
Citation: Kalinin, M.; Gribkov, N.

Syntactic–Semantic Detection of

Clone-Caused Vulnerabilities in the

IoT Devices. Sensors 2024, 24, 7251.

https://doi.org/10.3390/s24227251

Academic Editor: Joaquin

Ordieres Meré

Received: 3 October 2024

Revised: 3 November 2024

Accepted: 11 November 2024

Published: 13 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Syntactic–Semantic Detection of Clone-Caused Vulnerabilities
in the IoT Devices
Maxim Kalinin * and Nikita Gribkov

Institute of Computer Science and Cybersecurity, Peter the Great St.Petersburg Polytechnic University,
29 Polytekhnicheskaya ul., 195251 St. Petersburg, Russia; gribkov@ibks.spbstu.ru
* Correspondence: max@ibks.spbstu.ru

Abstract: This paper addresses the problem of IoT security caused by code cloning when developing
a massive variety of different smart devices. A clone detection method is proposed to identify
clone-caused vulnerabilities in IoT software. A hybrid solution combines syntactic and semantic
analyses of the code. Based on the recovered code, an attributed abstract syntax tree is constructed
for each code fragment. All nodes of the commonly used abstract syntax tree are proposed to be
weighted with semantic attribute vectors. Each attributed tree is then encoded as a semantic vector
using a Deep Graph Neural Network. Two graph networks are combined into a Siamese neural
model, allowing training to generate semantic vectors and compare vector pairs within each training
epoch. Semantic analysis is also applied to clones with low similarity metric values. This allows one
to correct the similarity decision in the case of incorrect matching of functions at the syntactic level.
To automate the search for clones, the BinDiff algorithm is added in the first stage to accurately select
clone candidates. This has a positive impact on the ability to apply the proposed method to large sets
of binary code. In an experimental study, the developed method—compared to BinDiff, Gemini, and
Asteria tools—has demonstrated the highest efficiency.

Keywords: attributed abstract syntax tree; code clone; detection; graph neural network; IoT software;
semantic analysis; Siamese network; similarity; syntactic analysis; vulnerability

1. Introduction

In the last decade, the number of Internet of Things (IoT) devices has grown rapidly.
According to the IoT Analytics’ State of IoT Summer 2024 report [1], there were 16.6 billion
connected IoT devices by the end of 2023. They expect this number to grow to 18.8 billion
by the end of 2024 and forecast 41.1 billion devices by 2030. Several use cases have emerged
from the IoT, changing traditional business models, such as replacing in-person healthcare
with virtual and remote monitoring, improving power planting by smart sensors and
adaptive delivery, etc. Gartner estimates that the IoT in key industries reached over USD
268 billion.

In 2022, and IoT devices are forecasted to grow at a compound annual growth rate
(CAGR) of 15% from 2021 to 2025 [2].

In such conditions, code cloning is widely used by IoT developers to improve produc-
tion efficiency. IoT device software often uses code cloning and relies heavily on software
reuse. Unlike traditional computers, IoT devices are more diverse. IoT software cloning
can occur in several scenarios:

• Using proprietary program code from a corporate code database when developing
commercial software;

• Using open-source code repositories when developing proprietary software;
• Using open-source code repositories when developing open-source software.

Considering two different IoT devices, if the open software used by the first one
has mature and ready-to-use code, then the developer of the second device can quickly

Sensors 2024, 24, 7251. https://doi.org/10.3390/s24227251 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24227251
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9732-0099
https://doi.org/10.3390/s24227251
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24227251?type=check_update&version=1


Sensors 2024, 24, 7251 2 of 24

create a customized software version based on the first device by modifying the available
code (e.g., drivers, file systems, and operating system modules). At the same time, any
vulnerabilities taking place in the original device can also be transferred to the second
device. These vulnerabilities are defined as clone-caused vulnerabilities [3]. For IoT
production and sales, security often comes second, and although the open source code can
be patched after vulnerability disclosure, its clones are rarely updated or even monitored
after production, leading to a large number of security breaches [4]. For example, the
Debian operating system for IoT devices has confirmed the existence of 145 unpatched
clone-caused vulnerabilities [5].

Apart from this, software code can be cloned from different architectures to IoT envi-
ronments. As a result, code-caused vulnerabilities are also being ported to the IoT software
from different platforms. Attackers who master the exploitation of a specific vulnerability
can use it to attack IoT devices on different platforms, which is highly dangerous and may
lead to massive crashes in the IoT.

Code clone searching can also be useful in other use cases. If a vulnerability is found
in an IoT device, code clone detection can help one to check other versions of the reused
software for the presence of a similar defect. Also, comparing different versions of software
of the same product allows identifying security patches used to close the vulnerabilities.
This capability can also be used to verify the security of the same versions of IoT devices to
detect undeclared insertions and assess the risks of using them. Code clone detection can
be mighty, making evident the illegal reproduction of proprietary programs in IoT device
replicas by unfair developers.

Figure 1 demonstrates one of the possible scenarios for using code clone detection. In
stage 1, a developer creates IoT device software using an available code database (open
repository, Internet resource, code library, etc.), or, in the case of proprietary development,
a corporate code base. The original source may contain an IoT software vulnerability. In
the process of development, the code is refactored. It is modified for adaptation to target
use conditions (stage 2). The functional abilities of the cloned code do not change, and
the clone-caused vulnerability stays in the code. Then, a binary is built. While making it,
the debug symbols are lost, and the grammar of the binary code replaces the grammar
of the source code. In this stage, the code syntax changes, but its semantics remain the
same. During the execution of the binary, a clone-caused vulnerability may run in the IoT
device. Special security analysis is required to detect this vulnerability. Security analysts
utilize special detection tools to search for and classify similar code fragments containing
clone-caused vulnerabilities (stage 3).

Figure 1. Code clone detection scenario: clone-caused vulnerability detection.

To address the IoT security problem caused by code cloning, various methods have
been proposed since the initial research on clone-caused vulnerabilities in 2007 [6]. These
methods operate at different granularity levels and implement various mechanisms, e.g., in-
telligent binary signature similarity measurements, abstract syntax trees (ASTs), control
flow graphs (CFGs), program dependence graphs (PDGs), and machine learning meth-
ods [7–12]. Although these techniques achieved some success in code clone detection, they
are limited by two barriers [13]:



Sensors 2024, 24, 7251 3 of 24

• Incomplete and inaccurate types of semantic information are captured from functions,
leading to a high rate of false positives. For example, the BinGo tool [14] relies on
the CFG to generate a function signature model. However, CFGs are significantly
divergent across different platforms, resulting in BinGo’s cross-platform code clone
detection accuracy being less than 60%;

• Most methods require substantial data processing power, making them challenging to
apply to complex tasks. For example, the Genius tool [12] uses spectral algorithms for
clustering and graph matching. The Gemini tool [7] applies a deep learning model
to process CFGs, and, consequently, it loses a large portion of semantic information
while optimizing the data mining procedure. Most detectors work on a syntactic level
of clone searching.

To overcome these problems, a hybrid solution is presented in this paper that com-
bines syntactic and semantic analyses to detect the code clones. The following are key
contributions of the presented research:

• A formal description of the code clone search is proposed. On this basis, a hybrid
method for code clone detection is proposed that combines syntactic and semantic
analyses. This method utilizes an attributed abstract syntax tree, our improvement of
the commonly used abstract syntax tree that was extended with a vector representation
of code features, and a Siamese network of two deep graph neural networks. Therefore,
the proposed method combines low-level code feature processing and high-level
semantic analysis;

• An experimental study of the proposed method was conducted, demonstrating its
efficiency in maintaining IoT software. It shows better output quality (e.g., AUC 0.962)
than the tested competitors—BinDiff, Gemini, and Asteria utilities.

In practice, the proposed method can be integrated into the production chain as
a preliminary stage before the commissioning of IoT products: the software of devices
should be specially checked for vulnerabilities and undeclared capabilities, especially if the
products are developed for critical infrastructures.

The rest of this paper is organized as follows: Section 2 presents the related works and
our hybrid syntactic–semantic method for code clone detection; Section 3 shows the results
of an experimental study, demonstrating the efficiency of the developed method; Section 4
summarizes our achievements; and, finally, Section 5 concludes this research and presents
further plans.

2. Materials and Methods
2.1. Related Works

A code sample is recognized as a clone if it satisfies several given definitions of
similarity [15]. Currently, four types of code clones are recognized:

1. Exact clones: the program code is re-used as is without any modifications.
2. Renamed clones: syntactically identical clones. Variables, types, spaces, layout, and

comments can be modified.
3. Restructured clones: this is based on renamed clones, and code fragments can be

re-edited by adding, removing, or modifying the statements.
4. Semantic clones: two code samples differ in syntax, but implement the same function

and, thus, have the same semantics.

Most up-to-date solutions are focused on the first three types of code clones (e.g., [4,8–11]).
For example, CVdetector [16] traverses the grammar of vulnerable code fragments, con-
structs a vulnerability feature matrix and a feature vector for key nodes using an analysis
tree, and detects various types of vulnerable code by applying clustering. This method
struggles with a large amount of code. VulPecker [17] combines ASTs, PDGs, and other
code feature sources, extracts code features according to their type, selects a corresponding
algorithm for similarity comparison, and detects the re-used code by applying a support



Sensors 2024, 24, 7251 4 of 24

vector machine (SVM). The VUDDY utility [18] generated fingerprints at the function level,
enabling the detection of exact and renamed clones.

VulDeePecker [3] is a state-of-the-art tool that first used deep machine learning to ex-
tract code features and detect the restructured clones, but it can only handle API. Following
this method, a series of modifications were proposed, inspired by different machine learning
models, e.g., convolutional neural networks, language models, and multi-classifiers [19–23].
This range of methods focuses on code abstraction and the extraction of code features
through syntactic analysis. However, more accurate clone detection requires additional
information, which can be found at a higher level of code semantics.

Existing solutions that compare only the syntactic features of code often miss real
clones. The same code, built for different IoT architectures and compilation settings, can
differ significantly in syntax. Let us take the widely-known BinDiff utility [24]. Operating
at the syntactic level, it builds the CFGs and matches them. For example, Figure 2 shows
the CFGs constructed for two instances of the same function compiled for the same device,
but for different platforms—ARM and x86. BinDiff detected a significant difference in these
code samples, identifying no clone; the similarity score measured by BinDiff is 0.37. These
fragments are in fact clones of the same code, performing identical functionality. If this code
contained a cloned vulnerability from a software repository, it would bypass this check.
That is why code clone detectors should rely on additional high-level information about
the code, which introduces a new challenge in clone detection through semantic analysis.

Figure 2. An example of code clones missed by the syntactic analysis.

Therefore, it was concluded that syntactic analysis should be reinforced. Modern
research suggests two options for such an enhancement:

• The use of multi-static analysis methods at different levels of granularity;
• The simultaneous use of static and dynamic methods.

A combination of several static analysis methods is the most popular approach today,
as it does not require additional time or computational overhead. For example, the most



Sensors 2024, 24, 7251 5 of 24

popular detectors, like Genius [12] and Gemini [7], employ several code analysis phases.
Genius uses a machine learning approach to generate robust, platform-independent func-
tion feature vectors, transforming the difference between two functions into a distance
between these vectors. Gemini represents the disassembled program code as an attributed
CFG (ACFG), where the attributes are a set of metrics calculated during the analysis of the
corresponding basic blocks. On a higher level, a special GNN is applied to process ACFGs.

The Asteria utility [25] is based on code decompilation and subsequent construction
of an AST, indicating the types of lexemes in the nodes at the pre-processing stage. A
Siamese neural network with Tree-LSTM architecture is used as a classifier. An advanced
version of this method, Asteria-Pro [26], is specially designed to solve the task of searching
for semantic code clones, and it introduces additional steps—preliminary filtering and
modifying of the metrics obtained during the comparison based on the analysis of function
call graphs.

The BinSlayer method [27] also consists of several code analysis stages. The first one
involves applying the BinDiff algorithm, which creates a finite set of matched functions.
As a result of this stage, a set of unmatched functions is generated. BinSlayer uses the
second stage to find additional comparisons by using the Hungarian algorithm. The graph
edit distance (GED) is calculated as a similarity metric for CFG and call graphs. The
low-level sources for code feature analysis are the assembler code and the metadata of
binary functions, and the high-level features are call graphs and CFGs. The weakness of
this method is that the BinDiff output is checked manually by an expert to select really
similar code samples.

In [28], the purpose of using low-level features is to reduce the power of a set of
unmatched functions before analyzing the high-level features. Filtering is performed based
on heuristics: binary functions can be considered clones if the difference in the number
of basic blocks and the distance between the vector representations of their normalized
assembly code fall below a certain threshold. Following this, it is necessary to check the
semantic similarity for each function based on high-level features with a reduced number of
candidates. This approach enhances the scalability of the method, enabling it to be applied
to large sets of binaries with minimal analysis time. The low-level sources of features in
this method are the assembly code and normalized assembly code, while the high-level
source is the CFG.

The method proposed in [29] allows searching for borrowed software components in
the firmware of IoT devices. This method also uses low-level syntactic features based on
the analysis of the assembler code of basic blocks, as well as high-level feature matching.
Based on [7], this method also constructs an ACFG and then constructs semantic vectors to
determine the similarity of the corresponding code fragments.

In [30], the main stage of binary code analysis is performed based on features gener-
ated by in-memory fuzzing. This method just enhances the amount of low-level data for
semantic analysis. Low-level features obtained by analyzing assembler instructions com-
plement the semantic signature of each analyzed fragment to improve the result accuracy
of classification.

A representative of static-dynamic analysis was proposed in [31]. In the first stage,
a static analysis of code was performed, and a CFG was constructed. Secondly, dynamic
instrumentation of code was conducted in order to determine the sections of code that were
deployed in memory at the execution stage. And, at the third stage, the CFG was modified,
referring to data obtained at dynamic analysis. The low-level source of features in this
method was the assembly code, while high-level features included information on process
behavior and CFG. The use of dynamic analysis and higher-level features helped reduce
the impact of software analysis countermeasures on the search for similar code fragments.
Unfortunately, this method incurred additional time costs due to the dynamic stage and
still operated at the level of common CFGs, which resulted in a loss of valuable information.



Sensors 2024, 24, 7251 6 of 24

Summarizing the comparative survey of the related works and considering the com-
bined methods that support semantic clone detection, Table 1 has been compiled. From the
retrospective analysis, the following conclusions can be drawn.

Table 1. The combined methods for code clone detection.

Method Low-Level
Features

High-Level
Features Detecting Technique Combining Technique Specifics

Genius [12] Assembler
code CFG Static. CFG + functional vector

distance calculating

Sequential application to
reduce the power of multiple
unmatched samples

Analysis of the CFG alone does
not provide enough semantic
information to determine
similarity accurately.

Gemini [7] Assembler
code ACFG Static. ACFG + GNN

Sequential application to
reduce the power of multiple
unmatched samples

Analysis of the CFG only does
not provide enough semantic
information to determine
similarity accurately.

Asteria [25], Asteria-
Pro [26]

Assembler
code, function
metadata

ACFG, AST,
code statistics

Static. ACFG + AST + GNN +
Tree-LSTM

Sequential application to
reduce the power of multiple
unmatched samples

Many special sequential steps
for data processing. The
method requires a lot of time.
The results are not high,
because collected semantic
information is not
comprehensive.

BinSlayer [27]
Assembler
code, function
metadata

CG, CFG
Static. BinDiff + Hungarian
algorithm for matching
functions by GED

Sequential application to
reduce the power of multiple
unmatched samples

It can be applied to large sets of
code samples. Matched
samples are excluded before
applying the Hungarian
algorithm.

BinSequence [28]

Assembler
code, normal-
ized assembler
code

CFG

Static. Preliminary analysis of
similarity of the number of
basic blocks, the vector
representations of normalized
assembler code + Analysis of
similarity of paths in CFG

Sequential application to
reduce the power of multiple
unmatched samples

It can be applied to large sets of
code samples. Clone detection
is performed using graph
theory only, without machine
learning.

Zhao et.al. [29] Assembler
code ACFG Static. ACFG analysis + GNN

Code features are combined
within a single method to
produce a decision on the
similarity

Analysis algorithm is difficult
to scale because there is no
preliminary reduction in the set
power.

IMF-SIM [30] Assembler
code

Process
execution traces

Static + Dynamic. Reverse
taint-analysis to resolve data
types + Construction and
comparison of program
execution traces based on
in-memory fuzzing

Code features are used
sequentially and cyclically

High complexity. It requires a
secure execution environment
for the software being analyzed.
It also requires a lot of time for
high code coverage.

Roundy et.al. [31] Assembler
code

CFG, process
behavior

Static + Dynamic. Analysis of
CFG isomorphisms +
Modifications of CFG based on
data from code execution with
instrumentation

Sources of code features are
used sequentially and
cyclically: construction of CFG
based on static analysis,
obtaining data from dynamic
analysis, modification of CFG,
etc.)

High complexity: it requires a
secure execution environment
for the software being analyzed.
Analysis of the CFG alone does
not provide enough semantic
information to determine
similarity accurately.

Proposed method 1
Assembler
code, function
metadata

CG, CFG, AAST Static. BinDiff + AAST + two
deep GNNs

Sequential application to
reduce the power of the set of
multiple unmatched samples

It can be applied to large sets of
code fragments. BinDiff output
is refined using comprehensive
machine learning analysis of
AAST. Modular (e.g., BinDiff
can be replaced with another
extraction algorithm).

1 The proposed method is included here to provide a complete comparison with other methods.

• Methods that offer a sequential comparison of code fragments based on features of
code on different granularity levels are more effective than any method that makes a
decision based on combinations of code features. This is confirmed by other compara-
tive reviews of methods presented, for example, in studies [32,33];

• Pre-matching and filtering a set of code samples reduces the size of the unmatched
set, where semantic methods are applied to identify semantic clones. Such methods
utilize machine learning algorithms. Since the unmatched set of code samples, after
the syntactic analysis phase, contains only those with structural differences and no
syntactic similarity, machine learning models can be tuned more precisely to address
the specific task of detecting semantic code clones;



Sensors 2024, 24, 7251 7 of 24

• According to the methods observed, the most efficient and stable results are gained
when using graph representations of static and semantic features of code. This leads
to the necessity of embedding graphs into low-dimensional vector representations.
Intelligent detecting algorithms use GNNs (graph neural networks), RNNs (recur-
rent neural networks), or CNNs (convolutional neural networks) to produce vectors
(e.g., [15,34,35]). According to existing research, GNNs are less time- and memory-
intensive on large code bases compared to RNNs and CNNs. But their weakness lies
in a high likelihood of collisions, which can result in generating the same attributed
vectors for graphs with different topologies and features. Convolutional neural net-
works tend to treat isomorphic graphs of different functions as similar vectors, while
RNN-based methods struggle with functions containing long linear code snippets.

Summarizing the related works, a hypothesis is proposed regarding the need for
a novel hybrid syntactic–semantic method to accurately detect semantic clones. It is
suggested that syntactic similarity between code samples (e.g., vulnerable code and tested
code) be analyzed at the binary code level to optimize overall efficiency and performance.
This approach can help reduce the rate of incorrectly matched code samples. At a higher
level, the method involves using an attributed AST and a dual deep graph neural network
to process semantic features. The specifications of this method and its experimental study
are presented in the following subsections.

2.2. Code Clone Detection

In a general view, code clone detection can be divided into several typical stages, as
shown in Figure 3.

Figure 3. Code clone detection stages.

In stage 1, code processing (code cleaning) is performed to remove code sections
unused in further analysis, normalize code, and divide large code sections into smaller
ones. The input to this stage is unprocessed binaries, and the output is processed binary
fragments suitable for further security analysis.

Stage 2 involves a preliminary processing of the code. The comparison algorithms
applied later assume the presence of this stage since additional information must be
extracted from the code to improve the accuracy of detection. This stage intends to create
an intermediate representation of the code fragments and extract their semantic context.
Here, methods for code processing may include replacements of instructions and their
groups, collecting statistical data on the presence, distribution, and number of instructions
of a certain type, building an intermediate representation with formal grammar other than
the assembler, recovering the source text, etc. The input to this stage consists of fragments
of binary program code, and the output is an intermediate representation of code fragments
and/or data obtained from code processing.

In stage 3, code fragments are compared using the data obtained in the previous
stage. This stage also involves encoding the data from the preprocessing stage, which is
done before comparison. Code features are extracted, and based on this information, a
classification task (dividing code fragments into similar or different classes) or a cluster-



Sensors 2024, 24, 7251 8 of 24

ing task (grouping code fragments into distinct classes) is performed. The input to this
stage includes the intermediate representation of code fragments and/or the information
processed in the previous stage.

In stage 4, the results of the code comparison are generated. Methods used at this
stage may also output additional data, such as the degree of similarity between samples. It
is possible to visualize the results and create specialized diagrams and reports based on
user requirements.

The main emphasis is on the preliminary processing of code fragments (stage 2) to
obtain the maximum amount of available syntactic data on code features, and on the clone
detection stage (stage 3), which performs classification for the accurate evaluation of code
semantic similarity.

2.3. Preliminary Processing of Code Fragments

The proposed method for the preliminary processing of binary code fragments in-
cludes both the construction of an attributed abstract syntax tree (AAST) and the extraction
of semantic features during the analysis of the given code (Figure 4).

Figure 4. Preliminary processing of the code.

The compared code fragments are namely functions. Initially, the functions are dis-
assembled (stage 1 in Figure 4) and decompiled (stage 2). Based on the recovered code, a
traditional abstract syntax tree (AST) of each fragment is constructed (stage 3). As a novelty,
all nodes of the common AST are proposed to be labeled by semantic attribute vectors
(stage 4). The suggested structure is called an attributed AST (AAST).

Each node in the AAST is enriched with a semantic attribute vector that includes key
elements, such as the following:

• Semantic representation of the node (i.e., lexeme), obtained by using Word2vec;
• The number of function calls present in the subtree;
• The number of cycles present in the subtree;
• The number of conditional operators present in the subtree;
• The number of switch operators present in the subtree;
• Sum of digital values (values of nodes of int, float types) present in the subtree.

The scheme for constructing a semantic attribute vector for the AAST node is shown in
Figure 5. Figure 5 demonstrates the examples of operator if for a non-terminal node and the
root of the tree. In this figure, stage 1 depicts building a Word2vec vector of dimension 10.
This stage involves the transformation of the AST into a sequence of node types, training of
the model, and mapping each node to its attribute vector as a result of the training. Stage 2



Sensors 2024, 24, 7251 9 of 24

in Figure 5 extends regular AST construction to include the building of elements for the
semantic attribute vector of each node, which are computed as the sums of the number of
elements of a specific type in the subtree.

Figure 5. Sample of preliminary processing of binary code fragments.

The Word2vec semantic vector, associated with each node in the AAST attribute vector,
allows us to estimate the distance between the lexemes in a language. In this sense, the
formal grammar of the pseudocode can be considered an analog of natural language.
The distance between lexemes that are most often found in adjacent positions is small.
Conversely, lexemes that cannot be located next to each other in the program code are
associated with Word2vec vectors, which have a large distance between them. Other
elements in the semantic vector for a node are calculated as the sum of the occurrences
of lexemes of a specific type within a subtree. Thus, when a modification is made to the
analyzed code (e.g., closing a vulnerability), the change in the code structure propagates to
the root and the subtrees containing the modified nodes.

2.4. Stage of Classification

The method considered in [7] is chosen to implement the classification stage. Each
AAST obtained in the preliminary processing stage is encoded into a semantic vector using
a graph neural network (GNN) via the structure2vec vector representation method [32].
The original GNN model is replaced with a deep learning GNN (deep GNN) with three
neural layers. Two instances of deep GNN are combined into a Siamese neural network.
This allows the neural network to be trained to generate semantic vectors and compare
pairs of vectors in every training epoch, implementing supervised learning. The diagram
of the designed method is shown in Figure 6.



Sensors 2024, 24, 7251 10 of 24

Figure 6. Code clone detection.

In Figure 6, the neural network is fed with a pair of AAST instances corresponding to
code clones (or different code samples), e.g., a code sample and a vulnerability sample. The
deep GNN mapping in each branch converts the input instance into a vector representation
µ (stage 1 in Figure 6). To compare the resulting vectors, the cosine distance is calculated
(stage 2):

cosine(µ̄1, µ̄2) =
µ̄1 · µ̄2

‖µ̄1‖‖µ̄2‖
=

∑n
i=1 µ1iµ2i√

∑n
i=1 µ2

1i

√
∑n

i=1 µ2
2i

,

where µ̄1 and µ̄2 are semantic vectors obtained as the results of the GNN, and µ1i and µ2i
are the i-th components of the vectors µ1 and µ2, respectively.

Stage 3 in Figure 6 is the normalization of the result of the comparison.
The mapping is implemented using a fully connected neural network, onto which a

mask corresponding to the topology of the next AST is imposed at each step [7]. The use
of this type of neural network allows the influence of the graph vertex attribute (semantic
context) to be extended to the vertices incident to it. This ensures compliance with the tree
topology. For each AST vertex, its own embedding is constructed, which is then summed by
every instance. The embedding µ of the vertex v at step T + 1 is specified by the following
formulas:

µ
(T+1)
v = L

xν, ∑
u∈N(ν)

µ
(T)
u

, ∀v ∈ V;

L

xν, ∑
u∈N(ν)

µu

 = tanh

W1xν + σ

 ∑
u∈N(ν)

µu

;

σ(a) = P1 × ReLU(P2 × . . . ReLU(Pna)),



Sensors 2024, 24, 7251 11 of 24

where xν denotes a vector of attributes of the vertex dimension d (vertex context), L denotes
nonlinear mapping; N(ν) denotes a set of vertices incident to the given one; W1 denotes
a matrix of size d× p; P1 denotes a matrix of size p× p; and p denotes the embedding
dimension.

The operation diagram of a fully connected neural network in each branch is presented
in Figure 7.

Figure 7. Neural network configuration.

The minimal Euclidean distance between the similarity label of a code pair and the
output obtained during training is chosen as the optimization goal. The hyperparameters
for training the Siamese neural network were selected experimentally, following [7]. The
best results were achieved when training the model with three layers in fully connected
subnetworks, 100 epochs, and five context propagation iterations. The dimension of the
semantic vector for each compared code fragment is 128.

2.5. Combination of Syntactic and Semantic Analyses

As noted above, code clones can be detected in terms of code similarity. Methods
for determining the similarity of binary code fragments can be based on the analysis of
syntactic and semantic features.

Commonly used syntactic features are as follows:

• Byte sequences;
• Assembler instruction sequences;
• Statistical values extracted from the analysis of byte and instruction sequences.

In methods for syntactic detection of code clones, sequences are used as code features,
forming the basis for hash matching, machine learning, and comparisons of PDG and
CFG. Thus, the granularity level of syntactic similarity is close to the byte level due to the
syntactic features.

To improve detection accuracy and address differences in the compilation parameters
and architecture, clone detectors should rely more heavily on semantic information around
the code. Semantic features describe the relationships between code fragments and are
derived from the analysis of intermediate and vector representations of the code. Extracting
these features requires analysis at higher granularity levels. Determining the optimal set of
granularity levels and sources for features at each level presents a novel challenge for code
clone detection that has already begun to be explored in related studies (e.g., [33–37]).

Data source choices for creating code semantic features affect the efficiency of code
clone detectors. The use of only low-level syntactic features based on binary and assembler
analysis leads to poor classification performance. Insufficient knowledge about the seman-
tics of the code makes it difficult to analyze, as data sources related to the code structure,
input and output parameters, external functions used, and symbol information are not
involved in clone detection [28]. On the other hand, using only high-level features (e.g.,
graph or vector representations) in semantic clone detection methods often results in a high
number of false positives (i.e., non-clone samples being incorrectly identified as clones).

When combining high-level and low-level features within a single method, there is
a tendency to reduce the efficiency of syntactic clone detection, which is expressed in an



Sensors 2024, 24, 7251 12 of 24

increased rate of false positives and false negatives [34]. This problem degrades the quality
of the proposed method. Our method is based on the analysis of AAST. It is constructed
from binary code fragments and uses the recovered program code. Sources of code features
are disassembled code, recovered code, and graph representation. In this case, a relatively
high false negative rate is expected. This leads to the omission of similar code fragments.
In practice, this is the most critical issue, as it affects the usefulness of the proposed method.
A false positive rate is less critical—it slightly increases the number of code fragments that
require expert assessment for similarity. To address this issue, we propose a sequential
extraction and use of both low-level and high-level features. Additionally, we suggest
evaluating the potential of combining semantic features extracted from the AAST with
syntactic and structural code features.

To enhance our original method, the BinDiff method [24] was involved to determine
the syntactic similarity of code fragments. BinDiff implements the following stages:

• Initial matching involves matching function signatures, which include the number of
basic blocks, the number of edges in the CFG, and statistical data on the number of
specific instruction types within functions. At this stage, the call graph is also matched,
which is constructed for each analyzed code sample.

• Attribute-driven similarity determination: The similarity of functions successfully
matched in the previous step is evaluated using key attributes. These attributes
include the hash of the function name, the hash of the function body, the matching of
function positions within the call graph, etc.

• For matched functions, their CFGs are compared to detect modifications at the level of
individual instructions.

A formal description of the combined method is presented as follows:
B1 and B2 are the sets of binary functions of the first and second code samples, respec-

tively. M denotes the set of pairs of functions obtained as a result of the bijective mappings
M1 → M2, where M1 and M2 are sets of matched functions in the first and second code
samples, respectively; M1 ⊆ B1, M2 ⊆ B2.

U1 and U2 are sets of unmatched functions in the first and second code samples,
respectively; U1 = B1\M1, U2 = B2\M2. Then, the result of the syntactic analysis can
be described as M, U1, U2 = BinDi f f (B1, B2), where BinDi f f (B1, B2) denotes a function
implementing the BinDiff method for a syntactic comparison of code samples.

Now, let M′ denote the set of pairs of functions obtained as a result of the mapping
M1
′ → M2

′, where M1
′ and M2

′ are the sets of mapped functions in the first and second
code samples, respectively; M1

′ = B1, M2
′ ⊆ B2. Moreover, ∀m1 ∈ M1 ∃{m2,i

′} there exists
a set of candidates sorted in descending order of the similarity metric. Then, the results of
the semantic analysis are specified as M′, U2

′ = SemCom(B1, B2), where SemCom(B1, B2)
denotes the function implementing the semantic comparison of code samples based on the
intelligent AAST-based method presented in Section 2.4.

Now, the algorithm for operation at the preliminary stage can be formally presented
as Algorithm 1.

Algorithm 1 Algorithm for the preliminary stage.

Input: B1, B2
Output: M, M′

1: M, U1, U2 = BinDi f f (B1, B2)
2: M′, U2

′ = SimCom(B1, B2)
3: return M, M′ . Save them to the base of code matching

Let searchBinDi f f (m1) = V, m1 ∈ M1, V = ∅, or V = {m2}, m2 ∈ M2 be a func-
tion returning the image m1 of the mapping to M2, obtained at the preliminary stage.
simBinDi f f (m1, m2) denotes the similarity metric of binary functions m1 and m2.



Sensors 2024, 24, 7251 13 of 24

Let simSimCom(m1
′, m2

′) be a similarity metric obtained by semantic analysis. A func-
tion that returns an image of the mapping m1

′ to M1
′ is searchSimCom(m1

′) = {m2,i
′ :

simSimCom(m1
′, m2,i

′) > simSimCom(m1
′, m2,i+1

′)} = V′.
Therefore, the classification stage can be presented as Algorithm 2. Since M1

′ = B1,
this algorithm returns a set of clones for a query m1.

Algorithm 2 Algorithm for the classification stage.

Input: M, M′, and m1 denotes a query function
Output: V or V′

1: if simBinDi f f (m1, m2) > k then
2: return V . k denotes a threshold value of the similarity metric
3: end if
4: if V 6= ∅ AND V ⊆ V′ then
5: return V
6: else
7: return V′

8: end if

Syntactic features extracted during code analysis are assembler instructions, including
execution flow branching instructions, which allow searching for isomorphisms of CFGs
and matching the corresponding basic blocks. Semantic features are vector representations
that are built based on the AAST of the reconstructed code of each analyzed sample using a
deep GNN based on the structure2vec method [32], as described above in Section 2.4. The
output of this method includes a list of code fragments that are most likely clones of the
given code.

A flow chart for the proposed syntactic–semantic method is presented in Figure 8.
The proposed method focuses on searching for code clones by combining the syntactic

and semantic code features. Since the set of syntactic clones is a subset of semantic clones,
syntactic analysis allows us to detect syntactic clones and retrain a neural network for
detecting semantic clones with minimal structural and syntactic similarity. To speed up the
clone search, this method can be assisted by an adjustable repository of features extracted
from code samples during analysis.

2.6. A Demonstration Example

For a better understanding of the work of the proposed syntactic–semantic method,
the demonstration example is presented as follows.

Figure 9 shows an example of code feature processing during syntactic feature extrac-
tion in the preliminary stage. In stage 1, syntactic feature extraction is performed using a
BinDiff-inspired algorithm. The code is decompiled and CFG is built (stage 2). In stage
2, the extracted attribute tuple and associated function name are stored in the syntactic
attributes database for further comparison (stage 4).

Figure 10 shows an example of feature processing during semantic feature extraction
in the preliminary stage. In stage 1, the code of the function under investigation is disas-
sembled. In stage 2, the decompiled code is generated. Based on the obtained C-like code,
the abstract syntactic code of the function (stage 3) is constructed. In stage 4, each node
of the AST is provided with attributes: part of the vector represents statistical attributes
and part of the vector is a Word2vec semantic vector. In stage 5, the obtained AAST is con-
verted into a vector representation (embedding) using a GNN. Finally, the obtained vector
representation and associated feature name are stored in the semantic features database for
further comparison (stage 6).



Sensors 2024, 24, 7251 14 of 24

Figure 8. The proposed syntactic–semantic method.

Figure 11 shows an example of detecting syntactic clones. From the syntactic attributes
database, tuples of attributes are extracted, with one tuple corresponding to the query
function (stage 1). The attributes of the query function are then sequentially compared with
the corresponding attributes of other functions included in the comparison. Attributes are
prioritized during the comparison process and are assigned a weight that influences the
comparison result. The functions with the highest similarity scores form a list of functions
that are syntactically similar to the query function (stage 2).



Sensors 2024, 24, 7251 15 of 24

Figure 9. Syntactic feature extraction in the preliminary stage.



Sensors 2024, 24, 7251 16 of 24

Figure 10. Semantic feature extraction in the preliminary stage.

Figure 11. Syntactic features comparison.

Figure 12 shows an example of detecting semantic clones. Embeddings are extracted
from the semantic features database, one of which corresponds to the query function (stage
1 in Figure 12). Using the cosine distance metric, the vectors that are least distant from the
given feature are determined. The features to which such vectors correspond form the list
of features semantically similar to the original one (stage 2). Since the set of syntactic clones
is not a subset of the set of semantic clones, the set of semantic clones is returned as the
result, as specified in Algorithm 2.



Sensors 2024, 24, 7251 17 of 24

Figure 12. Comparison of semantic features.

3. Results

In an experimental study, the proposed method was tested for its efficiency. It was
compared to popular BinDiff, Gemini, and Asteria detecting tools. A prototyping utility
that implements the proposed method was implemented in Python. Incode functions
were accepted as input code fragments. The sample function code was determined using
the IDA Pro 7.7 toolkit. The preprocessing module receives a text representation of the
decompiled code from IDA Pro. The module’s output consists of files containing data on
code functions in JSON format. Next, the classification module receives a set of AAST
functions during training, with the information saved in JSON format. The output of the
module is a similarity metric for the code samples.

The following actions are performed during the preprocessing stage:

1. Disassembling and restoring the function code using IDA Pro 7.7.
2. Building an AST for the restored code of all functions.
3. Training the Word2vec model on the combined set of lexeme types of all executable

files. Sequences of lexemes of function bodies are used as sentences (continuous
sequences of tokens). A mapping of the lexeme set onto a set of semantic vectors
is formed.

4. Each node is assigned an attribute vector consisting of a Word2vec semantic vector
and statistical information on the number of lexemes of a certain type in a subtree. As
a result, the AASTs are built.

Before training, the built AASTs are clustered by name: functions with the same name
obtained from different binary files are considered to be semantic clones. Within each
epoch, training is performed on groups of function pairs. Each group contains five pairs of
semantically different functions and five pairs of clones. Pairs of different functions are
formed randomly, while pairs of similar functions are taken from the same equivalence
class (cluster). Training continues for 100 epochs.

To train and test the solution, a dataset based on Linux utilities was used. Binary files
were compiled with different optimization parameters, \O0 and \O2. The set of functions in
the dataset was divided into training, validation, and testing subsets in an 80:10:10% ratio.
Statistics on the datasets are listed in Table 2.

Table 2. Datasets used for the experimental study.

Dataset Num. of Functions
in Dataset Clusters Num. of Clusters in

Dataset

Training dataset 8267 In training dataset 3416

Validation dataset 1116 In validation dataset 486

Testing dataset 1276 In testing dataset 474

Total 10,659 Total 4376

After training the developed utility, the detection quality was tested. For this purpose,
representatives of IoT software were taken as binary files (Table 3).



Sensors 2024, 24, 7251 18 of 24

Table 3. Binaries used for the experimental study.

Binary File Software System Architecture Compiled with Optimization

libcrypto.so.1.0.0
OpenSSL v. 1.0.0, open source library
(OpenSSL Software Foundation Inc.,

Newark, DE, USA)
Linux MIPS \O2

libcrypto-1_1.dll
OpenSSL v. 1.1.1, open source library
(OpenSSL Software Foundation Inc.,

Newark, DE, USA)
Windows x86 \O2

The first experiment was an ablation study aimed at validating the necessity of each
component of the proposed method. While a hybrid approach combining syntactic and
semantic analyses was presented, it may not have been clear whether each step of the
method is essential for achieving the reported goals. An ablation study involves systemati-
cally altering parts of the method and observing the impact on the results. To do this, our
method was compared with the BinDiff utility, a state-of-the-art tool for clone searching
that implements syntactic-only analysis. Next, we disabled the syntactic component of
our method and tested it in semantic-only mode. And, finally, our method was run in full
mode, involving both syntactic and semantic parts at once.

For the ablation study, test input was taken from the binaries presented in Table 3.
For example, samples of the restored code for one function taken from different exe-
cutable files are presented in Figure 13 (taken from libcrypto.so.1.0.0, developed for
the IoT platform on a Linux system with MIPS architecture) and Figure 14 (taken from
libcrypto-1_1.dll, developed for the PC platform on an MS Windows system with x86
architecture). It is a single function that performs the same operation but has a different
code representation due to code reuse. For more efficient software production, this function
implementation is cloned from PC implementation of the library to IoT implementation
of the same library. In the same manner, clone-caused vulnerabilities are transferred from
one software type to another. The test aimed to evaluate the detection of semantic clones
using different variants of syntactic and semantic analyses and to determine whether the
IoT code was cloned.

The BinDiff utility (syntactic-only analysis) demonstrated the output as presented
in the screenshot in Figure 15. BinDiff showed a similarity score of 0.26, i.e., BinDiff
did not detect the cloned code. The output of our method (syntactic–semantic analysis)
is presented in Figure 16—the proposed method showed a similarity score of 0.996. To
completely demonstrate the usefulness of a syntactic–semantic symbiosis, the semantic part
of our method stayed active while the syntactic one was switched off. The syntactic-only
case showed a similarity score of 0.89. All scores obtained for different syntactic and
semantic combinations are summarized in Table 4. This ablation study provides compelling
evidence that the syntactic–semantic approach is indeed effective.

Table 4. Efficiency of different syntactic and semantic combinations.

Characteristic Syntactic-Only (BinDiff Works)
Semantic-Only (Only Semantic

Part of the Proposed
Method Works)

Syntactic–Semantic (Proposed
Method Works)

Similarity score 0.26 0.89 0.996

In the second stage of experiments, the concurrent popular solutions were tested by
comparing the efficiency with the proposed syntactic–semantic method. The choice of
candidate methods for code clone detection was based on the high efficiency reported by
their developers (Asteria [25] and Asteria-Pro [26]) and their stable performance across
different code bases (Gemini [7]).



Sensors 2024, 24, 7251 19 of 24

Figure 13. A sample function implemented in the IoT platform.

Gemini [7] uses a GNN to generate a vector representation of the CFG added with
numerical statistics. This is one of the first and most effective methods to use a machine
learning approach to compare code samples based on attributed CFGs. The Asteria util-
ity [25] is based on code decompilation and subsequent construction of ASTs, indicating the
types of lexemes in the nodes at the preprocessing stage. A Siamese neural network with
Tree-LSTM architecture is then applied as a classifier. Asteria-Pro [26] introduces additional
steps: preliminary filtering and analysis of the CG metrics.

The implementations of these methods were tested using the same dataset (Table 2).
For Gemini, the model was trained using the parameters proposed by the authors in [38].
For Asteria and Asteria-Pro utilities, a trained model proposed by the authors in [39] was
applied. The ROC (receiver operating characteristic) curves were plotted as a result of this
comparative experiment. The obtained ROC curves and the corresponding areas under
the ROC curves (AUC scores) are presented in Figure 17. Values for quality metrics (the
commonly used recall, precision, and F1 metrics) collected during the experiment are
presented in Table 5.

Table 5. Experimental results.

Method Recall Precision F1

Gemini 0.880 0.889 0.884

Asteria 0.510 0.554 0.531

Asteria-Pro 0.698 0.648 0.672

Proposed method 0.907 0.894 0.900



Sensors 2024, 24, 7251 20 of 24

Figure 14. The same function as in Figure 13, but implemented in the PC platform.

Figure 15. A sample of the BinDiff output.

Figure 16. A sample of our tool output.

Figure 17. Comparison of ROC and AUC values.



Sensors 2024, 24, 7251 21 of 24

The experimental results show that the syntactic–semantic method demonstrates
superior performance in semantic clone detection compared to syntactic-only, semantic-
only, and other popular solutions.

4. Discussion

The proposed syntactic–semantic method has shown the best detection quality with
the least amount of errors. For example, in experiments, Gemini showed good results,
but results that were lower than our method, indicating consistently high efficiency when
applied to different data. The indicators for Asteria and Asteria-Pro utilities showed that
when identifying similar code samples based on AST, relying only on the tree structure is
not sufficient. To improve Asteria’s quality, it is necessary to extract additional semantic
information and include it directly in classification, not after comparison.

Our method, presented in this paper, differs from other combined methods, not only
in the analysis of CG, CFG, and assembler instructions but also in the suggested analysis
of the attributed AST structures during the semantic analysis of code. This allows our
method to effectively identify and eliminate syntactic clones from further consideration.
This has a positive effect on performance and the ability to apply the method to large sets
of binary codes. Due to the preprocessing stage and preliminary syntactic analysis of all
the code bases, we exclude syntactic code clones and reduce the code base. This allows
us to avoid most collisions when using GNNs to produce embeddings. This also leads to
better detection quality compared to concurrent solutions.

As shown in Table 4, combining syntactic and semantic analyses for software clone
detection improved the efficiency of clone detection. The method of syntactic similarity
detection showed low efficiency when comparing functions from executable files designed
for different platforms. As previously noted, this is due to significant changes in the CFG
and CG of the compared functions during the compilation of executable files for different
platforms, making it challenging to detect vulnerabilities using borrowed code detection
methods in IoT platforms.

Using only the semantic clone detection method proposed in this paper reduces the
number of FNs but increases the number of FPs, resulting in a successful comparison of
functions that are not semantic clones. This issue arises due to similarities in the AST
structure and vertex attributes.

The proposed syntactic–semantic method reduces the problems encountered when
using syntactic and semantic fragment comparison methods separately. By applying the
syntactic analysis part, it is possible to exclude pairs of features that are highly likely to be
clones. This reduces the number of functions with similar AST structures and vertex at-
tributes, which consequently reduces the number of errors in determining semantic clones.

Concerning the method’s weaknesses, due to its architecture, the proposed method
does not perform a targeted search for clone-caused vulnerabilities of specific types. Poten-
tially malicious code fragments are identified by comparing them with known (semantic)
patterns. That is why it is impossible to search for an unknown vulnerability or exploit
with unknown semantics by using the proposed method. Nevertheless, this limitation can
be eliminated by introducing an additional stage of vulnerability detection through the
dynamic analysis of software behavior.

To complete the discussion, Table 1 presented in Section 2.1 is extended by the string
corresponding to the proposed method.

5. Conclusions

Concerning the IoT ecosystem’s security, our research analyzes methods for detecting
clone-caused vulnerabilities using code clone searching based on both syntactic and seman-
tic features. Following the survey of related code clone detection methods, we hypothesized
that a hybrid syntactic–semantic approach is needed for the effective detection of any of
the four possible clone types.



Sensors 2024, 24, 7251 22 of 24

A hybrid syntactic–semantic detecting method for code clone detection is proposed
and developed. The syntactic similarity between code samples (e.g., vulnerable code and
tested code) is analyzed at the binary code level to optimize efficiency and performance. The
semantic part of the proposed method is based on the analysis of attribute abstract syntax
trees by using double deep graph neural networks. Based on this, it became possible to
reduce the rate of incorrectly matched code samples. The developed method demonstrates
better accuracy (AUC = 0.962), with the least amount of errors than the popular competitors.

Our future research will focus on analyzing the potential of applying the proposed
method to automatically search for clone-caused vulnerabilities using both semantic and
syntactic signatures. We will develop advanced methods to automatically create training
samples using machine learning algorithms for determining code similarity. We also plan
to explore methods based on combining static and dynamic analysis techniques to detect
unknown vulnerabilities.

Author Contributions: Conceptualization, validation, M.K.; methodology, N.G.; formal analysis, N.G.
and M.K.; writing—original draft preparation, N.G.; writing—review and editing, M.K.; visualization,
N.G.; supervision, project administration, funding acquisition, M.K. All authors have read and agreed
to the published version of the manuscript.

Funding: The research is funded by the Ministry of Science and Higher Education of the Russian
Federation as part of the World-class Research Center program: Advanced Digital Technologies
(contract No. 075-15-2022-311 dated 20 April 2022).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Myroshnyk, Y. State of IoT Summer 2024 Report. Available online: https://iot-analytics.com/product/state-of-iot-summer-2024/

(accessed on 17 September 2024).
2. Cross-Industry Insight: IoT Market Opportunities and Top Spend Use Cases. Available online: https://www.gartner.com/en/

documents/4432199 (accessed on 17 September 2024).
3. Li, Z.; Zou, D.; Xu, S.; Ou, X.; Jin, H.; Wang, S.; Deng, Z.; Zhong, Y. VulDeePecker: A Deep Learning-Based System for Vulnerability

Detection. In Proceedings of the 25th Annual Network and Distributed System Security Symposium, San Diego, CA, USA, 18–21
February 2018.

4. Jiang, W.P.; Wu, B.; Jiang, Z.; Yang, S.B. Cloning Vulnerability Detection in Driver Layer of IoT Devices. In Information and
Communications Security; Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2020; Volume 11999, pp. 89–104.

5. Gao, J.; Yang, X.; Jiang, Y.; Song, H.; Choo, K.K.R.; Sun, J. Semantic Learning Based Cross-Platform Binary Vulnerability Search for
IoT Devices. IEEE Trans. Ind. Inform. 2021, 17, 971–979. [CrossRef]

6. Jiang, L.; Su, Z.; Chiu, E. Context-Based Detection of Clone-Related Bugs. In Proceedings of the 6th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, Dubrovnik,
Croatia, 3–7 September 2007; pp. 55–64.

7. Xu, X.; Liu, C.; Feng, Q.; Yin, H.; Song, L.; Song, D. Neural Network-Based Graph Embedding for Cross-Platform Binary Code
Similarity Detection. In Proceedings of the ACM Conference on Computer and Communications Security, Dallas, TX, USA, 30
October–3 November 2017; pp. 363–376.

8. Peng, J.; Wang, Y.; Xue, J.; Liu, Z. Fast Cross-Platform Binary Code Similarity Detection Framework Based on CFGs Taking
Advantage of NLP and Inductive GNN. Chin. J. Electron. 2024, 33, 128–138. [CrossRef]

9. Wang, S.; Jiang, X.; Yu, X.; Su, X. Cross-Platform Binary Code Homology Analysis Based on GRU Graph Embedding. Secur.
Commun. Netw. 2021, 2021, 1–8. [CrossRef]

10. Fu, L.; Ji, S.; Liu, C.; Liu, P.; Duan, F.; Wang, Z.; Chen, W.; Wang, T. Focus: Function Clone Identification on Cross-Platform. Int. J.
Intell. Syst. 2022, 37, 5082–5112. [CrossRef]

11. Quradaa, F.H.; Shahzad, S.; Almoqbily, R.S. A Systematic Literature Review on the Applications of Recurrent Neural Networks in
Code Clone Research. PLoS ONE 2024, 19, e0296858. [CrossRef] [PubMed]

12. Feng, Q.; Zhou, R.; Xu, C.; Cheng, Y.; Testa, B.; Yin, H. Scalable Graph-Based Bug Search for Firmware Images. In Proceedings of
the ACM Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 480–491.

https://iot-analytics.com/product/state-of-iot-summer-2024/
https://www.gartner.com/en/documents/4432199
https://www.gartner.com/en/documents/4432199
http://doi.org/10.1109/TII.2019.2947432
http://dx.doi.org/10.23919/cje.2022.00.228
http://dx.doi.org/10.1155/2021/3095203
http://dx.doi.org/10.1002/int.22752
http://dx.doi.org/10.1371/journal.pone.0296858
http://www.ncbi.nlm.nih.gov/pubmed/38306372


Sensors 2024, 24, 7251 23 of 24

13. Ragkhitwetsagul, C.; Krinke, J.; Clark, D. A Comparison of Code Similarity Analysers. Empir. Softw. Eng. 2018, 23, 2464–2519.
[CrossRef]

14. Chandramohan, M.; Xue, Y.; Xu, Z.; Liu, Y.; Cho, C.Y.; Kuan, T.H.B. BinGo: Cross-Architecture Cross-Os Binary Search. In
Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software Engineering, Seattle, WA, USA, 13–18 November
2016; pp. 678–689.

15. Roy, C.K.; Cordy, J.R.; Koschke, R. Comparison and Evaluation of Code Clone Detection Techniques and Tools: A Qualitative
Approach. Sci. Comput. Program. 2009, 74, 470–495. [CrossRef]

16. Gan, S.T.; Qin, X.J.; Chen, Z.N.; Wang, L.Z. Software Vulnerability Code Clone Detection Method Based on Characteristic Metrics.
J. Softw. 2015, 26, 348–363.

17. Li, Z.; Zou, D.; Xu, S.; Jin, H.; Qi, H.; Hu, J. VulPecker: An Automated Vulnerability Detection System Based on Code Similarity
Analysis. In Proceedings of the ACM International Conference Proceeding Series, Los Angeles, CA, USA, 5–9 December 2016;
pp. 201–213.

18. Kim, S.; Woo, S.; Lee, H.; Oh, H. VUDDY: A Scalable Approach for Vulnerable Code Clone Discovery. In Proceedings of the IEEE
Symposium on Security and Privacy, San Jose, CA, USA, 22–26 May 2017; pp. 595–614.

19. Zou, D.; Wang, S.; Xu, S.; Li, Z.; Jin, H. MVulDeePecker: A Deep Learning-Based System for Multiclass Vulnerability Detection.
IEEE Trans. Dependable Secur. Comput. 2019, 18, 2224–2236.

20. Liu, Z.; Liao, Q.; Gu, W.; Gao, C. Software Vulnerability Detection with GPT and In-Context Learning. In Proceedings of the 2023
8th International Conference on Data Science in Cyberspace, Hefei, China, 18–20 August 2023; pp. 229–236.

21. Wu, Y.; Zou, D.; Dou, S.; Yang, W.; Xu, D.; Jin, H. VulCNN: An Image-Inspired Scalable Vulnerability Detection System. In
Proceedings of the International Conference on Software Engineering, Pittsburgh, PA, USA, 21–29 May 2022; pp. 2365–2376.

22. Kim, S.; Choi, J.; Ahmed, M.E.; Nepal, S.; Kim, H. VulDeBERT: A Vulnerability Detection System Using BERT. In Proceedings
of the 2022 IEEE International Symposium on Software Reliability Engineering Workshops, Charlotte, NC, USA, 31 October–3
November 2022; pp. 69–74.

23. Xue, J.; Yu, Z.; Song, Y.; Qin, Z.; Sun, X.; Wang, W. VulSAT: Source Code Vulnerability Detection Scheme Based on SAT Structure.
In Proceedings of the 2023 8th International Conference on Signal and Image Processing, Wuxi, China, 8–10 July 2023; pp. 639–644.

24. Google/Bindiff. Available online: https://github.com/google/bindiff (accessed on 17 September 2024).
25. Yang, S.; Cheng, L.; Zeng, Y.; Lang, Z.; Zhu, H.; Shi, Z. Asteria: Deep Learning-Based AST-Encoding for Cross-Platform Binary

Code Similarity Detection. In Proceedings of the 51st Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, Taipei, Taiwan, 21–24 June 2021; pp. 224–236.

26. Yang, S.; Dong, C.; Xiao, Y.; Cheng, Y.; Shi, Z.; Li, Z.; Sun, L. Asteria-Pro: Enhancing Deep Learning-Based Binary Code Similarity
Detection by Incorporating Domain Knowledge. ACM Trans. Softw. Eng. Methodol. 2023, 33, 1–40. [CrossRef]

27. Bourquin, M.; King, A.; Robbins, E. BinSlayer: Accurate Comparison of Binary Executables. In Proceedings of the 2nd ACM
SIGPLAN Program Protection and Reverse Engineering Workshop, Rome, Italy, 26 January 2013; pp. 1–10.

28. Huang, H.; Youssef, A.M.; Debbabi, M. BinSequence: Fast, Accurate and Scalable Binary Code Reuse Detection. In Proceedings of
the 2017 ACM Asia Conference on Computer and Communications Security, Abu Dhabi, United Arab Emirates, 2–6 April 2017;
pp. 155–166.

29. Zhao, B.; Ji, S.; Xu, J.; Tian, Y.; Wei, Q.; Wang, Q.; Lyu, C.; Zhang, X.; Lin, C.; Wu, J.; et al. A Large-Scale Empirical Analysis of the
Vulnerabilities Introduced by Third-Party Components in IoT Firmware. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, Virtual, 18–22 July 2022; pp. 442–454.

30. Wang, S.; Wu, D. In-Memory Fuzzing for Binary Code Similarity Analysis. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, Urbana, IL, USA, 30 October–3 November 2017; pp. 319–330.

31. Roundy, K.A.; Miller, B.P. Hybrid Analysis and Control of Malware. In Recent Advances in Intrusion Detection; Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer:
Berlin/Heidelberg, Germany, 2010; Volume 6307, pp. 317–338.

32. Dai, H.; Dai, B.; Song, L. Discriminative Embeddings of Latent Variable Models for Structured Data. In Proceedings of the 33rd
International Conference on International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; Volume 48,
pp. 2702–2711.

33. Marcelli, A.; Graziano, M.; Ugarte-Pedrero, X.; Fratantonio, Y.; Mansouri, M.; Balzarotti, D. How Machine Learning Is Solving the
Binary Function Similarity Problem. In Proceedings of the 31st USENIX Security Symposium, Boston, MA, USA, 10–12 August
2022; pp. 2099–2116.

34. Alrabaee, S.; Debbabi, M.; Wang, L. A Survey of Binary Code Fingerprinting Approaches: Taxonomy, Methodologies, and
Features. ACM Comput. Surv. 2022, 55, 1–41. [CrossRef]

35. Haq, I.U.; Caballero, J. A Survey of Binary Code Similarity. ACM Comput. Surv. 2021, 54, 1–38. [CrossRef]
36. Lirong F.; Peiyu L.; Meng, W.; Lu, K.; Zhou, S.; Zhang, X.; Chen, W.; Ji, S. Understanding the AI-powered Binary Code Similarity

Detection. arXiv 2024, arXiv:2410.07537.
37. Xia, B.; Pang, J.; Zhou, X.; Shan, Z.; Wang, J.; Yue, F. Binary code similarity analysis based on naming function and common vector

space. Sci. Rep. 2023, 13, 15676. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s10664-017-9564-7
http://dx.doi.org/10.1016/j.scico.2009.02.007
https://github.com/google/bindiff
http://dx.doi.org/10.1145/3604611
http://dx.doi.org/10.1145/3486860
http://dx.doi.org/10.1145/3446371
http://dx.doi.org/10.1038/s41598-023-42769-9
http://www.ncbi.nlm.nih.gov/pubmed/37735488


Sensors 2024, 24, 7251 24 of 24

38. DNN Binary Code Similarity Detection. Available online: https://github.com/xiaojunxu/dnn-binary-code-similarity (accessed
on 17 September 2024).

39. Asteria-Pro. Available online: https://github.com/Asteria-BCSD/Asteria-Pro (accessed on 17 September 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/xiaojunxu/dnn-binary-code-similarity
https://github.com/Asteria-BCSD/Asteria-Pro

	Introduction 
	Materials and Methods
	Related Works
	Code Clone Detection
	Preliminary Processing of Code Fragments
	Stage of Classification
	Combination of Syntactic and Semantic Analyses
	A Demonstration Example

	Results
	Discussion
	Conclusions
	References

