence, the segmented point cloud of road surface can be registered
with high precision as a separate entity. Other point clouds, such as poles, trees, and
vegetation areas, have fewer data points and exhibit irregularities, which make them
unsuitable for fine registration purposes. Conversely, the building point clouds demonstrate
regularity and high accuracy in both the laser and image point clouds. Building point
clouds exhibit unique characteristics in both the laser and image point clouds. In the laser
point cloud, buildings are observed as planar façades, whereas the image point cloud
represents them as complete 3D models. Leveraging this consistency, this study employs
a dedicated method for extracting building façades to achieve accurate registration of
non-road surface point clouds.
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2.5. Lightweight Surface Reconstruction of Road Infrastructure

For automated surface reconstruction from point clouds, various methods exist, in-
cluding the Delaunay triangulation-based algorithm, region-growing algorithms, implicit
surface reconstruction methods, and deep learning-based algorithms. Among these, the
Poisson surface reconstruction algorithm [27] was selected for this study due to its ability
to generate smooth, continuous surfaces with minimal holes, which is well suited for
road infrastructure modeling. Poisson reconstruction constructs a vector field through an
integral relationship between sample points and indicator functions, capturing surface
details efficiently, though the processing speed is affected by octree depth. While alternative
methods, such as Greedy Projection Triangulation, offer faster reconstruction, they struggle
with uneven densities and non-planar surfaces, making them less ideal for the requirements
of this study.

3. Results
3.1. Experimental Setup for Point Cloud Segmentation

To compare the impact of the improved TJYRoad-Net network, direct training, and
fine-tuning experiments on the overall accuracy of road infrastructure point cloud segmen-
tation, this study conducted corresponding controlled experiments. The experiments were
conducted on an Ubuntu 18.04 server with a TensorFlow 2.6.0 deep learning framework,
using an RTX 3080 GPU with CUDA 11.4. Pretraining and fine-tuning experiments were
performed on image point clouds and LiDAR point clouds. The network hyperparameters
for the controlled experiments are shown in Table 3.

Table 3. Experimental hyperparameter settings for point cloud segmentation.

Groups Experimental Setup Improves the
Network or Not Batch_Size Learning Rate Input Points Training

Rounds

1 Direct training No 4 0.01 65,536 20
2 Fine-tune all layers No 6 0.001 40,960 15
3 Fine-tune output layer No 6 0.001 40,960 15
4 Fine-tune decoder 4 No 6 0.001 40,960 15
5 Fine-tune decoder 3 and 4 No 6 0.001 40,960 15
6 Direct training Yes 4 0.01 65,536 20
7 Fine-tune all layers Yes 6 0.001 40,960 15
8 Fine-tune output layer Yes 6 0.001 40,960 15
9 Fine-tune decoder 4 Yes 6 0.001 40,960 15

10 Fine-tune decoder 3 and 4 Yes 6 0.001 40,960 15

In the context of experimental groups, the first and sixth groups function as control
groups. In the first group, the pre-improved TJYRoad-Net network undergoes direct train-
ing on the target domain dataset for 20 epochs, utilizing a learning rate of 0.01. Similarly, the
sixth group involves the direct training of the post-improved TJYRoad-Net network on the
target domain dataset for 20 epochs, employing a learning rate of 0.01. The target domain
dataset itself was manually segmented by our team from small-scale image and laser point
clouds to establish the final set of class categories. In contrast, the remaining groups are
experimental and focus on fine-tuning the network in different ways after pretraining with
the source domain data.

The network’s point cloud segmentation performance is evaluated using several met-
rics: overall accuracy (OA), class-wise intersection over union (IoU), and mean intersection
over union (mIoU). During evaluation, TP represents the number of correctly segmented
point clouds, FP represents false-positive point clouds, and FN represents false-negative
point clouds.
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The calculation formulas for these metrics are as follows:

OA =
1
N ∑

C
TPi

IoU =
TP

TP + FP + FN

mIoU =
1

C + 1

C
∑

i=0
IoU

(7)

3.2. Experimental Setup for Laser Point Cloud

Laser point clouds have a smaller quantity compared to image point clouds and
contain less spatial information. To prevent overfitting during the experiments, it is
appropriate to reduce the network depth. This study conducted experiments using an
eight-layer TJYRoad-Net network.

Training the source domain laser point cloud dataset took approximately 35 h, with 65
and 100 training iterations. Directly training on the target domain dataset, the TJYRoad-Net
model showed faster convergence, taking 30 min with 20 training iterations. The fine-
tuning experiments on the target domain took 20 min with 15 training iterations. Table 4
and Figure 9 present the experimental results for the segmentation of the laser point cloud.

Table 4. Experimental results of laser point cloud segmentation.

Groups

IoU (%)

mIoU (%) OA (%)Road
Marking

Road
Surface Green Belt Car Traffic Pole Tree Building

1 1.43 42.84 34.83 49.34 7.82 42.96 12.28 27.36 51.81
2 31.67 86.61 71.36 82.63 46.35 76.67 81.33 68.09 88.93
3 15.98 78.59 58.18 71.85 24.41 68.40 74.73 66.28 88.17
4 47.83 92.03 76.69 91.67 67.33 81.94 85.69 77.60 93.12
5 41.67 85.93 77.38 89.64 51.18 83.33 79.76 72.70 91.38
6 12.67 63.28 41.29 63.17 26.48 51.69 42.89 43.07 75.38
7 48.36 91.33 82.87 89.41 82.11 93.71 81.52 81.33 93.48
8 43.76 86.24 76.28 92.64 79.67 91.16 76.89 78.09 92.54
9 56.38 93.94 89.64 95.52 81.16 95.28 90.06 86.00 95.12

10 51.14 83.33 91.02 93.28 76.51 92.46 88.64 82.34 93.95

3.3. Experimental Setup for Image Point Cloud

Image point clouds contain a larger amount of information, and their point cloud den-
sity is higher. This study conducted experiments using a ten-layer TJYRoad-Net network.
Since there are limited annotated point cloud datasets specifically generated from UAV
oblique images in existing publicly available datasets, and to ensure a reasonable align-
ment between the source domain dataset and the target domain dataset, the fine-tuning
experiments in this study were based on the assumption that the dissimilarity between the
two datasets should be limited. Therefore, only the Sensat Urban dataset was chosen as the
source domain dataset.

Similarly, the target domain point cloud dataset, derived from UAV imagery, was
annotated within a defined range. This annotated dataset was subsequently divided into
the same seven classes as the target domain dataset for the laser point cloud.

Training the UAV source domain dataset took a total of 25 h, with 100 training itera-
tions. Directly training the model on the target domain dataset showed faster convergence,
taking 40 min with 20 training iterations. In the fine-tuning experiments on the target
domain, the training duration was 30 min with 15 training iterations. Table 5 and Figure 10
display the segmentation results obtained from the image point cloud experiments.
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Figure 9. Semantic segmentation result of laser point cloud.

Table 5. Experimental results of image point cloud segmentation.

Groups

IoU (%)

mIoU (%) OA (%)Road
Marking

Road
Surface Green Belt Car Traffic Pole Tree Building

1 2.01 71.37 63.02 64.87 21.6 68.16 29.58 45.80 76.33
2 27.94 82.26 75.88 74.04 57.61 83.71 91.83 70.47 91.17
3 16.96 73.05 78.48 82.34 55.71 91.48 92.22 70.03 91.05
4 42.68 85.62 86.13 79.28 67.12 93.41 94.27 78.35 93.43
5 34.11 79.41 79.21 86.26 55.54 86.26 96.33 73.87 91.86
6 10.36 69.55 61.93 58.72 24.93 74.31 56.83 50.95 78.38
7 54.54 92.34 95.07 92.02 82.98 98.13 99.02 87.73 95.16
8 51.28 85.68 71.26 76.67 62.64 86.93 51.16 69.37 90.86
9 79.28 95.34 94.24 92.87 79.34 97.07 97.22 90.77 97.01

10 54.50 92.36 95.28 92.46 83.54 98.22 99.11 87.92 95.97

3.4. Analysis of Semantic Segmentation Results

In this study, we applied transfer learning and fine-tuning to each of the comparative
networks, including PointNet [17], PointNet++ [18], RandLA-Net [15], SCF-Net [16], and
KPConv [36], using our custom large-scale traffic scene dataset. This approach ensured
that each model was optimized for the specific characteristics of our dataset, providing a
fair and accurate comparison of their performance in segmenting road infrastructure and
traffic-related objects.
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This paper evaluates the performance of TJYRoad-Net on the traffic scene dataset used
in this study. The accurate segmentation of road markings and boundaries (especially road
edges) is crucial for subsequent tasks like 3D reconstruction. The results demonstrate that
TJYRoad-Net is capable of producing overall accurate segmentation, particularly for critical
features such as road surfaces and markings, which are essential for defining drivable areas
and detecting lane boundaries.

The network shows robustness in segmenting road surfaces, where its performance
remains stable across various challenging traffic scenes, even in the presence of occlusions
such as vehicles or shadows cast by nearby objects. However, there are some notable
misclassifications observed in certain scenarios. For instance, some trees were incorrectly
segmented as buildings, and parts of buildings near the ground were occasionally misla-
beled as vegetation. Additionally, certain low-height signs were classified as buildings,
likely due to similarities in geometry at those specific scales.

These misclassifications, while minimal, point to areas where the network could po-
tentially be improved by refining the local feature aggregation or enhancing the contextual
information used to differentiate between objects of similar geometric profiles. Despite
these challenges, TJYRoad-Net remains highly robust in road segmentation tasks, with very
few errors in identifying road boundaries, lane markings, and surfaces, which are key for
subsequent processes like mapping, 3D reconstruction, and vehicle navigation. The net-
work’s ability to correctly identify these crucial features significantly aids in high-precision
3D modeling of urban environments.

The results highlight that while TJYRoad-Net has demonstrated strong performance,
further optimization, such as incorporating additional attention mechanisms or enhancing
multi-scale feature aggregation, could help address some of the current segmentation errors
and improve the overall accuracy in more complex scenarios. The Semantic segmentation
result of image point cloud is shown in Figure 11.

The comparison of TJYRoad-Net with other leading point cloud segmentation net-
works highlights the key innovations that make it stand out, particularly in large-scale
traffic scenes. The Comparison with state-of-the-art methods is shown in Table 6 and
Figure 12. While models like PointNet and PointNet++ have known limitations in handling
local geometric details and complex object structures, it is essential to focus on the compari-
son with more competitive models like RandLA-Net, SCF-Net, and KPConv, which also
excel in large-scale segmentation tasks but have distinct differences in how they process
point cloud data.
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Figure 11. Semantic segmentation results of image point clouds from a road intersection scene,
showing Input (original point cloud), Ground Truth (manually annotated labels), and Predicted Value
(model output with misclassifications circled).

Table 6. Comparison with state-of-the-art methods.

Methods

IoU (%)

mIoU (%) OA (%)
Road Marking Road

Surface Green Belt Car Traffic Pole Tree Building

PointNet [17] 35.12 55.43 50.78 48.32 30.74 60.23 55.78 48.06 65.23
PointNet++ [18] 40.45 65.89 65.12 62.23 40.78 70.45 65.78 58.67 70.45

RandLA-Net [15] 73.43 90.12 88.23 89.22 71.43 91.87 93.34 85.38 91.56
SCF-Net [16] 74.32 91.45 89.78 90.67 73.22 92.54 94.23 86.60 92.78
KPConv [36] 77.12 93.87 92.43 91.23 74.87 95.23 96.78 88.79 94.67
TJYRoad-Net 79.28 95.34 94.24 92.87 79.34 97.07 97.22 90.77 97.01
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• Road Markings and Surfaces: In traffic scenes, precise segmentation of road markings
and road surfaces is critical for tasks like autonomous driving and 3D urban reconstruc-
tion. TJYRoad-Net achieves an IoU of 79.28% on road markings and 95.34% on road
surfaces, outperforming RandLA-Net (73.43% and 90.12%) and SCF-Net (74.32% and
91.45%). The superior performance of TJYRoad-Net is largely attributed to the CAU
(Context-Aware Aggregation Unit), which dynamically aggregates features, focusing
on the most relevant local geometric details such as road lines and surface boundaries.
RandLA-Net and SCF-Net also utilize attention mechanisms, but TJYRoad-Net bene-
fits from the RCE (Regional Coordinate Encoder), which encodes not only the spatial
position but also normal vectors. In road segmentation, where road surfaces typically
have normal vectors pointing upward, the DWM within the RCE leverages this to
enhance feature aggregation for better segmentation results.

• Buildings and Vertical Structures: In the category of buildings, TJYRoad-Net achieves
an IoU of 97.22%, comparable to KPConv (96.78%). The challenge in segmenting
buildings, especially façades, lies in accurately capturing their vertical geometry,
as building surfaces often exhibit normal vectors parallel to the ground. The RCE
module in TJYRoad-Net is highly effective in this context, utilizing these normal
vectors to differentiate between building façades and other objects such as trees or
vehicles. KPConv also performs well here, using kernel point convolutions to capture
local geometry, but TJYRoad-Net’s integration of MSNS allows it to handle larger,
more complex urban scenes more effectively. Compared to SCF-Net, which achieves
94.23%, TJYRoad-Net’s hierarchical approach to context-aware feature aggregation
enables more accurate segmentation, particularly in urban environments with densely
packed structures.

• Traffic Poles and Small Objects: When it comes to small, sparse objects like traffic
poles, TJYRoad-Net’s CAU provides a distinct advantage. With an IoU of 79.34%, it
significantly outperforms RandLA-Net (71.43%) and SCF-Net (73.22%). Traffic poles
pose a challenge due to their sparse representation in the point cloud and their vertical
orientation, which can be confused with nearby structures. The RCE module enhances
the network’s ability to recognize these small but important objects by encoding their
spatial relations and orientation, ensuring that these features are not lost during the
downsampling process. KPConv, while strong in capturing local geometry, sometimes
struggles with extremely sparse objects, which explains its slightly lower IoU in this
category (74.87%).

• Vegetation and Complex Natural Structures: For trees and other natural structures,
TJYRoad-Net achieves an IoU of 97.07%, closely matching KPConv (95.23%) and SCF-
Net (92.54%). Vegetation typically involves complex, irregular point distributions,
which makes segmentation challenging. TJYRoad-Net handles this complexity by
using the DWM to dynamically adjust the importance of different features based on
their spatial relationships, which is crucial in distinguishing between overlapping
objects like trees and buildings. This fine-grained control allows the network to
segment trees and other complex natural structures with high accuracy, preserving
details that are often missed by simpler models.

At lower segmentation precision, TJYRoad-Net shows certain limitations. For example,
trees located near buildings are sometimes misclassified as buildings, likely due to the
overlap in structural features captured in urban environments. Additionally, road edges are
occasionally misclassified as green-belt areas, and certain areas near road markings exhibit
jagged noise, which can reduce the overall segmentation clarity. These limitations highlight
potential areas for improvement. Future work could explore refining the model to better
distinguish overlapping or adjacent classes, particularly in complex urban scenes. Possible
improvements include enhancing feature differentiation in boundary areas, reducing noise
around high-contrast objects like road markings, and further optimizing the model’s
handling of sparse, complex natural structures.
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3.5. Fine Registration of Road Surface Points

The image point cloud contains nearly 20 times more ground points compared to
the laser point cloud. Considering the complexity and computational cost during the ICP
calculation process, the drone’s coarse-registered ground point cloud is downsampled
to 1/20 of the initial point number using the VoxelGrid filter in the PCL library [37].
Subsequently, partial sections of both point clouds are selected for fine registration, which
is shown in Figure 13. Figure 13 illustrates the error convergence curve observed during
the iterative optimization process. The image point cloud, indicated by the blue section,
represents the point cloud that requires registration. Conversely, the red section represents
the target laser point cloud.

The error of the road surface point clouds from both sources converges to 3.002 cm
and stabilizes at around 14 iterations. There is no further change in error after 20 iterations,
and the iteration process is terminated at 24 iterations. Figure 14 presents the ultimate
outcome of the registration process for the road surface point cloud.
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3.6. Fine Registration of Non-Road Surface Points

To reduce the computational cost during the registration process, it is necessary to
separately segment the main walls of the building façades from the image and laser point
clouds. Since the TJYRoad-Net network has already extracted the complete building point
clouds for both sources in Section 2, they can be directly processed.

Among various methods for small-scale point cloud segmentation, region-growing-
based segmentation methods can group point clouds with small differences together.
The normal vectors and curvature information of building façade point clouds serve as
suitable quantitative indicators for capturing these differences. Therefore, in this study,
the region-growing segmentation method available in the PCL library is employed for the
segmentation and extraction of building façades from the laser and image point clouds.
The results are shown in Figure 15.

After segmentation, the building façade point clouds from both sources are finely
registered using the ICP algorithm. The registration process and registration errors are
illustrated in Figure 16.
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The error of the building façade point clouds from both sources converges at around
16 iterations, and there is no further change in error after 18 iterations, with an error value
of 2.492 cm. At this point, the registration process concludes. The rotation matrix R and
translation vector t obtained from the building façade ICP solution are applied to the
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non-road surface point cloud captured by the drone. This registered point cloud is then
concatenated with the road surface point cloud obtained in Figure 17. The final result of
the fine registration is presented in Figure 17.

The registration accuracies of the two rounds of experiments are 3.002 cm and 2.492 cm,
respectively. The errors fall within an acceptable range. This registration process effectively
improves the overall accuracy of the image point cloud. With its advantages of wide
coverage and high density, the image point cloud can be directly used for three-dimensional
surface reconstruction of road infrastructure.
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3.7. Road Surface Reconstruction

For straight road sections, the overall texture distribution is relatively uniform and the
shape is regular. In contrast, the geometric characteristics of the road surface point cloud
at intersections are more complex. This study focuses on reconstructing the road surface
based on the intersection road segments.

The structure of the road surface in the scene mainly exhibits a striped distribution.
After fusion, the density of the road surface point cloud can reach 8000 to 10,000 points
per square meter. However, reconstructing a large-scale point cloud leads to an excessive
number of triangular facets, which is not in line with the lightweight reconstruction goal of
this study. The point cloud of road surface undergoes downsampling using the VoxelGrid
filter available in the PCL library. Furthermore, different voxel sizes for downsampling
the road surface model are investigated to explore the variation trend of the average
model error. This provides a theoretical basis for selecting the appropriate voxel size for
downsampling in road surface reconstruction. To evaluate the accuracy, the “Distance from
Reference Mesh” function in Meshlab [38] is utilized. This function measures the geometric
distance between the downsampled point cloud and the nearest neighboring triangular
facet on the original model. It allows for a comparison of model errors. The variation in
model error with downsampling voxel size is shown in Figure 18.

Based on the comprehensive analysis of the experimental results, when the voxel size
is set to 11 cm or below, the model error of the road surface converges. When a voxel size
of 12 cm is used, the average model error is reduced to 1.83 mm. For the specified voxel
size, the road surface point cloud is expected to have a density of around 150 points per
square meter. The RMSE of the downsampled point cloud is calculated to be 2.31 mm.
Additionally, at a 95% confidence level, the maximum error does not surpass 6.3 mm. This
meets the reconstruction accuracy and detail requirements for the intersection road surface,
and the model satisfies the lightweight criteria.
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Figure 19 presents the road surface point cloud, showcasing the point cloud data
both before and after downsampling. Meanwhile, Figure 20 showcases the outcome of
reconstructing the road surface utilizing the Poisson reconstruction algorithm, employing a
voxel size of 12 cm.
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3.8. Template-Based Line Reconstruction

The direct Poisson reconstruction algorithm for road marking surface reconstruction
produces the results shown in Figure 21. The problem with this approach is that the line
mesh lacks overall regularity, exhibiting features such as jagged edges and inconsistent
thickness. Some markings even appear incomplete. Using this model directly for subse-
quent applications would reduce the overall realism of the scene and contradict reality.

As road markings are highly regular road infrastructure, they must adhere to strict
design specifications regarding size, shape, and other geometric structures. In this study,
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the road point cloud is subdivided, and this is followed by the utilization of a fitting
spatial curve method to extract the road centerline. Furthermore, a standardized road
marking template library is designed for the purposes of this study. The road markings
are automatically recognized and generated based on the road centerline, replacing the
original markings.
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3.9. Template-Based Reconstruction of Road Markings

Since the elevation changes in the road are relatively gentle within a small range, the
road centerline can be approximated by a three-dimensional polynomial curve model. The
model can be represented as follows, where A, B, and C are the coefficients to be fitted:

z = A
(

x2 + y2
)
+ B

√
x2 + y2 + C (8)

Curve fitting techniques for discrete point clouds are typically categorized into
two categories: least squares and RANSAC. The least-squares fitting method uses all point
cloud samples for curve fitting and is more robust compared to the RANSAC method, which
randomly selects samples. It is more suitable for extracting road centerlines. Therefore,
in this study, the least-squares method is used to determine the optimal solution for the
coefficients A*, B*, and C* of the curve model equation.

First, the road point cloud is subdivided based on intersections, splitting the surveyed
road network into multiple entrance and exit road segments. Curve fitting is performed on
each segment’s point cloud. By comparing the larger differences in the x and y coordinates
within each cluster of point clouds, the coordinate axis corresponding to the larger differ-
ence is selected as the grid subdivision reference axis. Each road segment’s point cloud
area is subdivided into grids with a step size of 50 cm on the specific coordinate axis, and
the centroid of each grid is calculated. The centroid obtained for segment 1 is shown in
Figure 22, and the same process is applied to the remaining segments.

After obtaining the grid centroids for each road segment, the least-squares method is
used with Equation (8) to perform curve fitting. The fitting results are shown in Table 7. By
substituting the starting and ending points of each segment, the road centerline for each
segment can be obtained.
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Table 7. Optimal solution of curve fitting for each road section.

Number of Road A* B* C* Start Point End Point

1 0.000125 −0.038196 26.0908 (−106.09, 18.84, 3.58) (−47.06, −15.94, 3.68)
2 0.000018 0.017523 24.1397 (−83.32, −105.59, 4.00) (−41.17, −33.87, 4.17)
3 0.000105 −0.044156 24.7202 (28.55, 72.39, 4.05) (−21.53, −4.19, 4.55)
4 −0.000042 0.001244 24.9557 (−15.54, −23.45, 4.07) (103.97, −20.94, 4.80)
5 −0.000027 −0.03464 28.8755 (156.61, 46.98, 4.72) (124.54, −11.88, 4.40)
6 −0.002946 0.83765 −31.8425 (65.48, −122.57, 4.60) (110.57, −37.74, 4.28)

A*, B*, and C*: Coefficients determined by the least-squares method to achieve the optimal solution for the curve
model equation.

3.10. Construction of the Template Library for Road Markings

In this study, the Profile Builder plugin in Sketchup Pro software is used to construct
the template library for road markings. Based on the specified design shapes according
to the regulations, parameters such as line segments, spacing length, and line width are
set within the plugin. Road marking components are constructed as templates in the form
of components, including lane dividers and pedestrian cross-walks. Additionally, various
components are imported into an empty template in a modular manner to form a global
template library for road markings, such as templates for bidirectional dual-lane or bidirec-
tional four-lane roads. The framework of the template library is depicted in Figure 23.

Using the “Create Along Path” function in the Profile Builder plugin, road markings
can be generated with a single click based on the extracted road centerline, matching the
most suitable template. The generated results are shown in Figure 24.

3.11. Template-Based Reconstruction of Vegetation

Vegetation in road infrastructure includes trees, lawns, shrubs, etc. They have different
volumes and shapes in the scene, and the point clouds corresponding to vegetation differ
from those of other infrastructure elements, such as roads, markings, and buildings, which
possess distinct and regular geometric features. Vegetation point clouds exhibit scattered,
complex, and irregular characteristics, making it challenging to achieve ideal results by
directly applying surface reconstruction algorithms to vegetation point clouds.
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Although vegetation is abundant in the scene, the segmented vegetation point clouds
exhibit a regular distribution with certain intervals between them. Therefore, in this
study, geometric information such as size and position is extracted after individualizing
the vegetation point clouds. A library of vegetation models for transportation scenes is
constructed, and parameterized files are intelligently matched and substituted for the
original point clouds.

During the individualization process of vegetation, the vegetation point clouds are
first downsampled using a voxel filter (VoxelGrid). Subsequently, individualization is per-
formed using a projection density clustering method following the algorithm steps below:

(a) Create a grid on the xOy plane based on the coordinate extremes of the original
vegetation point cloud’s bounding box. Set the grid size (GridScale) to 10 cm in this
study. Project all points onto each grid during traversal.

(b) Create a 2D grid hash table (unordered_map) to record the index (Index) of each grid
containing points and the count of points (count) in that grid.



Sensors 2024, 24, 7222 29 of 34

(c) Set a density threshold (T), which is set to 500 in this study. Extract the grids with a
count greater than the threshold to form a new point cloud (P).

(d) To perform spatial clustering of point clouds, employ the EuclideanClusterExtraction
feature extractor from the PCL library, along with the creation of a KdTree. Adjust the
clustering parameters as follows: Set the cluster tolerance to 1 m, specify the minimum
cluster size as 100 points, and set the maximum cluster size to 250,000 points. For
the individualization of vegetation, partition all vegetation point clouds into separate
classes, with each class representing a distinct plant entity. The result of vegetation
individualization is shown in Figure 25.
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Figure 25. Vegetation reconstruction results.

After individualization, each vegetation point cloud corresponds to its axis-aligned
bounding box (AABB). The MomentOfInertiaEstimation feature extractor from the PCL
library is used to extract the AABB of each vegetation, recording the maximum and
minimum coordinates of each bounding box. This information is used to calculate the
length, width, height, and bottom center coordinates of each bounding box, constructing a
geometric database for vegetation assets. The extracted information is shown in Table 8.

This study utilizes Speedtree [39] to construct a library of plant models, which includes
dozens of different sizes, colors, types, and styles of plant models, as shown. By intelligently
matching the geometric information with the vegetation asset database, objects with the
closest resemblance in appearance are selected and exported as 3D models in .obj or .st
format. These models can be integrated into third-party rendering engines. The model
library is depicted in Figure 25.
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Table 8. Asset database of plants.

Number of
Boxes Length Weight Height Center Coordinates of Bottom

Surface

1 7.02 7.02 12.26 (14.24, 15.82, 4.92)
2 6.18 6.17 7.51 (−49.62, −36.28, 4.56)
3 7.23 9.41 7.76 (−9.06, −18.86, 4.53)
4 6.59 5.84 8.03 (3.16, 24.70, 4.66)
5 7.47 6.16 8.20 (93.30, −15.38, 4.75)
6 4.81 4.74 7.98 (−4.90, 11.76, 4.88)
7 5.29 6.45 6.56 (−4.54, −29.28, 4.18)
8 3.29 3.56 2.66 (−26.80, −36.60, 4.63)

. . . . . . . . . . . . . . .

3.12. Generation and Application of Realistic Model

For other types of road infrastructure, this study employs different reconstruction
methods. Similar to the approach used for road markings, a template-based replacement
method is utilized for reconstructing poles. As for roadside buildings, a Poisson reconstruc-
tion method is applied. Finally, the road markings, road surfaces, and building models are
imported into the UE4.27 rendering engine in .obj format. The vegetation and pole point
clouds are imported as geometric replacement models. Additionally, the material textures
of the models are optimized to enhance surface details and increase the realism of the scene.
A comparison between the real and reconstructed scenes is depicted in Figure 26.
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3.13. Application of Realistic Model

Upon completing the model generation process, although the scene closely resembles
reality, as a traffic environment, the models still lack the physical logic of certain traffic
participants and infrastructure elements. Therefore, this study further incorporates logic
information for lanes, vehicles, traffic lights, and signs in the UE4.27 engine. Corresponding
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control classes were developed and applied to the traffic flow simulation and simulated
driving modules.

3.13.1. Traffic Flow Simulation Module

This study developed a subclass blueprint called “Car Source” by inheriting from
the parent class “Wheeled Vehicle”. Before generating the traffic flow, various parameters
need to be defined, such as the speed range of vehicles, the proportion of different vehicle
sizes, the state of vehicle lights, the surface material of vehicles, the generation interval
between vehicles, and the detection box range for object detection. Upon starting the
drive, the object box range detection for obstacles is activated. The vehicles strictly follow
the predefined lane blueprint for direction and randomly make decisions between going
straight or turning based on the availability of the next lane at intersections. When obstacles
are detected within the box range, the vehicles decelerate and avoid them based on preset
deceleration rates. They come to a stop and wait if the obstacles have not disappeared
yet. Similarly, when the vehicle enters the trigger box of a sign or traffic light, appropriate
deceleration or stopping decisions are executed. The blueprint continuously monitors
the vehicle’s coordinate position during the drive and is destroyed once it reaches the
designated disappearance point. The simulation process is shown in Figure 26.

3.13.2. Driving Simulation Module

Based on the realistic models built in UE4, this study has developed a driving simula-
tion software platform. The platform is built on the underlying logic of the open-source
plugin called AirSim, which is a vehicle and drone simulation platform based on UE. It
allows vehicle control and the output of various types of simulated data, including current
timestamps, XYZ absolute coordinates, brake-throttle-steering inputs, RPM, etc., using
corresponding scripts at a certain sampling rate. AirSim provides multiple API interfaces
for secondary development.

In this study, the native appearance and control models of vehicles in AirSim were
redesigned. The camera position and orientation inside the vehicle were adjusted to a
suitable first-person perspective for the driver. Headlights and taillights were added with
adjustable brightness. The engine sound amplitude was set based on different RPM values.
The redesigned models inherit the main control vehicle’s “SUV Car Pawn” class, and the
configuration of cameras and vehicle models was performed in the Settings.json file. At
the same time, the interaction logic between the main control vehicle’s “SUV Car Pawn”
class and the environmental vehicle’s “Car Source” class was implemented. This allows
the driver to interact with the environmental vehicles in real-time. The driving simulation
interface is shown in Figure 27.

This study formats and stores the driving simulation data, and develops an easy-to-
use, dynamic, and interactive data visualization and analysis platform based on C++ and
QT Creator 5.10.0. This platform provides efficient and lightweight data querying and
display functions for user subjects, as shown in Figure 27.
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4. Conclusions

This paper presents a comprehensive approach to digitizing transportation infrastruc-
ture, covering data acquisition, object classification, data fusion, model reconstruction, and
practical applications. These contributions support intelligent transportation and digital
twin applications. Based on the comparative analysis of the segmentation experimental
results for laser point clouds and image point clouds, three key conclusions can be drawn:

(a) Enhanced Feature Utilization for Segmentation: Road infrastructure point clouds
exhibit distinct characteristics—smoothness and continuity in road markings, planar
road surfaces, and verticality in poles and signs. The RCE and DWM modules in
TJYRoad-Net effectively leverage these features, enhancing segmentation accuracy.
The integration of normal vector information in the RCE was essential for distinguish-
ing road surfaces from buildings and other elements.

(b) Optimized Transfer Learning: Selectively fine-tuning the fourth decoder layer in
TJYRoad-Net resulted in the best performance, achieving an mIoU of 90.77% and OA
of 97.01% for smaller target datasets. This method improved generalization while
preventing overfitting. Compared to state-of-the-art models, TJYRoad-Net achieved a
2–5% improvement in mIoU, highlighting its robustness and adaptability.

(c) Precise Registration and Lightweight Reconstruction: Initial registration with RANSAC
followed by the ICP achieved a precise 2–3 cm alignment accuracy between image
and laser point clouds. For lightweight surface reconstruction, a point cloud density
of 150 points/m2 produced average elevation errors of 1.83 mm, within a 6.3 mm
confidence interval. Centerline fitting and template matching for road markings,
along with bounding boxes for plants, resulted in accurate and efficient models.

The realistic models generated in this study can be further applied in 3D modeling
platforms to enable visualization, virtual roaming, simulated driving, and traffic simulation
functionalities. Overall, this research contributes to the digitization of transportation infras-
tructure and provides a foundation for the development of visualization and simulation
applications in the fields of intelligent transportation and digital twins.
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