
Citation: Garmendia-Orbegozo, A.;

Anton, M.A.; Nuñez-Gonzalez, J.D.

Reduction of Vision-Based Models for

Fall Detection. Sensors 2024, 24, 7256.

https://doi.org/10.3390/s24227256

Academic Editors: Ofer Hadar and

Yitzhak Yitzhaky

Received: 3 October 2024

Revised: 5 November 2024

Accepted: 12 November 2024

Published: 13 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Reduction of Vision-Based Models for Fall Detection
Asier Garmendia-Orbegozo 1,∗,† , Miguel Angel Anton 1,† and Jose David Nuñez-Gonzalez 2,†

1 Fundación Tecnalia Research & Innovation, Basque Research and Technology Alliance (BRTA),
20009 San Sebastian, Spain; mangel.anton@tecnalia.com

2 Department of Applied Mathematics, University of the Basque Country UPV/EHU, 20600 Eibar, Spain;
josedavid.nunez@ehu.eus

* Correspondence: asier.garmendia@tecnalia.com
† These authors contributed equally to this work.

Abstract: Due to the limitations that falls have on humans, early detection of these becomes essential
to avoid further damage. In many applications, various technologies are used to acquire accurate
information from individuals such as wearable sensors, environmental sensors or cameras, but all
of these require high computational resources in many cases, delaying the response of the entire
system. The complexity of the models used to process the input data and detect these activities
makes them almost impossible to complete on devices with limited resources, which are the ones
that could offer an immediate response avoiding unnecessary communications between sensors and
centralized computing centers. In this work, we chose to reduce the models to detect falls using
images as input data. We proceeded to use image sequences as video frames, using data from two
open source datasets, and we applied the Sparse Low Rank Method to reduce certain layers of the
Convolutional Neural Networks that were the backbone of the models. Additionally, we chose to
replace a convolutional block with Long Short Term Memory to consider the latest updates of these
data sequences. The results showed that performance was maintained decently while significantly
reducing the parameter size of the resulting models.

Keywords: fall detection; CNN; LSTM; pruning

1. Introduction

In recent years, there has been a continuous increase in the elderly population, both in
number and as a percentage of the total population. By 2030, the population over 60 years
of age will increase by 0.4 billion and one sixth of them will be over that age. And the trend
in the coming years will be similar, reaching 426 million people over 80 years of age by
2050 [1]. Nowadays, there is a clear need for technology that provides efficient and safe
assistance to the elderly population to avoid risky situations and help in emergencies. Falls
are one of the main causes of deterioration in the quality of life of this population. The
origins of these falls can be diverse, and the main risk factors identified in the multivariate
analysis were advanced age (>79 years), not having a partner, taking more than two
medications, dependence in ADLs (activities of daily living), decreased strength or balance,
and walking with technical assistance [2]. Dependence in ADLs can be a consequence of
many factors such as reduced flexibility, vision problems, chronic health conditions, and
side effects of medications in addition to the risks mentioned above.

A fall detection technology that provides the elderly population with a safe environ-
ment and the rapid assistance of healthcare professionals is essential. There are many fall
detection systems (FDSs) in the literature that are demonstrated to be efficient in detecting
falls and differentiating them from ADLs. However, many of them present many challenges
related to the users’ acceptance such as the inconveniences of wearing gadgets that are
used in many FDSs and privacy issues. In [3], they also identified challenges regarding
performance under real-life conditions, issues related to power consumption, real-time
operations, sensing limitations, and records of real-life falls.
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The selection of the optimal technology to sense or acquire the information that would
alert the caregivers of a possible fall plays a key role in FDSs. The technology used must be
tailored to the environment and use case of each application so as not to exceed power and
latency requirements. The sensing technology involved in the FDSs should minimize false
positives in order to avoid an excessive workload for caregivers. The FDSs can be classified
following different strategies, but in this work we divided following the criteria of the
selected sensor typology of each work. We divided all the approaches into wearable sensor-
based technologies, ambient sensor-based technologies and vision-based technologies.
There are some other approaches that use mixtures of the sensor types just mentioned
above [4]. The technology that offers the highest reliability is probably the vision-based
one, at the expense of complex and resource-consuming computational calculations and
long training and inference times. In many applications there are constraints in term
of computational resources, latency and memory usage making interesting the use of
lightweight models.

In this work we opted for using 2D Convolutional Neural Networks (CNNs) that use
as the extra axis the passage of time. Video data are used and divided into sets of frames
and these are classified using CNNs in predefined classes. In order to be deployable in
the inference process in resource-constrained devices, a pruning technique is applied to
reduce the total number of parameters used for representing these networks and preserve
the performance of the resultant model. Additionally, a modification of the first model is
implemented using a Long Short-Term Memory (LSTM) layer as part of the backbone of
the model, adding the capability to detect falls as it is designed to work with sequential
data, such as time series data or natural language text [5].

1.1. State of the Art

During recent years, important advances have been made in the literature in the
human detection and Human Activity Recognition (HAR) field. Different works focused
on identifying human activities, and some more specifically on detecting falls. Ultimately,
the great majority of the works include artificial intelligence-based techniques to enhance
the performance of the entire system. We divided the related works depending on the
technology involved in the detection and inference processes, and the data used to identify
these activities.

1.1.1. Wearable Sensor-Based Technologies

In many works they opted for using accelerometers and gyroscopes located in strate-
gical positions on the individuals like the waist [6,7], wrist [8], back [9] or shoulders [10]
among others. The benefits of this type of system resides in the lack of intrusion strategies
to recognize different activities. Another advantage that this type of detection system offers
is its lightweight nature, low power consumption and low cost.

In [11], they proposed FallDroid, an automated system for fall detection that offers
a prompt response based on smartphone technology using accelerometer data, improv-
ing patients’ independence. With the aim of minimizing false positives, they integrated
threshold-based methods and multiple kernel learning with Support Vector Machine (SVM)
and Multiple Kernel Learning–Support Vector Machine (MKL-SVM) to detect fall-like
events. The system’s accuracy, sensitivity and specificity rates show its adequateness to the
nature of the paradigm (97.8%, 99.5% and 95.2%). In [12], they proposed an improvement
in a threshold-based fall detection system, classifying four type of fall events (forward,
backward, left lateral and right lateral falls) and activities of daily life. The patient’s loca-
tion was immediately transferred as well. Results from the experiments demonstrate its
workability, reaching 99.38% accuracy and 96% detection rate.

The addition of other sensing systems to the accelerometers enhances the overall
activity recognition. In [13], they developed a FDS adding a portable Inertial Measurement
Unit (IMU) to the accelerometers within eyeglasses; in order to identify accidental falls,
they employed raw accelerometer and gyroscope data analyzing their signal magnitude
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and angular head movement data. Additionally, an optimization of angular data was
achieved using a complementary filter, accomplished by a threshold-based algorithm.
The 95.44% of accuracy achieved distinguishing between falls and non-falls demonstrates
the effectiveness of the system in detecting accidental falls, minimizing false alarms and
reducing the costs of the employed hardware. In [14], they employed accelerometers and
gyroscopes for identifying ADLs and falls. After preprocessing and extracting features
from data, various Machine Learning (ML) techniques were adopted for classifying signals
from wearable sensors, including SVM, k-Nearest Neighbor (k-NN), Random Forest (RF),
and Artificial Neural Networks (ANNs). The model that offered the best performance was
SVM achieving 100% recall and 96.34% accuracy in the evaluation process. Not only k-NN
offered an impressive performance, but also RF and SVM reached 99% accuracy, sensitivity
and specificity.

However, the drawbacks that come with using these sensors make them unsuitable
for many environments. Not only are they inconvenient to use, but the high rate of false
positives in some scenarios makes them unsuitable for many applications.

1.1.2. Ambient Sensor-Based Technologies

Many researchers opted for using different types of sensors as the source of knowl-
edge for fall detection. RF, sound, IR, pressure and vibration are some types of sensor
technologies used in FDSs. The principal benefit that these solutions offer is that they avoid
any inconvenience that wearing different gadgets may cause and the lack of intrusion
using them.

RFID-Based FDSs

Radio Frequency Identification (RFID) technology is used commonly along with other
algorithms or sources of knowledge to detect ADLs or falls. This technology uses radio
waves for the identification and tracking of different types of objects. The system is based
on readers and tags, that are provided with an integrated circuit (IC) that holds data
related to the tagged object, accessible from the reader, and an antenna. Depending on the
power source employed by these tags, two different types of them can be found. Passive
RFID tags work with the energy proceeding from the RFID reader’s radio waves used
for transmitting information and activating the IC. On the other hand, active RFID tags
have their own power source, that is usually a battery. In [15], they used contactless
passive RFID tags for capturing the signal power and phase in an array setup for fall
detection. The extraction of human actions was performed in the initial phase using an
action segmentation algorithm. A deep residual network then determined falls. The results
show its competitive performance with a 96.77% accuracy. In [16], they employed passive
RFID tags, employing a wavelet transform for preprocessing the signal data, subsequently
applying a SVM to improve the accuracy of the FDS. The system exhibited an accuracy of
96%. However, including more subjects would improve the performance of the system,
considering that the extracted parameters were collected from a single subject.

Sound-Based FDSs

Sound-based sensors have been implemented in many studies, using audio signals
as a source of information about falls. In [17], they proposed a versatile FDS based on an
autonomous mobile robot with a built-in microphone. The distinction between falls and
non-falls was carried out using sound inputs from bathrooms with an accuracy of 0.8673.
In [18], they employed a decision tree for binary and multi-class problems integrating
features that consist of melcepstral coefficients, gammatone spectral coefficients and spectral
skewness. The results show the method’s reliability for its use in medical centers, nursing
homes, old houses and health care provisions, reaching an accuracy of 91.39%, precision of
96.19%, recall of 91.81% and F1-score of 93.95%.
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IR-Based FDSs

In [19], they proposed a dual-technology sensor (DTS) based on Pyroelectric Infra Red
(PIR) and microwaves for motion detection and pressure mats. The experimental results
demonstrated the FDS’s adequateness achieving an accuracy, sensitivity and specificity of
89.33%, 100% and 77.14%, respectively. In [20], they incorporated three precise PIR sensors
strategically positioned at various points on the wall for a FDS. Fall identification was
carried out by considering the alterations in temperature induced by human movement.
Additionally, an optical flow methodology was employed to detect and evaluate the motion
direction of individuals. The method reached a specificity of 93.7% and a sensitivity of
92.5%. In [21], they employed a Micro-electromechanical Systems Pyroelectric Infrared
(MEMS PIR) sensor and a thermopile IR array sensor forming a contactless FDS for de-
tecting bathroom falls. The experimental results demonstrate the feasibility of this FDS,
achieving averages of precision, recall, accuracy and F1-score of 94.45%, 90.94%, 92.81%
and 92.66%, respectively. Nevertheless, there were some limitations in all these methods in
encompassing all possible angles of fall directions, and covering a wide area.

1.1.3. Vision-Based Technologies

The alternative that most studies have adopted for detecting falls and ADLs is to apply
vision-based methods. In these approaches, data provided by cameras are used by the
detection model to differentiate falls from ADLs. Many of them are followed by a ML-based
system to determine the detected activity. In [22], they used depth-map video frames for
fall detection, using as input data joint positions obtained by the Kinect sensor. A SVM was
used to classify the obtained images. The proposed system achieved an accuracy of 93.6%
in the experimental phase. In [23], a vision-based FDS that analyzes body geometry for fall
discrimination was introduced, and ML techniques were applied to identify fall patterns.
The results demonstrate the system’s high performance achieving 98.32% accuracy, 98.11%
precision, 98.11% sensitivity, 98.30% specificity and 98.11% F1-score.

The application of ML-based methods to enhance the predictability of the entire
detection system is widely used in the research field. In [24], they detected multiple
activities of different individuals in the same scene using as a source of knowledge human
skeleton pose estimation for extracting features for activity detection in video camera
images. The evaluation of human activities was performed using six ML algorithms, and
RF achieved the highest accuracy (95%), evaluated on the UP-Fall [25] dataset. In [26],
they implemented diverse ML algorithms to classify test data, including CNN, Logistic
Regression (LR), Linear Discriminant Analysis (LDA), K-NN, SVM, Naive Bayes (NB),
AdaBoost and RF among others. The experiments showed the capacity of the recognition
system for some ML algorithms to identify falls, achieving accuracies of 82%, 85.0%, 39.75%,
66.25%, 68.0%, 64.75%, 72%, 76%, 88% and 94%, for LDA, k-NN, SVM, NB, AdaBoost, RF,
Bagging, voting, LR and CNN, respectively.

More sophisticated algorithms are applied ultimately in the field using diverse DL
models. In [4], they proposed a model composed of a multi-head CNN with a Convolution
Block Attention Module (CBAM) that processes visual data and a Convolutional Long
Short-Term Memory (ConvLSTM) network that manages time-sensitive information from
various sensors. Evaluating on the UP-Fall dataset, the system achieved an accuracy of
97.44%, F1-score of 97.41%, recall of 97.44% and precision of 97.55%. In [27], a method that
combines an autoencoder and three layers of CNN named C3D-AE was proposed. Three-
dimensional CNN extracted the features, while the autoencoder modeled typical behaviors.
C920 cameras were used for image capturing employing 22 subjects to capture information
recording 1760 videos. The system achieved a remarkable 93.3% sensitivity and 92.8%
specificity. In [28], they proposed a model composed of an enhanced YOLOv7-X-pose algo-
rithm for a rapid human body keypoint extraction in the multi-person keypoint extraction
module, and an enhanced CNN Attention LSTM model, capturing the relevant features
of the input sequence and improving the model’s predictability with the addition of the
LSTM layer. The extraction algorithm’s extraction order and accuracy were ensured using
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a Kalman filter target tracking algorithm. The results demonstrated that their application
provided reliable support for health management of the elderly. In [29], an enhancement
of YOLOv5s was presented and applied as a real-time detection method for identifying
falls among the elderly population. The first difference from the original YOLOv5s was the
replacement of the existing basic convolution with asymmetric convolution blocks (ACBs)
in the convolution module of the backbone network enhancing the feature extraction capa-
bility. Additionally, the extraction of feature location was enhanced with the addition of
the spatial attention mechanism module to the residual structure of the backbone network.
Finally, improving the feature layer structure by removing the feature layer for small targets
allows the network to pay more attention to semantic level information. The experimental
results demonstrate the improvement from the original YOLOv5s trained and tested on the
URFD dataset, with an increase of 3.5% reaching an average accuracy of 97.2%.

In recent years, the irruption of the transformer-based solution has gained special
significance in large-scale natural language processing, computer vision, reinforcement
learning, audio and robotics among others. In [30], they proposed the first transformer-
based solution for a fall detection paradigm tested on the UP-Fall dataset and the UR Fall
dataset. The results show that the system achieved a competitive efficiency at differentiating
falls and non-falls achieving a 99.17% accuracy for binary classification and a decent
performance for multi-class classification with a 93.17% accuracy.

The most prominent solutions in terms of accuracy, deployability and convenience for
the elderly population are the wearable sensor-based solutions and vision-based solutions.
These last are less susceptible to false positives as they offer more detailed information
about the scene of the fall, avoiding extra aids and nursery services. The wearable systems
need to be carried by elderly people, becoming an important inconvenience for some
of them.

All the aforementioned approaches require long training times, much memory and
high capacity processors for the inference phase. However, in certain cases, it is worth
considering a solution that omits the usage of centralized solutions and reacts on the
edge. In this way, an immediate response is guaranteed, being a critical condition in
various applications. For this purpose, it is necessary to reduce the size of the architectures
used for predicting these humans’ activities, as well as representing the data with lighter
representations. In this work, we opted for using 2D-CNNs for extracting features of
video frames corresponding to falls. We omitted the possibility of using transformer-based
solutions due to their complexity and lack of knowledge at reducing their models. Later,
we propose an alternative adding a LSTM block to enhance the predictability of the model
giving more capability to handle time-sensitive information to the model. Finally, we apply
well-known reduction techniques to two of the layers of the backbone of our proposed
model to make it deployable on the edge.

2. Materials and Methods

This section describes the materials used in the experimental process and the method-
ology followed to detect falls in the elderly population, as well as the procedure for the
evaluation process of the applied models using the datasets mentioned in this section.

2.1. Feature Extraction Models

In this work, we opted for using CNNs as the backbone model for detecting the elderly
population’s falls. These are NNs composed of convolution layers that are appropriate
at extracting features from images and video frames. In this case, we intended to use the
sequences of falls to train the models and determine whether a certain motion of a person
was going to end as a fall or not. For this purpose, we added an extra dimension to these
convolutional networks adding the time feature to the data by concatenating consecutive
image frames and using them as input to the 2-dimensional CNNs. We concatenated
3 convolutional blocks in the first proposed model and in the second proposed model we
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substituted the last convolutional block with the LSTM block. Figure 1 gives a graphical
representation for both models.

Figure 1. Proposed backbone models’ diagram.

The backbone of the first model was compounded of 3 consecutive convolutional
blocks and 3 consecutive dense layers. Each of the convolutional blocks was composed of
a 2-dimensional convolution layer and a MaxPooling layer for summarizing the features
of a region of the feature map generated by the convolution layer adding a small amount
of translation invariance. Following, a batch normalization layer was used to re-center
and re-scale the inputs for the posterior layers for enhancing the training of the models by
accelerating and making them more stable. Finally, the dense layers were concatenated
each of them followed by a dropout layer for avoiding overfitting issues. Table 1 specifies
the details of the model, and the model diagram is given in Figure 1.

Table 1. First model. Two-dimensional CNN model.

Layer Name Layer Type Feature Map Output Size of Images Kernel Size Stride Activation

Input - 1 36 × 32 × 32 × 3 - - -
Conv-1 2D Conv 8 36 × 8 3 × 3 1 relu
Pool1 Maxpool 8 36 × 8 3 × 3 2 relu

Conv-2 2D Conv 32 36 × 32 3 × 3 1 relu
Pool2 Maxpool 46 36 × 32 3 × 3 2 relu

Conv-3 2D Conv 128 36 × 128 3 × 3 1 relu
Flatten Flatten - 1472 - - relu

FC6 Dense - 1200 - - relu
FC7 Dense - 600 - - relu
FC8 Dense - # of classes - - softmax

The second model used in the experiments differed from the first one principally
in the third block of the backbone. In the first model, the third block was made up of a
convolution layer and a MaxPooling layer, but in this case the third block was made up of a
LSTM layer. This gives to the model ability to consider time-sensitive features of the input
data. At the same time, reduction in the number of parameters needed to represent the
entire model is favorable due to the difference between the parameters needed to represent
a LSTM layer and a convolutional block. Finally, to match with the input data type of the
LSTM layer, we applied 1D convolutional layers, and reshaped the input data as sequences
of images binding them. Table 2 summarizes the specifications of the second model.
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Table 2. Second model. CNN-LSTM model.

Layer Name Layer Type Feature Map Output Size of Images Kernel Size Stride Activation

Input - 1 192 × 1024 × 3 - - -
Conv-1 1D Conv 8 190 × 8 3 × 3 1 relu
Pool1 Maxpool 8 95 × 8 3 × 3 2 relu

Conv-2 1D Conv 32 93 × 32 3 × 3 1 relu
Pool2 Maxpool 46 46 × 32 3 × 3 2 relu
LSTM LSTM - 46 × 32 - - relu
Flatten Flatten - 1472 - - relu

FC6 Dense - 1200 - - relu
FC7 Dense - 600 - - relu
FC8 Dense - # of classes - - softmax

2.2. Reduction Techniques: Sparse Low Rank Method (SLR)

As our goal was to deploy these models on devices with reduced memory sizes and
tiny processors, we performed pruning techniques to remove redundant elements of certain
layers of each model.

We applied the Sparse Low Rank Method (SLR) proposed in [31]. In this case, singular
value decomposition (SVD) was applied to the weight matrix of a given layer, decomposing
the original matrix into rotation, rescaling and flip matrices. These resulting matrices re-
quired far fewer parameters to represent, which is beneficial for use on resource-constrained
devices. The activation a ∈ Rn of a Fully Connected (FC) layer with m input and n output
neurons is represented as

a = g(WTX + b) (1)

where X represents the input data and g() represents the activation function. Each pa-
rameter in the weight matrix W is wij ∈ R (1 ≤ i ≤ m, 1 ≤ j ≤ n), and bias matrix
b is bj ∈ R(1 ≤ j ≤ n). The proposed approach was applied to the weight matrix W after
adjusting its weights in the training process. In addition, SVD disintegrated the weight
matrix W as W = USVT where U ∈ Rm×m and VT ∈ Rn×n are orthogonal matrices and
S ∈ Rm×n is a diagonal matrix, where the components with the highest absolute value
are located in the first rows and columns of the U and VT matrices. Among the different
alternatives to consider the most relevant rows and columns of these matrices we opted for
using the rows and columns whose weights’ absolute values were the highest. In one of
our previous works where we applied this reduction technique [32], we concluded that in
terms of time efficiency it was much more feasible to apply the weights’ absolute value as
the criteria for the most relevant components selection. Although the cost defined in [31]
could give a slight improvement in terms of accuracy of the reduced models, the severe
increment of the training time does not compensate for this accuracy improvement.

Moreover, the SLR method only considers the most relevant rows and columns of each
of the rows and columns of the rotation matrices, even achieving a higher compression of
the original matrix. Applying the reduced rank (rk), only the first k rows of U and columns
of V̂T are kept, based on the weight criteria.

Pruning FC layers is much more effective in terms of accuracy, time and energy
efficiency than pruning convolution layers as shown in [33]. Thus, we applied this reduction
technique to the first 2 FC layers of each of our backbone models, leaving the last FC layer
untouched in each case.

2.3. Datasets

The data used to determine the usefulness of the aforementioned models to detect falls
with a significant reduction in the models’ size, while preserving the predictability of the
resultant models, are summarized in this section. Open well-known public datasets were
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used in the training and validation processes: UP-Fall dataset [25] and Multiple Cameras
Fall dataset [34].

UP-Fall Detection dataset is composed of raw and feature sets retrieved from 17 healthy
young individuals without detriments that executed 3 attempts for 11 different activities
and falls. Between the eleven differentiable activities, six of them were simple human daily
activities and five different types of human falls. The collection was completed in a period
of four weeks, from 18 June to 13 July 2018 on the third floor of the Faculty of Engineering,
Universidad Panamericana, Mexico City, Mexico. All the devices and equipment for
measurements were connected locally to a set of computers which centralized all the
information and saved the data on hard drives.

They performed the entire recording process in a controlled laboratory room without
variations in light intensity, with all the cameras remaining in the same position during the
process. They considered three sources of knowledge for a multimodal approach, using
wearables, context-aware sensors and cameras concurrently. However, in our work we
used only the data obtained by the cameras. See Figure 2.

Figure 2. UP-Fall Dataset recording setup. (a): Location of motion sensors. (b): Location of cameras.
Source: [25].

The activities performed by the subjects can be classified into two main divisions:

• Falls: falling forward using hands, falling forward using knees, falling backwards,
falling backwards and falling sitting in empty chair.

• Non-falls: walking, standing, sitting, picking up an object, jumping and lying down.

Multiple Cameras Fall dataset is a video dataset that contains simulated falls and
normal daily activities acquired in realistic situations. See Figure 3. The multi-camera
system used in the recording phase is composed of eight inexpensive IP cameras with a
wide angle to cover all the recording room. The dataset is composed of several simulated
normal daily activities and falls viewed from all the cameras and perform by one subject.
All the activities recorded can be classified into two main divisions:

• Activities of daily living that include walking in different directions, housekeeping,
activities mistakable for falls (sitting down/standing up, crouching down) and image
processing difficulties like occlusions or moving objects.

• Different types of simulated falls: forward falls, backward falls, falls when inappropri-
ately sitting down, loss of balance. These were completed in different directions with
respect to the camera.
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Figure 3. Multiple Dataset recording setup. Source: [34].

3. Experimental Process

In this section, details of the training and evaluation process of the models and a
summary of the results obtained when the models were tested on the UP-Fall dataset and
the Multiple Camera Fall dataset are given.

3.1. Training and Validation

For the evaluation of the proposed methodologies we tested our two alternatives
of the CNN models on the datasets described above, and we compared against relevant
works from the literature. We compared different performance metrics, the parameter size
used for representing the entire model and the time needed to train each model using
each dataset.

For training and validating the models, we followed a 10-fold Cross-Validation strategy,
that includes resampling and sample splitting methods that use different portions of
the data to test and train a model on different iterations. In this way, we guarantee
that the results are independent of the partition between the training and test data. We
regarded the accuracy, precision and recall in each case, these being micro-averaging
metrics. The models’ hyperparameters were adjusted manually after a first intuitive
deduction of best configurations. Consequently, the parameters used in the training process
were the following. The optimizer was Adadelta (learning rate = 0.98, loss = categorical
cross entropy), batch size was 32 and the number of epochs was 50. In the first dataset
case, differences between reducing different FC layers and these reductions’ sizes were
compared to understand the effect of these reductions and achieve the optimal reduction
rank that offers the best relation between reduction and performance. In both cases, FC6
and FC7 were the selected layers for the pruning process on account of the fact mentioned
in Section 2.2.

As our intention was to reduce the size of the models to fit into resource-constrained
devices in the inference model while keeping the prediction capacity almost intact, we
looked at the reduction in the resultant model size after applying a pruning technique to
each model to consider only the most relevant neurons of certain layers of each model. As
mentioned above, this reduction technique was developed in the first two FC layers of
the backbone of each model, and compared with different works from the literature that
test their proposed method in the UP-Fall dataset. We applied different reduction ranks
so as to achieve a significant reduction in the memory size used to represent the resultant
networks, and we present the ones that offer the best relation between performance and
parameter reduction. The parameter number and the memory size needed for each model
were analyzed along with the performance metrics mentioned above.
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3.2. Software and Hardware Specifications

All the experimentation process was developed using the Python 3.11.7 programming
language, using different libraries to deal with ML tasks such as Tensorflow 2.15.0, Keras
2.15.0, Scikit-Learn 1.4.1.post1 and others to deal with data analysis like Numpy 1.26.4 or
Pandas 2.2.1.

The hardware specification on which the experiments took place are the following:

• Dell Precision 7560. Round Rock, TX, USA.
• Intel i7-11850H working at 2.5 GHz. Santa Clara, CA, USA.
• 32 GB DDR4 RAM;
• x64 Windows 10 Professional operating system. Redmond, WA, USA.

3.3. Experimental Results on the UP-Fall Dataset

This section collects the performance results obtained when each of the models were
trained and reduced on the UP-Fall dataset, and compared with various alternatives from
the literature. To deduce the best compression rate for the FC layers that were pruned, we
tested different reduction ranks and compared their performance metrics. In principle, the
performance metrics should be higher for the cases where the most components from the
original sparsified matrices were kept, but that was not always the case. In some cases, part
of the components of certain layers are redundant and worsen the learning process of the
entire model. In these cases, the elimination of these redundant components of the layers
may improve the performance of the entire model. Table 3 summarizes the comparison
of different reductions. The reduction rank1 and rank2 refer to the number of rows and
columns considered in the sparsified matrices of the first and the second FC layer sparsified
from the original backbone models. Additionally, reduction rank (0.5) was applied to
consider only half of the elements of each row and column.

Table 3. Performance metrics of classification of UP-Fall dataset for different reductions applied on
2D-CNN and SLR models.

Reduction Rank 8 12 16 No Reduction

Accuracy (%) 86.82 92.76 95.29 99.93
Recall (%) 88.36 94.69 96.35 99.88

Precision (%) 86.66 92.41 93.71 99.39
Parameter reduction (%) 92.34 91.59 90.79 0

There is a totally different trend for the reduction variation for each model. In the case
of the model consisting of only convolutional blocks when more elements are pruned from
the original weight matrices, the results are worse. This is due to the loss of information
between the connection of neurons from the subsequent layers. However, in the case of the
model consisting of convolutional blocks and LSTM, the best results were obtained when
the reduction rank = 8 was applied, as it can be observed in Table 4. This means that, when
more components are considered, these hinder the learning process. The elimination of
these redundant components improves the final classification result and lightens the model.
We tested reducing this reduction parameter even more, but when the rank was even lower
the results deteriorate.

Table 4. Performance metrics of classification of UP-Fall dataset for different reductions applied on
2D-CNN-LSTM and SLR models.

Reduction Rank 8 12 16 No Reduction

Accuracy (%) 94.47 91.73 78.71 99.82
Recall (%) 94.40 91.69 79.24 99.85

Precision (%) 93.31 90.65 77.64 99.37
Parameter reduction (%) 93.79 92.54 91.28 0
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To compare the results of each model with a given reduction rate and the results
obtained applying the model proposed in [35], we performed a comparative study on the
UP-Fall dataset. The performance metrics for rank = 8 are given along with the parameter
size of each model and a comparison of their training times in Table 5.

Table 5. Performance metrics of classification of UP-Fall dataset for different models.

Model 2D-CNN and SLR 2D-CNN-LSTM and SLR [35]

Accuracy (%) 86.82 94.47 99.39
Recall (%) 88.36 94.40 99.39

Precision (%) 86.66 93.31 99.40
Parameter size (MB) 1.96 1 0.90 2 177.90

1 Reduction rank1 = 8; reduction rank2 = 8. 2 Reduction rank1 = 8; reduction rank2 = 8.

In order to visualize the effect of pruning in our models we made a comparative graph
that shows the difference in accuracy between our two models in their original version and
their pruned versions. Figure 4 shows this comparative analysis.

Figure 4. Comparative graph of pruned vs original versions.

Finally, we made a comparison with several results obtained in various works that
tested their proposed technologies on the UP-Fall dataset. Table 6 summarizes the accura-
cies obtained in the evaluation process of various works when tested on the UP-Fall dataset
as a multi-class problem.

Table 6. Accuracies from various works from SoA tested on UP-Fall dataset.

Work Input Accuracy (%)

Martínez-Villaseñor et al. (2019) [25] Sensor 95.49
Ramirez et al. (2021) [36] Skeleton 99.45

Ha et al. (2022) [35] RGB + Sensor 99.39
Moha Gouda et al. (2022) [37] RGB + Sensor 99.2

Islam et al. (2023) [4] RGB + Sensor 97.90
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Table 6. Cont.

Work Input Accuracy (%)

Yan et al. (2023) [38] Skeleton + Sensor 98.05
Nuñez-Marcos et al. (2024) [30] RGB 93.17

Ours (2D-CNN) RGB 99.93
Ours (2D-CNN-LSTM) RGB 99.82

Ours with pruning (2D-CNN and SLR) RGB 86.82
Ours with pruning (2D-CNN-LSTM and SLR) RGB 94.47

3.4. Experimental Results on the Multiple Cameras Fall Dataset

To support the results obtained in the previous dataset, the two models and the alter-
native from [35] were tested on the Multiple Fall dataset, applying the optimal reduction
ranks for this case, obtained in an exhaustive search. The performance metrics obtained
when each of the models were trained and reduced on the Multiple Fall dataset are given
within this subsection.

As it can be observed in Table 7, the reduction in parameter size is considerable
between the model that was designed in [35] and the reduced models we achieved applying
the SLR method. There is a non-negligible performance drop when the FC layers are pruned.
However, a satisfactory performance is achieved by both models after reducing their FC
layers. In comparison to the previous dataset, in this case, the performance drop is less
drastic, being a less than 4% drop for the 2D-CNN and SLR model.

Table 7. Performance metrics of classification of Multiple Fall dataset for different models.

Model 2D-CNN and
SLR 2D-CNN-LSTM and SLR [35]

Accuracy (%) 95.45 92.16 99.09
Recall (%) 95.27 92.00 98.79

Precision (%) 95.61 92.29 99.17
Parameter size (MB) 1.96 1 0.90 2 177.90

1 Reduction rank1 = 64; Reduction rank2 = 16. 2 Reduction rank1 = 64; Reduction rank2 = 8.

4. Discussion

The above section summarizes the performance variations when SLR pruning method-
ology was applied to the models proposed in Section 2 and the comparison with various
models from the literature as well. The reduction of the models generally involves a loss of
information between layers of the backbone model, but in some scenarios the redundancy
of some elements carries a downgrade of the model, the elimination of these elements
being precise. Although this phenomena was perceptible in the model composed of LSTM
and convolutional blocks, it did not result in the same way in the model composed of
convolutional blocks solely. The best performance metrics were achieved in the case when
the reduction rank reached the value of 8 in the 2D-CNN-LSTM model, whereas the best
metrics were achieved when the reduction was lighter in the case of the 2D-CNN model,
apart from the cases where the entire model was used for classifying scenes. In both cases,
the parameter reduction achieved when the weight matrix of a certain layer was repre-
sented by the sparsified matrices and these were pruned based on the SLR methodology
was notorious and may be a key factor when embedding these fall detection models in
resource-constrained devices.

The selection of the optimal layer to reduce is critical in order to maintain the resultant
model’s accuracy as high as possible and to achieve a significant reduction in the parameter
size and consequent use of memory in the embedded device. In this sense, the convolutional
layers have a great capability for extracting features from input data and these should be
preserved in order to maintain the model’s performance. Between the FC layers, it is worth
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noting that the removal of weights from the layers that are closer to the convolutional
blocks carried a little more reduction in the resultant model’s accuracy, a better alternative
being the application of more aggressive pruning in the FC layers that are close to the
convolutional blocks.

Compared with the results obtained in various works from the literature, our reduced
models cannot approximate to the performance achieved by various models from the
literature. In contrast, our models achieved a higher performance when no reduction was
applied to any of the layers that compose the backbone model. If a reduction in parameter
size was required in order to fit these models on resource-constrained devices, a pruning
of these models was required to not exceed the memory restriction that would be found
in embedded devices. For that purpose, a precise pruning technique guarantees a less
drastic reduction in the predictability of the resultant model. Accordingly, the reduced
models proposed in this work maintained a good performance even when the reduction in
parameters achieved values close to 94%.

Regarding the different percentage of parameter reduction in the pruned models, the
best results were to be expected when this percentage was lower, i.e., when the majority
of the components were conserved. In spite of the incongruity, when the reduction was
harder when applied to the 2D-CNN-LSTM model, it classified better than when more
components were conserved from the original model. The reason why this unusual case
occurred is that part of the components that were eliminated from the original matrices
were redundant and worsened the predictability of the model. Although some components
were better to be pruned, in this pruning process key elements for correct classification may
be removed as well. Thus, the original model’s performance metrics were superior to the
ones obtained by the reduced model in all cases.

Between the proposed models, the variations in the performance metrics when the
entire model was applied in the inference process were negligible. However, when the
reduction techniques were applied to lighten the models to enable their implementation on
resource-constrained devices, the 2D-CNN-LSTM model was superior when tested on the
UP-Fall dataset. The inclusion of the LSTM enhanced the classification of falls due to the
ability of LSTM blocks to predict future events and signals.

In fact, when these models were applied on the UP-Fall dataset, their performance
was superior to the majority of the solutions that could be found in the literature. In cases
where the accuracy needs to be outstanding and excess of memory usage is not a drawback,
the application of any of the backbone models proposed in this article would be interesting.
In contrast, for the majority of the embedded devices, the memory restrictions do not allow
their application in these type of devices. To this end, the application of an appropriate
reduction technique becomes essential, where SLR showed excellent results with good
reductions in parameter sizes and decent accuracy of the reduced models.

5. Conclusions and Future Work

In this article, we have demonstrated that when applying appropriate reduction
techniques to models whose backbone is composed of CNN and models that combine CNN
and LSTM the resultant model is able to maintain a decent accuracy while reducing the
parameter size by more than %90. The SLR method was applied to two of the backbone
models proposed in Section 2, and different reduction rates were applied to two of the
FC layers of these backbone models to tackle the most appropriate reduction rate. These
reduced models and the one proposed by [35] were trained and tested on the UP-Fall dataset
and Multiple Camera Fall dataset, and many other works from the literature were compared
on the UP-Fall dataset. Obviously, the non-pruned models offered a better prediction ability
than the pruned models, but these needed much more memory to store their parameters and
their implementation became complicated in many resource-constrained devices. However,
the reduced models achieved reductions up to 93% and their accuracy reached values close
to the complete models’ versions. Moreover, the backbone models without applying any
pruning techniques were superior to the model compared from the literature.
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To add more robustness to the proposed models, it would be of particular interest
to add an uncontrolled environment where the subjects would be the elderly population.
In these cases, the randomness of the subjects’ decisions due to different factors such as
dementia or health problems would complicate the correct functioning of the resulting
model. This would imply a higher degree of uncertainty in the experimentation and the
system in general should offer better reproducibility when used in real-world applications.
In general, the validation results would not meet the performance metrics achieved on
datasets collected in controlled environments, but would mimic the functionality of real-
world applications.

As future work, the deployment of the pruned models on actual embedding devices
would strengthen the suitability and adequateness of the models for this paradigm. In
addition, the development of a novel technology to reduce the models employed in this
work may better suit this paradigm. A novel reduction technique would consider the
characteristics of the final device where the model would be deployed, the features of
the original model employed for inference and the characteristics of the input dataset.
In this way, an optimization could be reached even though our method has achieved a
remarkable reduction in model size at the expense of a slight reduction in performance.
Additionally, the comparison of these methodologies in another testing environment would
be interesting, apart from the fall prediction paradigm. These reduction techniques would
be suitable for more types of models, including those used in gas leaks, for example. In
these scenarios, embedded devices equipped with tiny sensors and processors would
benefit from these reduced models to successfully detect gas leaks.

Author Contributions: Conceptualization, A.G.-O., M.A.A. and J.D.N.-G.; methodology, A.G.-O.,
M.A.A. and J.D.N.-G.; software, A.G.-O.; validation, A.G.-O., M.A.A. and J.D.N.-G.; formal analysis,
A.G.-O., M.A.A. and J.D.N.-G.; investigation, A.G.-O., M.A.A. and J.D.N.-G.; resources, A.G.-O.,
M.A.A. and J.D.N.-G.; data curation, A.G.-O.; writing—original draft preparation, A.G.-O.; writing—
review and editing, A.G.-O., M.A.A. and J.D.N.-G.; supervision, M.A.A. and J.D.N.-G.; project
administration, M.A.A.; funding acquisition, M.A.A. All authors have read and agreed to the pub-
lished version of the manuscript.

Funding: This work is partially supported by the project “Optimization of Deep Learning algorithms
for Edge IoT devices for sensorization and control in Buildings and Infrastructures (EMBED)” funded
by the Gipuzkoa Provincial Council and approved under the 2023 call of the Guipuzcoan Network of
Science, Technology and Innovation Program with file number 2023-CIEN-000051-01.

Data Availability Statement: All data used in the experimental process are available online, the
Multiple Cameras Fall dataset at https://www.iro.umontreal.ca/~labimage/Dataset/ ( accessed on
27 June 2024) and the UP-Fall dataset at http://sites.google.com/up.edu.mx/har-up/ ( accessed on 9
April 2024).

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

ACB Asymmetric Convolution Block
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CV Cross-Validation
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DTS Dual-Technology Sensor
FC Fully Connected
FDS Fall Detection System
HAR Human Activity Recognition
IMU Inertial Measurement Unit
IC Integrated Circuit
IR Infrared
k-NN k Nearest Neighbor
LDA Linear Discriminant Analysis
LR Logistic Regression
LSTM Long Short-Term Memory
MEMS PIR Micro-electromechanical Systems Pyroelectric Infrared
MKL Multiple Kernel Learning
ML Machine Learning
NB Naive-Bayes
NN Neural Network
PIR Pyroelectric Infra Red
RF Random Forest
RF Radio Frequency
RFID Radio Frequency Identification
SLR Sparse Low Rank Method
SVD Singular Value Decomposition
SVM Support Vector Machine
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