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Abstract: High-precision extraction of mangrove areas is a crucial prerequisite for estimating man-
grove area as well as for regional planning and ecological protection. However, mangroves typically
grow in coastal and near-shore areas with complex water colors, where traditional mangrove ex-
traction algorithms face challenges such as unclear region segmentation and insufficient accuracy.
To address this issue, in this paper we propose a new algorithm for mangrove identification and
extraction based on Orthogonal Matching Filter–Weighted Least Squares (OMF-WLS) target spec-
tral information. This method first selects GF-6 remote sensing images with less cloud cover, then
enhances mangrove feature information through preprocessing and band extension, combining
whitened orthogonal subspace projection with the whitened matching filter algorithm. Notably, this
paper innovatively introduces Weighted Least Squares (WLS) filtering technology. WLS filtering pre-
cisely processes high-frequency noise and edge details in images using an adaptive weighting matrix,
significantly improving the edge clarity and overall quality of mangrove images. This innovative
approach overcomes the bottleneck of traditional methods in effectively extracting edge information
against complex water color backgrounds. Finally, Otsu’s method is used for adaptive threshold
segmentation of GF-6 remote sensing images to achieve target extraction of mangrove areas. Our
experimental results show that OMF-WLS improves extraction accuracy compared to traditional
methods, with overall precision increasing from 0.95702 to 0.99366 and the Kappa coefficient rising
from 0.88436 to 0.98233. In addition, our proposed method provides significant improvements in
other metrics, demonstrating better overall performance. These findings can provide more reliable
technical support for the monitoring and protection of mangrove resources.

Keywords: mangroves; target extraction; GF-6 remote sensing images; edge detection

1. Introduction

Mangrove forests are a valuable resource that have received extensive international
research attention. Current studies cover a wide range of topics, including biodiversity,
ecosystem services, and the impact of global change on mangroves. The protection and
management of mangroves have become a common concern of the international community.
Governments and organizations worldwide are taking measures to protect, restore, and
effectively utilize mangrove ecosystems, contributing to the international commitment to
address climate change and promote sustainable resource use [1].

Mangrove ecosystems, as one of the most important coastal-interaction ecosystems,
are crucial for maintaining marine biodiversity and ecological balance in the ocean [2].
Mangroves often grow in coastal areas that are close to frequent human activities, and
the development of such activities can bring about a series of negative impacts on the
surrounding mangrove ecosystems. This has attracted attention from both the academic
community and regulatory bodies. For example, activities in coastal aquaculture zones
may lead to water pollution in the surrounding area, disrupting the stability of mangrove
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ecosystems. Land reclamation and other similar activities may also disrupt the balance
of marine ecosystems, affecting the survival and reproduction of flora and fauna around
mangroves. These human activities can impact the biodiversity and ecological functions
of mangroves, leading to changes in land use, habitat loss, and degradation of mangrove
areas.P attanaik C. et al. [3] found that in 2006 the Mahanadi delta in the eastern Indian
state of Odisha featured dense mangrove forest (12.6%), open mangrove forest (3.3%), aqua-
culture (12.9%), and agriculture (30.9%); however, between 1973 and 2006 the mangrove
area decreased by 2606 hectares, while the aquaculture area increased by 3657 hectares,
clearly illustrating the growth of the aquaculture industry.

In order to achieve sustainable development of mangrove areas, it is necessary to
strengthen management and supervision, adopt scientific environmental protection mea-
sures, ensure the positive interaction of mangroves, protect the marine ecological envi-
ronment, and achieve sustainable resource utilization [4]. In addition, timely monitoring
and regulation of mangrove ecosystems is crucial for their effective protection. However,
traditional manual inspections and monitoring methods are currently too slow and require
multiple field measurements, consuming significant human and material resources. Today,
this approach is gradually failing to meet growing monitoring demands. In recent years, the
development of remote sensing technology has increased the accuracy of optical sensors,
leading to remote sensing gradually becoming one of the main monitoring methods thanks
to its advantages of large-scale coverage, short periodicity, real-time monitoring, and low
cost. For ecosystems in natural reserves, including mangroves, monitoring via remote
sensing offers unique advantages. By leveraging the continuity of sensor systems and
image acquisition capabilities, remote sensing can help to quickly obtain spatial distribu-
tion information on mangrove regions [5]. Remote sensing image object detection is an
important branch of remote sensing data processing that has seen the development of many
detection algorithms, including Spectral Angle Mapper (SAM), Orthogonal Subspace Pro-
jection (OSP), Matched Filter (MF), and Constrained Energy Minimization (CEM), among
others [6–9].

In recent years, many scholars have conducted extensive research and exploration on
the extraction and detection of mangroves based on remote sensing data. Pacheco et al. [10]
evaluated the greenhouse gas flux emissions from the soil of dead and healthy mangroves
in southeastern Brazil, while Jia M et al. [11] conducted an analysis of the global mangrove
status from different perspectives and generated the first 10 m resolution dataset of global
mangroves, providing a key reference for evaluating the role of mangroves in sustainability
and assessing sustainable development goals. In [12], Zhang J et al. analyzed the spatiotem-
poral changes in mangrove landscape patterns in China over the past 40 years based on
remote sensing data.

Although manual visual interpretation can yield accurate results, it is costly, inefficient,
and unable to effectively handle large-scale data. In addition, manual inspection encounters
limitations such as inability to process data in real-time and susceptibility to human error.
On the other hand, while neural network-based methods have made significant progress
in recent years, these methods typically require large-scale datasets for thorough training
in practical applications. Existing training datasets are often limited to specific regions or
specific types of crops, and may be insufficiently representative or lacking in coverage. The
limitations of existing datasets severely affect the generalization capability and accuracy of
the resulting models. Furthermore, the quality and accuracy of dataset annotations are also
critical factors affecting the performance of neural network models. Remote sensing data
present specific challenges in mangrove monitoring, such as variable water color, cloud
cover, and the need for high spatial resolution. Variations in water color affect the spectral
characteristics of mangroves, making it difficult for single spectral analysis methods to
accurately identify mangroves, while cloud cover can obscure ground information, affecting
data completeness and availability. The demand for high spatial resolution further increases
the complexity and computational cost of data processing.
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Therefore, this paper presents a new algorithm called Orthogonal Matching Filter–
Weighted Least Squares (OMF-WLS), which combines the Orthogonal Subspace Projection
(OSP), Matched Filter (MF), and Weighted Least Squares (WLS) methods for mangrove
identification based on GF-6 satellite remote sensing imagery. The goal is to develop a
mangrove extraction method that is efficient, simple, reliable, and accurate for images
with complex backgrounds. By addressing the limitations of existing technologies and
the specific challenges posed by remote sensing data, this new algorithm can provide a
powerful tool for mangrove monitoring.

2. Research Region and Data

This section introduces the mangrove areas selected for the study and the sources of
satellite imagery data.

2.1. Overview of the Study Area

The area selected for this study is located in the Yingluo Port area of Shankou Town,
Hepu County, Guangxi Zhuang Autonomous Area, China. This area was designated as
a national nature reserve in 1990, with the primary aim of protecting mangroves. The
area has a South Asian subtropical maritime climate characterized by abundant sunlight
and heat resources and ample rainfall, with an average annual temperature of 22.9 ◦C.
The extreme maximum temperature is 38.2 ◦C and the extreme minimum temperature is
1.5 ◦C. The area is frost-free throughout the year, with 80–85% of the annual precipitation
concentrated from April to September, and the cumulative average annual precipitation
is 1573.4 mm. The study focuses specifically on the mangroves in this area, which feature
many well-developed, structurally typical, large, contiguous, and relatively intact natural
mangroves. There are at least twelve species of mangrove plants holding significant
scientific value. Identifying and extracting mangrove areas is crucial for maintaining the
health and sustainable development of the ecosystem, and monitoring this area is the
primary focus of the present study. Figure 1 shows the Yingluo Port area.

Figure 1. Study area (Yingluo Port).

2.2. Data Sources

The remote sensing images used in this study are from the GF-6 satellite data. The
GaoFen-6 (GF-6) satellite was developed by the China Aerospace Corporation (CASC) and
successfully launched on 2 June, 2018. It is a low-orbit optical imaging remote sensing
satellite equipped with a 2-m panchromatic/8-m multispectral high-resolution camera and
a 16-m multispectral medium-resolution wide-field camera. The 2-m panchromatic/8-m
multispectral camera has an observation width of 90 km, while the 16-m multispectral
camera has an observation width of 800 km [13]. This paper uses GF-6 data purchased from
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the official website, which is open for use and solely intended for scientific research. The
satellite data from the GF-6 satellite’s 2-m panchromatic/8-m multispectral high-resolution
camera were acquired on 30 January 2023. These data include five bands: panchromatic,
blue, green, red, and near-infrared. The cropped Yingluo Port area was preprocessed using
ENVI 5.6 software. To further enhance the resolution, image fusion was performed by
combining the panchromatic band with the multispectral bands using the Gram–Schmidt
(GS) method. This process resulted in a multispectral image with a resolution of 2 m [14].
As this paper focuses on mangrove identification, the multispectral images were subjected
to land–sea separation to exclude interference from the ocean. This process involved editing
vector features using ArcGIS and was followed by mask processing.

3. Processing Flow and Algorithm Framework

This section outlines the basic process for mangrove identification, describes the
band expansion before algorithm processing, and assesses the effectiveness of Otsu’s
method for threshold segmentation after algorithm processing. Additionally, it explains
the primary principles of the OSP and MF algorithms, then introduces our new algorithm
combining these principles. This new algorithm incorporates optimization techniques such
as whitening and regularization. Finally, the solution process of the OMF-WLS algorithm is
thoroughly derived under rigorous mathematical theory.

3.1. Technical Route

To achieve mangrove identification and extraction, this paper proposes the new OMF-
WLS algorithm. The innovation of this algorithm lies in its integration of OSP, MF, and
WLS. By introducing whitening processing, regularization, and weighted least squares
filtering, the algorithm enhances target information and weakens background information.
Finally, Otsu’s method is used for threshold segmentation, effectively enabling precise
extraction of the target. The specific extraction process is shown in Figure 2.

Figure 2. Extraction process of mangrove remote sensing imagery based on OMF-WLS.
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3.2. Band Expansion

The Remote Sensing Ecological Index (RSEI) is a technique used in remote sensing
image processing and analysis [15]. It involves combining different spectral bands from
satellite multispectral imagery to construct and enhance spectral characteristics, thereby
reflecting the features of a specific land cover [16]. In order to achieve better extraction of
mangroves, this paper utilizes a method based on constructing feature indices to build and
enhance the target spectral characteristics to reflect and extract the land cover features of
mangroves. These feature indices are typically derived from new image data obtained by
mathematical operations and combinations of different spectral bands in remote sensing
images, which are used to reflect certain attributes or conditions of the Earth’s surface. The
extended feature indices constructed in this paper are mainly divided into two categories.
First, the vegetation index category primarily reflects the growth status and coverage of
vegetation through the combination of infrared and visible light bands. Common vegetation
indices include the Normalized Difference Vegetation Index (NDVI), among others [17].
These indices can effectively distinguish mangroves from background information, as
mangroves typically have high vegetation cover. Second, the water index category primarily
reflects the distribution and types of water bodies through combination of the blue light
and near-infrared bands. Common water indices include the Normalized Difference Water
Index (NDWI), among others [18]. These indices allow for effective differentiation between
water bodies and land areas, as water indices typically have higher values in water bodies
and lower values in land areas.

Because the PCA whitening in our algorithm is implemented based on Singular Value
Decomposition (SVD), we select only four indices in order to avoid the presence of highly
correlated features in the input data, as more indices could lead to singular values close
to zero in the SVD results and could even result in overfitting [19–21]. The four indices
selected to differentiate mangrove areas are the Normalized Difference Vegetation Index
(NDVI), Enhanced Vegetation Index (EVI), Normalized Difference Water Index (NDWI),
and Total Suspended Matter (TSM) [22–24]. After band extension, tis results in eight bands.
As shown in Table 1, these bands represent the characteristic indices after band extension,
where B1 represents the blue band, B2 represents the green band, B3 represents the red
band, and B4 represents the near-infrared band.

Table 1. Feature index after band extension.

Feature Information Feature Index Mathematical Expression

Spectral Features

NDVI NDVI = B4−B3
B4+B3

EVI EVI = 2.5 B4−B3
B4+6B3−7.5B2+1

NDWI NDWI = B2−B4
B2+B4

TSM TSM = 0.028B1 + 0.019B2 − 5.31 B2
B1 + 0.537

3.3. Traditional Algorithms
3.3.1. Orthogonal Subspace Projection Method

Orthogonal Subspace Projection (OSP) is a commonly used technique for feature
extraction and dimensionality reduction, particularly in fields such as signal processing,
pattern recognition, and data analysis [25,26].

First, let X be a L × 1 pixel spectral vector and let K represents the dimension of the
end-member spectral matrix, where αi represents the abundance corresponding to the
end-member. The expression is 

αi ≥ 0, 1 ≤ i ≤ K
k

∑
i=1

αi = 1.
(1)
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The OSP model is composed of the target signal d and the background end-members
U, which can be expressed as

X = dαd + UαU + n. (2)

In Equation (2), dαd represents the abundance vector of the target signal, UαU represents
the abundance vector of the background end-members, and n denotes the noise or model
error. It should be noted that αd is a scalar, while αU is a vector. The dimension of U is
L × (K − 1) and the dimension of αU is (K − 1)× 1. Thus, the result of UαU is a vector of
dimension L × 1.

In order to extract the target signal of interest while suppressing all other background
features, an orthogonal subspace projector is introduced, with ⊥ denoting the orthogonal
complement space, defined as follows:

P⊥
U = I − U(UTU)−1UT . (3)

The constructed filter detector can be expressed as

POSP = P⊥
U d. (4)

In Equation (3), I is the L × L identity matrix, UTU is a (K − 1)× (K − 1) matrix, and
(UTU)−1UT is a (K − 1)× L matrix. Therefore, U(UTU)−1UT is also an L × L matrix, mean-
ing that the entire projector P⊥

U has dimensions L× L, while (UTU)−1UT is the pseudoinverse
of the matrix U, with UT representing the transpose of matrix U. As shown in Equation (4),
prior knowledge of the image end-members is required for end-member extraction.

3.3.2. Matched Filter

A Matched Filter (MF) is a signal processing filter that maximizes the signal-to-noise
ratio at a specific time. The MF allows for the effective extraction of the target signal [27,28].
Matched filters in image object detection help to extract specific features of the target
object and find areas in the image that match the template signal, thereby enabling object
detection functionality.

Assuming that the image to be analyzed has B bands, the vector form of each pixel
can be expressed as

xs = [x1, x2, x3, · · · , xB]
T(s = 1, 2, 3, · · · , S). (5)

In Equation (5), S = LENGTH × WIDTH, where LENGTH is the length of the image
dimension and WIDTH is the width of the image dimension. Each band’s sensor obtains a
grayscale image Gb with size S:

Gb(length, width)(b = 1, 2, 3, · · · , B; length = 1, 2, 3, · · · , LENGTH; width = 1, 2, 3, · · · , WIDTH). (6)

Three-dimensional imaging data can be rearranged as

X = [x1, x2, x3, · · · , xS]. (7)

In Equation (2), X focuses on how the spectral vectors (such as those from each pixel)
are decomposed into the three components of target, background, and noise. In Equation (7),
X is more macroscopic, representing the spectral characteristics of the entire dataset. These
are different representations of the same data; as such, this can be expressed as

X(b, s)(b = 1, 2, 3, · · · , B; s = 1, 2, 3, · · · , S). (8)

The relationship between Equations (6) and (8) is as follows:

Gb(length, width) = X(b, (length − 1)WIDTH + width). (9)
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Based on the known prior information, this can be classified as a simple quadratic
programming problem: {

min WT ∑ W
s.t.WT(µ1 − µ0) = 1.

(10)

The mean vector for the target pixel is denoted as µ1 and the mean vector for the
background pixel as µ0, while W is the linear filter. By introducing the Lagrange multiplier
method, we can solve for the unknown vector W:

W =
Σ−1(µ1 − µ0)

(µ1 − µ0)TΣ−1(µ1 − µ0)
. (11)

The covariance matrix Σ̃ and the background mean vector µ̃0 can be estimated based on
the existing data. Combined with Equation (11), the form of the linear detector obtained is

yW = WT(xi − µ̃0). (12)

The target mean vector is obtained from the average of the existing spectral library or
label information:

µ̃1 ≈ 1
S

s

∑
j=0

xj. (13)

Combining the data from Equations (11)–(13) and performing the Mahalanobis dis-
tance calculation between the target and the background, we finally obtain

yMF(s) =
(xs − µ̃0)

TΣ̃−1(µ̃1 − µ̃0)

(µ̃1 − µ̃0)TΣ̃−1(µ̃1 − µ̃0)
. (14)

3.4. Orthogonal Matching Filter-Weighted Least Squares Algorithm
3.4.1. Data Preprocessing

Before using algorithms for target information enhancement and whitening, the image
data are first subjected to two-dimensionalization and normalization. This involves convert-
ing three-dimensional multispectral images into two-dimensional matrices and mapping
the data to a range between 0 and 1. This step removes the dimensionality and units of
measurement of the different dimensions of the data. Subsequently, the data undergo mean
normalization to center them around 0, followed by standardization to ensure that the
features are all on the same scale.

As the data have been mean-normalized, the means x̄ = ȳ = 0. When we focus on the
dataset of X, the covariance matrix can be simplified to Equation (15):

C =
1
n

n

∑
i=1

xixi
T . (15)

Then, we perform eigenvalue decomposition on the covariance matrix C to compute
the eigenvalues and eigenvectors, which are

C = UΛUT . (16)

In Equation (16), U represents the eigenvectors and Λ is the diagonal matrix with the
eigenvalues on the diagonal.

Whitening is a linear transformation used to decorrelate source signals, and is an
important preprocessing step [29]. Its purpose is to reduce the redundancy in the input
data to ensure that the whitened input data have the following properties:

1. No correlation between features.
2. The variance of all features is equal to 1.
3. Reduced dimensionality.
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The implementation of PCA whitening is similar to PCA dimensionality reduction [30].
After obtaining the eigenvalues and eigenvectors of the covariance, the transpose of the
eigenvector matrix is left-multiplied by the original data matrix to achieve a rotational
transformation of the data. Then, each dimension of the transformed data matrix is divided
by the corresponding variance (i.e., eigenvalue).

3.4.2. Algorithm Flow

By scaling our decorrelated data through dividing each feature xrot,i by the square root
of its corresponding eigenvalue

√
λi, we obtain the PCA whitened [31] data matrix:

XPCA,i =
Xrot,i√

λi
. (17)

Sometimes, the eigenvalues λi may be very close to zero. This can cause numerical
instability or overflows when dividing by values close to zero. To address this issue, the
eigenvalues are scaled and a very small constant ε is added to avoid division by values close
to zero (typically ε ≈ 10−5). This constant is commonly referred to as a regularization term.
By adding this constant, numerical instability and overflows during division operations
can be avoided. Thus, the final result of the PCA whitening matrix is as follows:

XPCA,i =
Xrot,i√
λi + ε

. (18)

We combine Equations (2)–(4) with Equation (18) to perform whitening weighting
operations: {

dwhite =
(
dTXPCA,i

)T

Uwhite =
(
UTXPCA,i

)T .
(19)

Therefore, the detector can be redefined as{
Pwhite = P⊥

U dwhite

P⊥
U = I − Uwhite

(
UT

whiteUwhite
)−1UT

white.
(20)

Finally, a sparse matrix is constructed from the orthogonal subspace projector P⊥
U

in Equation (20), which effectively enhances the target information and suppresses the
background information.

Based on the whitened sample space, we have{
xs = Σ̃− 1

2 (xs − µ̃0)

µ1 = Σ̃− 1
2 (µ̃1 − µ̃0).

(21)

Therefore, the MF can be rewritten as

yMF(s) =
µ1

Txs

µ1
Tµ1

. (22)

where µ1
Tµ1 is a constant. A new measurement method can be used to find the projection

vector W. In the whitened space, W can be found by minimization, resulting in a new output

yMF(s) = WTxs. (23)

Using dwhite in Equation (19) as the target vector µ1 in the matching filter, a new Orthog-
onal Matching Filter (OMF) optimization model is formed. The constrained minimization
problem then becomes {

min E{[(W − µ1)
Txs]2}

s.t.WTdwhite = 1.
(24)
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Expanding and simplifying this model results in{
min WTΣOMFW − 2WTΣOMFµ1 + µ1

TΣOMFµ1
s.t. WTdwhite = 1.

(25)

Here, ΣOMF represents the autocovariance matrix of the whitened samples after
weighting. In the whitened space, the covariance matrix is the identity matrix. Solving
Equation (25) yields

W =
dwhite

∥dwhite∥
. (26)

Therefore, the final output of the OMF is

yOMF(s) =
dwhite

Txs

∥dwhite∥
. (27)

3.4.3. Weighted Least Squares Filtering Algorithm

The Weighted Least Squares (WLS) filtering algorithm is commonly used in image
processing for edge preservation and noise reduction. The main purpose of applying the
WLS algorithm before threshold segmentation is to smooth the image while preserving
as much edge information as possible, thereby improving the quality and accuracy of the
segmentation [32]. Specifically, the WLS algorithm performs weighted smoothing on the
image by combining the gradient information with the spatial relationships between pixels.
This approach reduces noise in the image while preserving edge information.

Applying the WLS algorithm before threshold segmentation helps to improve image
quality, allowing subsequent segmentation algorithms to more accurately distinguish
between objects and background in the image. This aids in extracting clear and precise
edges, making it easier for the threshold segmentation algorithm to perform segmentation
near edges and reducing segmentation errors caused by noise or blurring.

We perform WLS filtering on the image after it has undergone whitening and weighted
filtering:

min
u

(u − yOMF)
T(u − yOMF) + λ

(
uT DT

x AxDxu + uT DT
y AyDyu

)
. (28)

In Equation (28), u represents the filtered image to be obtained and λ is the regular-
ization parameter used to balance the tradeoff between u and yOMF. When the gradient
changes at the edges of the input image are significant, we want to impose a smaller con-
straint to preserve the structural information of the image; conversely, when the gradient
changes at the image edges are minimal, these details are considered less important and a
larger constraint can be applied. Here, Dx and Dy are discrete difference operators, while
Ax and Ay are diagonal matrices. By differentiating the above Equation (28), the following
minimum value solution for u is obtained:

u =
(

I + λLyOMF

)−1yOMF (29)

where LyOMF = DT
x AxDx + DT

y AyDy is a Laplacian matrix. Thus, Equation (29) represents
the final output of the Orthogonal Matching Filter–Weighted Least Squares (OMF-WLS)
algorithm presented in this paper.

3.5. Otsu’s Algorithm

Otsu’s method is a classic algorithm used in image processing and computer vision
for image thresholding. Otsu’s algorithm aims to automatically determine the threshold
for binarizing an image such that the segmented image has the optimal between-class vari-
ance [33]. In this paper, the image filtered using Equation (31) is binarized and segmented
based on Otsu’s method.
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Otsu’s algorithm divides image pixels into two categories, namely, the object and the
background. Supposing that the image has L grayscale levels, where 0 < T < L − 1, let p1
be the proportion of object pixels to the total number of pixels in the image and let p2 be
the proportion of background pixels to the total number of pixels. Additionally, let m1 be
the mean grayscale value of the object pixels and let m2 be the mean grayscale value of the
background pixels. Then, the global grayscale mean G of the image is provided by

G = m1 p1 + m2 p2, (30)

while the between-class variance σ2 is provided by

σ2 = p1(m1 − G)2 + p2(m2 − G)2. (31)

Combined with Equation (31), this simplifies to

σ2 = p1 p2(m1 − m2)
2. (32)

Finally, by iterating through all grayscale levels, the optimal threshold T∗ that maxi-
mizes the value of σ2 is determined as follows:

σ2(T∗) = max
0<T<L−1

σ2. (33)

This algorithm can quickly and automatically select the optimal threshold for segmen-
tation, allowing for accurate extraction of targets such as mangroves.

4. Results Analysis and Accuracy Evaluation

This section introduces the various metrics used to evaluate the extraction accuracy
of mangroves. The OMF-WLS algorithm presented in this paper is compared with other
methods by selecting different mangrove study areas. The purpose of the comparison is to
assess the advantages of the proposed algorithm in mangrove extraction.

For the large-scale images in this paper with a spatial resolution of 2 m, the time
required to run the OMF-WLS algorithm in Matlab R2020a was 25.0197 s in Area A, 8.2723 s
in Area B, and 1.9815 s in Area C. These times do not consider the time spent to preprocess
the images using ENVI software. It is worth noting that all experiments were conducted on
a computer with Windows 10, AMD Ryzen 5 5600 G with Radeon Graphics 3.90 GHz, and
16 GB of RAM.

4.1. Detection Accuracy Metrics

The training set used in this study was derived from randomly sampled multiple
sample points in the mangrove area shown in Figure 1. The validation set consisted of
randomly selected sample points from Figure 1, which included both mangrove and non-
mangrove areas. The test set involved selecting three mangrove areas from Figure 1 with
different sizes for recognition and evaluation.

To better quantify and assess the algorithm’s ability to detect and extract mangrove
areas, we randomly selected ten samples from the research area of Yingluo Port. These
samples represented a wide range of mangrove ecosystem characteristics, and the selection
of ten samples helped to avoid erroneous choices. The average of these samples was used to
obtain prior information about the target, after which a spectral library was exported using
ENVI. Based on the selected sample data, a confusion matrix was then used to calculate
four metrics for mangrove detection: Overall Accuracy (OA), Average Accuracy (AA),
Producer’s Accuracy (PA), and Kappa coefficient [34,35]. The formulas for these metrics
are shown below.
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OA = TP+TN
TP+TN+FP+FN

AA = 1
2

(
TP

TP+FN + TN
TN+FP

)
PA = TP

TP+FP

Kappa = p0−pe
1−pe

{
p0 = TP+TN

TP+TN+FP+FN

pe =
(TP+FP)(TP+FN)+(FN+TN)(FP+TN)

(TP+TN+FP+FN)2

(34)

In Formula (34), TP (True Positive) represents the number of true positive examples,
when the model predicts the positive class and the actual label is also positive; TN (True
Negative) represents the number of true negative examples, when the model predicts the
negative class and the actual label is also negative; FP (False Positive) represents the number
of false positive examples, when the model predicts the positive class but the actual label is
negative; and FN (False Negative) represents the number of false negative examples, when
the model predicts the negative class but the actual label is positive.

These indices were used to quantitatively evaluate the effectiveness of mangrove
extraction, with values closer to 1 indicating better performance.

4.2. Comparison of Region Selection and Methods

To ensure the reliability of the experiment, we selected three areas of Yingluo Port for
verification and analysis and selected several different extraction algorithms for comparison
with the proposed algorithm. In Figure 3, Figure 3a shows the GF-6 image of the Yingluo
Port area, with three rectangular boxes labeled A, B, and C representing the areas selected
for mangrove target extraction in this study, with enlarged views of these three areas shown
in Figure 3b–d. Selecting three areas with differences in both background information and
size allows for a better comparative analysis. Among these areas, area A is relatively large
and includes more background information such as artificial structures, other vegetation,
and aquaculture areas; area B is of medium size and is mainly affected by aquaculture areas
and suspended sediments; and area C is relatively small, with a simple background that is
mainly influenced by other vegetation.

In the comparison results shown in Figure 4, it can be observed that in area A the
Constrained Energy Minimization (CEM), Adaptive Coherence Estimator (ACE), and Max-
imum Likelihood Estimation (MLE) algorithms do not effectively identify the extensive
mangrove areas, with significant omissions overall. However, MLE performs better in cer-
tain smaller areas. Although MF shows generally better overall identification, there are still
misclassifications. The proposed algorithm, while still not effective in some smaller areas,
provides better overall extraction results without overly highlighting the gaps between
mangroves, and the texture is clear. In area B, due to reduced interference information,
none of the algorithms exhibit severe misclassifications. Overall, CEM and ACE still show
significant omissions in mangrove detection, especially ACE, which is overly sensitive
to spectral information and amplifies differences within the mangrove areas, leading to
poor integration. Both MF and MLE demonstrate excellent performance, although some
small areas remain unrecognized. The proposed algorithm also performs well at this scale.
In area C, with a smaller scale, the overall identification performance of all algorithms
improves. However, CEM, ACE, and MLE are excessively sensitive to gaps within the
mangroves, resulting in misclassification of sparse mangrove areas as other categories. MF
and the proposed algorithm both perform better in this area.
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(a)

(b) (c) (d)
Figure 3. Extraction areas of mangrove samples selected in the Yingluo Port area: (a) the locations of
the three selected areas in the GF-6 image, indicated by the rectangular boxes labeled A, B, and C;
(b) area A; (c) area B; (d) area C.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t) (u)

Figure 4. Comparison of extraction results from different algorithms for the three areas: (a–g) the
original image, ground truth map, OMF-WLS extraction map, MF extraction map, CEM extraction
map, Adaptive Coherence Estimator (ACE) extraction map, and Maximum Likelihood Estimation
(MLE) extraction map for area A; (h–n) and (o–u) similarly represent the extraction results of the
different algorithms for areas B and C, respectively, in the same order as for area A.
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4.3. Precision Assessment

The validation data in this paper were processed using ENVI 5.6 and ArcGIS 10.8
software. Through visual interpretation of existing data and high-resolution satellite
imagery, mangroves were classified for use as a ground truth map. The data to be validated
were processed in MATLAB R2020a software, with various algorithms used to identify
and classify the mangroves. The final classification map was then used as the object for
accuracy validation.

From Tables 2–4, it can be seen that prior to applying the WLS filtering, the perfor-
mance of the OMF algorithm in area A does not surpass that of the CEM algorithm except
for slightly better average accuracy. After applying WLS filtering, however, the edges
of the mangroves are enhanced and the internal vegetation density is smoothed. The
overall accuracy of the OMF-WLS algorithm improves from 0.95702 to 0.99366 and the
Kappa coefficient improves from 0.88436 to 0.98233, with significant improvements in other
metrics as well, showing better overall performance.

In area B, while WLS filtering still optimizes the OMF algorithm, the improvement
is less pronounced. Although the producer accuracy is lower, the OMF-WLS algorithm
still shows superior performance in the other metrics, with all indicators exceeding 96%.
Similar to area B, in area C the algorithm performs worse in terms of producer accuracy
compared to the CEM and MLE algorithms. In additionally, the average accuracy after
WLS filtering decreases by 0.003%. In terms of the other metrics, the proposed algorithm
again performs well.

Table 2. Extraction results and metrics from area A in Yingluo Port.

Area A

Metrics OMF-WLS OMF MF CEM ACE MLE

OA 0.99366 0.95702 0.94834 0.96379 0.90774 0.93233
AA 0.98761 0.95496 0.93621 0.92454 0.81986 0.85944
PA 0.99702 0.87755 0.87412 0.99644 0.93829 0.98994

Kappa 0.98233 0.88436 0.85917 0.89442 0.71469 0.79322

Table 3. Extraction results and metrics from area B in Yingluo Port.

Area B

Metrics OMF-WLS OMF MF CEM ACE MLE

OA 0.98256 0.97988 0.95222 0.90389 0.90925 0.94142
AA 0.98161 0.97975 0.93275 0.85014 0.85781 0.90857
PA 0.96678 0.95847 0.96839 0.99611 0.99997 0.99838

Kappa 0.96000 0.95397 0.88727 0.75997 0.77409 0.85839

Table 4. Extraction results and metrics from area C in Yingluo Port.

Area C

Metrics OMF-WLS OMF MF CEM ACE MLE

OA 0.98682 0.98644 0.94060 0.96824 0.92683 0.97953
AA 0.96329 0.96332 0.94219 0.89635 0.85074 0.93159
PA 0.98095 0.97773 0.73395 0.99179 0.76160 0.99959

Kappa 0.94696 0.94552 0.79087 0.86376 0.70891 0.91461
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In summary:

• The proposed algorithm shows the best performance in area A and outperforms the
other algorithms, with all four metrics exceeding 98%. The CEM algorithm ranks
second, with all metrics above 89%.

• In area B, the proposed algorithm in this paper shows the best overall performance,
with all metrics above 88%. The ACE algorithm performs best in the PA metric, with
the MF algorithm ranking second.

• In area C, the proposed algorithm shows the best overall performance, with all metrics
above 91%. The MLE algorithm has the second-best performance.

With regard to the differences in results across different regions, this analysis suggests
that the complexity and dynamic changes in spectral features may make it challenging for
our OMF-WLS algorithm to accurately separate the spectral signals of mangroves in aqua-
culture areas where there are numerous artificial structures and reflectors [36]. Additionally,
the reflective properties of water bodies may further interfere with the spectral signals of
mangroves, increasing the difficulty of extraction. In particular, spectral aliasing becomes
more evident in areas with highly reflective artificial structures such as buildings and roads.
Shadow effects also lead to variations in local lighting conditions, which in turn affects
the extraction of spectral features of mangroves [37]. Of course, tidal changes, seasonal
variations, and sediment types are also important environmental variables affecting the
spectral characteristics of mangrove ecosystems. These variables cause changes in the
spectral signals over different wavelengths by altering the propagation, reflection, and scat-
tering of light in water as well as changes in the physical and chemical properties of plants
and sediments. Understanding these impacts is crucial for future use of remote sensing
technology to monitor the health status and changing trends of mangrove ecosystems.

Our model demonstrates strong versatility in its ability to extract and recognize
spectral features, showcasing robust adaptability across different environments. This
adaptability not only validates the model’s robustness under various conditions but also
provides technological support for the protection of mangroves worldwide. In the face
of different environmental conditions, the proposed model is able to effectively correct
for the impact of environmental changes on spectral features through whitening and
regularization terms. Specifically, the whitening process eliminates background noise from
spectral data, while regularization balances data complexity and model complexity during
the training process. Together, these procedures ensure high recognition accuracy across
diverse environmental conditions.

In addition to identifying mangroves, our model can also be adapted to play a signifi-
cant role in environmental monitoring of other ecosystems and for application such as forest
health monitoring, wetland ecosystem analysis, and mineral resource exploration. Our
model’s generalization capability and high recognition accuracy make it highly promising
in these fields.

4.4. Discussion

Regarding existing methods, the matched filter performs poorly in environments with
a low signal-to-noise ratio (SNR). As the complex background of mangrove environments
may result in low SNR, this can affect recognition performance. The CEM algorithm requires
solving complex optimization problems, which consumes a large amount of computational
resources and may be limited in real-time applications. Additionally, the CEM algorithm is
sensitive to noise, which can be complex and diverse in mangrove environments, leading to
decreased performance [38]. The ACE algorithm requires extensive experience and precise
data for parameter adjustment, and the complexity of the mangrove environment may
complicate parameter tuning, impacting recognition effectiveness. The MLE algorithm
involves a large amount of statistical computation and optimization, leading to high
computational complexity and limited real-time processing capability.

In contrast, the OMF-WLS algorithm presented in this paper not only combines OSP,
MF, PCA whitening, and regularization terms, it also integrates the WLS algorithm, which
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offers significant advantages during the task of mangrove recognition. The WLS algorithm
applies a weighted approach to different data points, allowing the model to focus more on
reliable signals while reducing the impact of noisy or less significant data. This weighted
mechanism is particularly beneficial in complex environments such as mangroves, where
data heteroskedasticity and outliers are common. By adaptively adjusting the weights,
WLS enhances the accuracy and robustness of signal recognition, making our OMF-WLS
algorithm more flexible and stable compared to traditional methods. Furthermore, WLS
can effectively handle outliers and noise, ensuring that the final parameter estimation is
both precise and reliable. The synergistic combination of OMF and WLS in the proposed
algorithm results in superior recognition accuracy, better computational efficiency, and
adaptability to complex environments, making it a highly advanced and effective solution
for mangrove recognition.

5. Conclusions

Although large-scale classification and extraction of remote sensing images have been
widely applied in daily life, traditional mangrove identification and extraction methods still
have limitations in terms of accuracy and extraction efficiency under complex backgrounds
and fail to effectively meet the needs of practical applications. This limitation results in
underutilization of time-sensitive remote sensing resources, leading to resource wastage.
In this paper, we utilizes target spectral information obtained from remote sensing images
and apply the novel OMF-WLS algorithm for mangrove enhancement across backgrounds
with different scales. Subsequently, the grayscale images are filtered and Otsu algorithm is
used for mangrove extraction.

Compared to traditional methods such as the MF, CEM, and OSP algorithms, the
mangrove extraction algorithm proposed in this study performs excellently in a variety of
extraction evaluation metrics. The OA value reaches above 0.98 and the Kappa coefficient
above 0.94, demonstrating significant advantages. Our algorithm can effectively identify
and extract mangroves from various complex backgrounds with high adaptability and
precision. Unlike machine learning methods, it only requires traditional mathematical
calculation of target spectral information without extensive training, resulting in fast
computation and high efficiency. Its rational weighting mechanism is better able to handle
complex situations under different backgrounds, reducing misidentification and false
positives. The edges of mangroves often have a clear contrast with the surrounding
environment, and the WLS algorithm can effectively preserve these edge features while
smoothing large areas of mangrove internal information, resulting in clearer and more
accurate extraction of mangrove boundaries.

In conclusion, although the algorithm presented in this paper performs better in
mangrove identification compared to other methods, it still has limitations in mangrove
extraction, including spectral aliasing and band expansion issues. Application of the OMF-
WLS algorithm in mangrove conservation can not only provide high-precision capabilities
for mangrove identification and monitoring but can also enhance the efficient and scientific
protection of mangroves through ecosystem health assessment, biodiversity monitoring,
and habitat restoration tracking. This is of great significance for addressing global climate
change and protecting marine ecosystems. Future research will focus on technological
innovation and method optimization, aiming to provide more powerful technical support
for the accurate extraction of mangroves in order to meet the growing needs of ecological
monitoring and resource management.
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