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Abstract: Detecting volatile organic compounds (VOCs) is increasingly recognized as a pivotal tool
in non-invasive disease diagnostics. VOCs are metabolic byproducts, mostly found in human breath,
urine, feces, and sweat, whose profiles may shift significantly due to pathological conditions. This
paper presents a thorough review of the latest advancements in sensor technologies for VOC detection,
with a focus on their healthcare applications. It begins by introducing VOC detection principles,
followed by a review of the rapidly evolving technologies in this area. Special emphasis is given
to functionalized molecularly imprinted polymer-based biochemical sensors for detecting breath
biomarkers, owing to their exceptional selectivity. The discussion examines SWaP-C considerations
alongside the respective advantages and disadvantages of VOC sensing technologies. The paper also
tackles the principal challenges facing the field and concludes by outlining the current status and
proposing directions for future research.

Keywords: molecularly imprinted polymers; biosensor; non-invasive; nanomaterial; volatile organic
compound; biomarker; disease

1. Introduction

VOCs are gaseous species known to have high vapor pressure under normal room
conditions, causing them to evaporate easily [1]. These compounds are abundant in human
breath, skin, and bodily fluids, providing valuable chemical, physical, and biological
information crucial for non-invasive medical diagnostics [2,3]. Several methods have shown
that disease-related VOCs can be directly detected in body fluids [4]. Table 1 summarizes a
tentative chemical identification of VOCs associated with various non-infectious diseases,
while Table 2 summarizes VOCs related to infectious diseases. Among the physiological
sources of VOCs, exhaled breath is considered one of the least complex for analysis due to
its simpler gas matrix. The fundamental principle of exhaled breath analysis is that disease-
indicative metabolites circulate within the vascular system, and VOCs are consistently
released into the breath following alveolar exchange from the blood. Gas exchange occurs
in both the airways and the alveoli. Low-solubility VOCs primarily exchange in the alveoli,
whereas highly soluble VOCs, especially polar ones, mainly exchange in the airways. Those
with moderate solubility affect both regions. The profile of VOCs in the breath is influenced
by their blood concentration and the duration that these compounds remain in the lung
and airway tissues after inhalation and exhalation [4,5].

VOC sensing faces challenges, primarily because most VOCs are non-reactive and
occur at low concentrations, often close to or below the detection limits of conventional
analytical devices. Mass spectrometry (MS), a powerful tool in scientific and industrial re-
search, is effective for analyzing, quantifying, and identifying a wide range of compounds,
making it suitable for detecting VOCs. Typically paired with liquid or gas chromatog-
raphy (GC), MS can detect arrays of known and unknown chemicals. The conventional

Sensors 2024, 24, 7263. https://doi.org/10.3390/s24227263 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24227263
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2231-0846
https://orcid.org/0009-0000-1497-6643
https://orcid.org/0000-0002-3120-0094
https://doi.org/10.3390/s24227263
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24227263?type=check_update&version=2


Sensors 2024, 24, 7263 2 of 34

gas chromatography–mass spectrometry (GC-MS) approach, while robust and adaptable,
faces several challenges. These include preserving the integrity of samples at the time
of collection, where some compounds may degrade, be altered during storage, or not
be collected efficiently or selectively. Moreover, both sample preparation and analysis
are time-consuming and must be conducted off-line in a laboratory setting, which adds
complexity and cost to the process. This is particularly problematic when results are needed
in real-time and in a cost-effective manner. To address these limitations, a variety of other
sensors have been developed; however, many still fall short of the sensitivity, selectivity,
and reliability needed for analyzing complex VOC mixtures in real samples [6,7]. Advances
in sensor technology, particularly those incorporating nanomaterials, are pivotal to meeting
clinical standards. Nanomaterials offer several benefits due to their high surface-to-volume
ratios, which ensure high sensitivity and fast response times. The adjustable chemical
and physical properties of nanomaterials allow for increased specificity while combining
various nanomaterials can provide synergistic effects. Additionally, the compatibility of
nanomaterials with large-scale manufacturing processes facilitates the development of
portable, cost-effective devices [8–11]. The ideal VOC sensor would offer high sensitivity,
excellent selectivity, rapid response and recovery times, robust stability and reproducibility,
and the ability to operate at room temperature [12–15].

Table 1. Summary of main VOCs for non-infectious diseases.

Disease VOC Biomarker Sample
Source

Concentration
(Normal)

Concentration
(Diseased) Reference

Neurological Diseases

Alzheimer’s Disease

1,1-oxybis-octane, 1-chloro-nonadecane,
1-methyl-2-(1-methylethyl)-benzene,

1-methylpropyl-cyclooctane,
2,2,4,6,6-pentamethyl-heptane,

2,2-dimethylpropanoic acid,
2,3-dimethyl-heptane, 2,3,5-trimethyl-hexane,

2,4-dimethyl-1-heptene,
2,5,6-trimethyl-octane,

2,6,10-trimethyl-dodecane,
2,6,10,14-tetramethyl-hexadecane,

2,6-octadien-1-ol, 2-butyl-1-octanol,
2-ethylhexyl tetradecyl ester,
3-ethyl-2,2-dimethyl-pentane,

3,7-dimethyl-decane,
3,7-dimethyl-propanoate (E), 4-methyl-octane,

5-ethyl-2-methyl-octane, Butylated
HydroxyToluene, Dodecane, Formaldehyde,

Oxalic Acid, Propyl-Benzene, Styrene

Breath 0.2–0.8 ppb 1.0–2.5 ppb [16,17]

Parkinson’s Disease

1-Methyl-3-(1-Methylethyl)-Benzene,
2,3-Dimethyl-Heptane,
2,3,5-Trimethyl-Hexane,

2,3,6,7-Tetramethyl-Octane,
3,7-Dimethyl-Decane,

5-Ethyl-2-Methyl-Octane, Butylated
Hydroxytoluene,

Decamethyl-Cyclopentasiloxane,
Ethylbenzene, Hexadecane, Styrene

Breath 0.2–0.8 ppb 1.0–2.5 ppb [16,17]

Multiple
Sclerosis 5-Methyl-Undecane, Hexanal Breath 0.022–0.026 ppm 0.009–0.01 ppm [16,18]

Epilepsy

2-Acetyl-Pyrroline, 2-Acetylpyrrole,
2-Butanone, 2-Heptanone, 2-Pentanone,

2,3,5-Trithiahexane,
3,4-Dehydro-Exo-Brevicomin, Acetophenone,

Dimethyl Trisulfide, Disulfide, Menthone,
Methanethiol, Methane, Nitro-,

Trimethylamine

Feces, Saliva, Urine Not Reported Not Reported [19]
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Table 1. Cont.

Disease VOC Biomarker Sample
Source

Concentration
(Normal)

Concentration
(Diseased) Reference

Malignant Diseases

Lung
Cancer

1-(1-Ethoxyethoxy)-pentane,
1,1-Diethoxy-3-methylbutane, 1-Butanol,

1-Ethyl-2-methylbenzene, 1-Hexadecylindane,
1-Propanol, 1,2,4-Trimethylbenzene,

1,4-Pentadiene, 2,2-Dimethyl-hexanal,
2,2,6-Trimethyloctane, 2,3,3-Trimethylpentane,

2,3,5-Trimethylhexane, 2,4-Decadien-1-ol,
2,4-Dimethyl-1-heptene, 2,4-Dimethylheptane,

2,4-Dimethylundecane, 2,5-Dimethyl-furan,
2-Butanol, 2-Butanone, 2-Ethyl-1-hexanol,

2-Ethyldodecanal, 2-Ethyldodecanol, 2-Heptanone,
2-Hydroxyacetaldehyde, 2-Methyl-1-decanol,

2-Methyl-2-butenal, 2-Methylbutanal,
2-Methylbutane, 2-Methylfuran, 2-Methylheptane,
2-Methylpentane, 2-Methylpropanal, 2-Pentanone,

2-Phenyl-2-Butanone, 3,4-Dimethylheptane,
3,7-Dimethyl-decane, 3-Heptanone,

3-Hydroxy-2-butanone, 3-Methyl-3-Hexanol,
3-Methylbutanal, 3-Octanone, 4-Heptanone,

4-Methyloctane, Acetaldehyde, Acetone, Acetic
acid, Acetonitrile, Amphetamine, Benzaldehyde,
Benzene, Butanal, Butane, Butanoic acid, Butyl

acetate, Cyclohexane, Cyclohexanol,
Cyclohexanone, Decanal, Dodecane, Dimethyl

sulfide (dimethyl sulphide), Dimethyl trisulfide,
Dimethylsilanediol, Eicosenamide, Ethanol, Ethyl

acetate, Ethylbenzene, Formaldehyde,
Heptadecane, Heptanal, Heptane (n-heptane),

Hexanal, Hexane, Hydrogen cyanide, Hydrazine,
Interleukin-6, Isobutane, Isoprene, Linear and

branched hydrocarbons C8–C24, Methyl acetate,
Methyl vinyl ketone, Methylcyclopentane,

Methacrylaldehyde, Methane, Methanol (methyl
alcohol), Methanethiol, Naphthalene, Octanal,

o-Xylene, Pentanal, Pentane (n-pentane),
Pentamethyl heptane, Pentene, Phenol, p-Cresol,
p-Xylene, Propanal, Propane, Propanol, Propene,

Propionaldehyde, Propylbenzene (n-propyl
benzene), Styrene, Thymol, Thiophene,
Tetradecane, Tetrahydrofuran, Toluene

(methylbenzene), trans-2-Hexenal,
trans-2-Heptenal, trans-2-Nonenal,

Trimethylamine, Trimethylbenzene, Undecane,
3,4-dehydro-exo-brevicomin

Breath, Blood,
Urine <35 ppb Not Reported [16,17,20–29]

Pancreatic Cancer

1-(Methylthio)-Propane, 1-Butanol, 1-Decene,
1-Heptene, 1-Nonene, 1-Octene, 2-Butanone,
2-Ethyl-1-Hexanol, 2-Nonene, 2-Pentanone,

2,6-Dimethyl-Octane, Acetaldehyde, Acetone,
Acetone Dimer, Acetoin, Amylene Hydrate,

Ammonia, Acrylonitrile, Benzaldehyde, Benzene,
Butoxymethylbenzene, Carbon Disulfide,

Dimethyl Sulfide, Ethane, Ethanol, Formaldehyde,
Hydrogen Sulfide, Isoprene, Isopropyl Alcohol,

n-Hexane, Nitro-, Nonanal, Pentane,
Pentylbenzene, Sulfur Dioxide, Tetradecane,

To1uene, Triethylamine, Trimethylamine (TMA)

Bile, Blood, Breath,
Urine 1–5 ppb >5 ppb [30–38]

Gastric
Cancer

1,2,3-Trimethylbenzene, 1,3-Dioxolan-2-One,
1,3-Dioxolane-2-Methanol, 1,3-Propanediol,

1-Hexanol, 2-Butoxy-Ethanol, 2-Ethyl-1-Hexanol,
2-Methylhexane, 2-Methylpentane, 2-Pentyl

Acetate, 2-Propanol, 2-Propenenitrile,
3-Methyl-2-Pentanone, 3-Methylhexane,

3-Methylpentane, 4-Ethyl Guaiacol,
4,5-Dimethyl-Nonane, 4-Methyl-3-Hexanone,
Acetic Acid, Aceticamide, Acetone, Butanal,
Butanoic Acid, Decanal, Decene, Dodecane,

Dimethyl Disulphide, Ethanol, Ethylene, Furfural,
Heptanal, Hexadecane, Hexanal, Hexanol,

Isoprene, Menthol, Methyl Phenol,
Methylisobutylketone, Naphthalene, Nonanal,

Octanal, Pentanal, Pentanoic Acid, Phenol, Phenyl
Acetate, Phenylacetic Acid, p-Cresol, Pivalic Acid,

Propanal, Styrene, Tetradecane, Thiophene,
Tolualdehyde, m-Xylene

Breath 1–116 ppb >200 ppb [20,39–42]
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Table 1. Cont.

Disease VOC Biomarker Sample
Source

Concentration
(Normal)

Concentration
(Diseased) Reference

Head and Neck
Cancer

1-Butanol, 1-Decen-3-One, 1-Heptene,
1-Methyl-4-2-Methylpropyl-Benzene,

1,1,4,5,6-Pentamethyl-2,3-Dihydro-1H-Indene,
1,3-Bis-(1,1-Dimethylethyl)-Benzene, 2-Butanone,

2-Ethenylfuran, 2-Ethyl-1-Hexanol,
2-Methyl-5-(Methylthio)Furan, 2-Methylbutanal,

2-Methylbutanoic Acid, 2-Methylfuran,
2,2-Dimethyl-Decane, 2,2-Dimethyl-Propanoic Acid,

2,3-Dichloro-Benzeneamine, 2,4-Dimethylfuran,
2,5-Dimethylfuran, 2,6-Dimethyl-7-Octen-2-Ol,

3-Heptanone, 3-Hexanone, 3-Methyl-2-Pentanone,
3-Methylbutanal, 3-Methylfuran,

4-Ethyl-1,3-Benzenediol, 4-Heptanone,
4,6-Dimethyl-Dodecane, 4-Methyl-2-Heptanone,

4-Tolualdehyde, Acetic Acid, Acetone, Benzaldehyde,
Benzyl Alcohol, Benzyl Chloride, Camphor,

Decamethylcyclopentasiloxane, Dodecane, Dimethyl
Disulphide, Dimethyl Trisulfide, Ethylbenzene, Furan,

Hydrogen Cyanide, Hexanal, Hexanone, Isoprene,
Linalool, Limone, Methyl Ethyl Ketone, Methyl

Methacrylate, 2-Methylthiophene, Nonanal, Octanal,
p-Cresol, p-Xylene, Phenol, Propanal, Styrene,

Tetrahydrolinalool, Terpinolen, Thiophene,
Trans-Calamenene, Toluene

Breath, Urine >1 pbb <1 pbb [16,43–45]

Breast
Cancer

1,1,3,3-Tetramethylurea, 2-Butanone, 2-Butyloctanol,
2-Cyclohexen-1-One, 2-Dodecanone,

2-Ethyl-1-Hexanol, 2-Butoxy-ethanol, 2-Heptanone,
2-Methylbutanoic Acid,

2-Methyl-1,2-Bis(Trimethylsiloxy)-Propane,
2-Methyl-1-Propenylbenzene, 2-Methylfuran,

2-Nonanone, 2-Pentanone, 2-Pentylfuran,
2,2-Dimethylbutane, 2,2-Dimethyl Decane,

2,3-Dimethylhexane, 2,4-Dimethylbenzaldehyde,
2,5-Dimethylfuran, 2,6-Dimethyl-2,4,6-Octatriene,

3,3-Dimethyl Pentane, 3,4-Dimethyl-2,4,6-Octatriene,
3,4-Dimethyl-2-Hexanone, 3-Hexanone,

3-Methyl-2-Heptanone, 3-Methyl-3-Buten-1-Ol,
3-Methyl-3-Butenol, 3-Methylpyridine,

3-Methoxy-1,2-Propanediol, 4-Ethyl-1,3-Benzenediol,
4-Hydroxybutanoic Acid, 4-Methyl-2-Heptanone,

5-Butylnonane, 5-Methyl-3-Hexanol, Alkanes, Allyl
Isothiocyanate, Ammonium Thiocyanate, Acetic Acid,
Acetaldehyde, Acetone, Acetophenone, Benzaldehyde,
Benzenecarboxylic Acid, Benzoic Acid, Benzophenone,

Benzocyclobutene, Benzyl Alcohol, Butyl Acetate,
Cadalene, Carbon Disulphide, Cyclohexanol,
Cyclohexanecarboxylic Acid, Cyclohexanone,

Cyclooctylmethanol, Cyclopentane, Cyclopentanone,
D-Limonene, Decanoic Acid, Dodecane, Dimethyl
Disulfide, Dimethyl Trisulfide, Dimethylacetamide,
Ethanol, Ethyl Acetate, Ethyl Benzene, Ethyl Ether,

Ethyl Propanoate, Ethylene Carbonate, Furan,
Furfural, Guaiacol, Heptanoic Acid, Hexadecane,

Hexanal, Hexanoic Acid, Hexamethyldisilane,
Isobutyric Acid, Isoprene, Isoterpinolene, L-Alanine,
L-Isoleucine, L-Proline, Limonene, Menthomenthol,
Menthol, Methanol, Methanethiol, Methyl Acetate,
Methyl Chloride, Methyl Salicylate, Methylacrylic

Acid, Naphthalene, Nonanal, Octanoic Acid, Pentane,
Pentanoic Acid, Phellandranal, Phenol, Polycyclic

Aromatic Hydrocarbons, Prehnitene, Propanal,
Propanoic Acid, Pyrrolidine, Styrene, Tetradecane,
Tetrahydrolinalool, Tetramethylsilicane, Toluene,

Trans-2-Butene Oxide, Trimethyl Trisulfide,
1,2-Propanediol, 1,2,4-Trimethylbenzene,

1,3-Dimethylbenzene, 1,4-Cineole,
1,4-Dimethoxy-2,3-Butanediol, 1,5-Cyclohexadiene,

1-Hexadecanol, 1-Octanol, 1-Propanol,
2,2-Dimethylbutane, 2,3,4-Trimethylheptane,

2,3,6-Trimethyloctane, 2-Ethenylfuran,
2-Methoxythiophene, 3-Ethylcyclopentanone,

3-Methyl-2-Pentanone, 3-Methylfuran,
3-Methylthiophene, 4,6-Dimethyl-Dodecane,

4-Methyl-2-Hexanone, 6-Methyl-5-Hepten-2-One,
α-Pinene, α-Terpinolene.

Breath, Cell Lines,
Urine 4–10 ppm 8–50 ppm [16,20,29,39,46–

48]



Sensors 2024, 24, 7263 5 of 34

Table 1. Cont.

Disease VOC Biomarker Sample
Source

Concentration
(Normal)

Concentration
(Diseased) Reference

Colon
Cancer

1,1,4,4-Tetramethyl-2,5-Dimetylene-
Cyclohexane,

1,2-Dihydro-1,1,6-Trimethyl-Naphthalene,
1,2-Pentadiene, 1-Octanol,

1,3-Dimethylbenzene, 1,4-Dimethylbenzene,
1,3-Bis(1-Methylethenyl) Benzene, 2-Amido-5-

Isopropyl-8-Methyl-1-Azulenecarbonitrile,
2-Ethylhexanol,

2-Methyl-3-Phenyl-2-Propenal,
2,2-Dimethyldecane, 2,7-Dimethylquinoline,

3-Ethylpentane,
3-Hydroxy-2,4,4-Trimethylpentyl

2-Methylpropanoate, 3-Methylpentane,
4-Ethyl-1-Octyn-3-Ol, 4-Methyl-2-Pentanone,

4-Methylphenol, 4-Methyloctane,
6,10-Dimethyl-5,9-Undecadien-2-One,

6-t-Butyl-2,2,9,9-Tetramethyl-3,5-Decadien-7-
Yne,

6-t-Butyl-2,2,9,9-Tetramethyl-3,5-Decadien-7-
Yne, Acetic Acid, Acetaldehyde, Acetone,
Acetyloxime-Pyridine Carboxaldehyde,
Allylisothiocyanate, Ammonia, Anisole,
Benzoic Acid, Benzaldehyde, Butanol,

Butanoic Acid, Butyl Hydroxy Toluene,
Butylated Hydroxytoluene, Carbon Disulfide,

Cyclohexane, Cyclohexanone,
Cyclooctylmethanol, Dodecane, Dodecanoic
Acid, Ethanol, Ethyl Acetate, Ethylbenzene,

Ethylhexanol, Ethylaniline, Hexana, Heptanal,
Hydrogen Sulphide, Indole, Methylbenzene,

Methylcyclopentane, Methylcyclohexane,
Nonanal, Octanoic Acid, Pentanoic Acid,
Phenol, p-Cymene, Propanal, Propanol,

Tetradecane, Tridecane.

Breath, Blood,
Feces, Urine Not Reported Not Reported [16,20,48,49]

Prostate Cancer

1-(2,4-Dimethylphenyl)-3-(Tetrahydrofuryl-
2)Propane, 2-Acetylpyridine, 2-Butanone,

2-Eethylhexanol, 2-Hexanone, 2-Pentanone,
2,2-Dimethyl Decane,

2,5-Dimethylbenzaldehyde, 3-Carene,
3,5-Dimethylbenzaldehyde, 3-Methylphenol

(m-Cresol), Acetaldehyde, Aldehydes,
Estradiol, Furan, Hexanal, Indole,

Isoterpinolene, Linalool, Methyl Butyrate,
Phenol, Phenylacetaldehyde,

Phenylpropionaldehyde, Pentanal, Propyl
Propionate, Theaspirane, Terpinen-4-ol,

Toluene, p-Xylene, 2,6-Dimethyl-7-Octen-2-Ol,
2-Amino-5-Isopropyl-8-Methyl-1-

Azulenecarbonitrile.

Breath, Urine Not Reported Not Reported [16,20,50–52]

Liver Cancer

1-Octen-3-Ol, 1,4-Pentadiene, Acetic Acid,
Acetone, Allyl Methyl Sulfide, Camphene,
Cyclopentane, Dimethyl Sulfide, Ethanol,

Hexanal, Methane-Sulfonyl Chloride,
Methylene Chloride, Octane, Phenol,

2-Pentanone, 2,3-Di-Hydro-Benzofuran

Breath, Blood 0.5–1.5 ppb 1.0–4.5 ppb [16,17,53]

Gastro-Esophageal
Cancer

Acetaldehyde, Acetone, Acetic Acid, Ethanol,
Ethyl Phenol, Formaldehyde, Hexanoic Acid,

Hydrogen Cyanide, Hydrogen Sulfide,
Methanol, Methyl Phenol, Phenol, Propanol.

Breath, Urine 1–28 ppbv >28 ppbv [25,42,54]

Leukemia

2,4-Dimethylheptane, Benzene, 4-Methyl
decane, Chloroform, 3,7-Dimethyl dodecane,

Hexanol, Cyclohexanol, Hexadecane,
p-Cresol, Dimethyl Disulphide

Cell Lines, Urine Low Levels 2× to 3× higher [50,55,56]
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Table 1. Cont.

Disease VOC Biomarker Sample
Source

Concentration
(Normal)

Concentration
(Diseased) Reference

Renal Cell Carcinoma

2-Oxopropanal, (1Z)-1-Propen-1-ylbenzene
(a-methylstyrene), 2,5,8-Trimethyl-1,2,3,4-

tetrahydronaphthalen-1-ol,
[(3S,8R,9S,10R,13S,14S)-10,13-Dimethyl-17-

oxo-1,2,3,4,7,8,9,11,
12,14,15,16-

dodecahydrocyclopenta[a]phenanthren-3-yl]
hydrogen sulphate (DHEA-S), 2-Oxopropanal

(Pyruvaldehyde), 2-Methylpropan-2-ol,
2-Ethoxy-2-methylpropane,

2-Methylpropan-1-ol (Isobutanol),
2-Methylbutan-2-ol, Pentane-2-one,
2,2,5,5-Tetramethyltetrahydrofuran,

1-Methyl-1,4-cyclohexadiene,
4-Methylheptan-2-one, Phenol,

2-Pentylfuran†,
3,7,7-Trimethylcyclohept-3-ene (2-Carene),

2,2-Dimethylpropionic acid butyl ester,
6-Methyl-5-hepten-2-ol,

1-Methyl-4-(1-methylethenyl)-cyclohexene
(Limonene), 1,2,3,4-Tetrahydro-1,5,7-

trimethylnaphthalene†,
1-(2-Methylphenyl)-2-propen-1-one,

1,1,6-Trimethyl-1,2-dihydronaphthalene
(TDN), 2-Methoxy-4-prop-2-enylphenol

(Eugenol),
(E)-1-(2,3,6-Trimethylphenyl)buta-1,3-diene,
1,1,5,6-Tetramethyl-1,2-dihydronaphthalene,
2,5,8-Trimethyl-1,2,3,4-tetrahydronaphthalen-

1-ol,
[(2E,4E,6E,8E)-3,7-dimethyl9-(2,6,6-

trimethylcyclohexen-1-yl)nona-2,4,6,8-
tetraenyl] acetate (Retinol acetate),

[(3S,8R,9S,10R,13S,14S)-10,13-Dimethyl-17-
oxo1,2,3,4,7,8,9,11,12,14,15,16-

dodecahydrocyclopenta[a] phenanthren-3-yl]
hydrogen sulphate (DHEA-S)

Urine Not Reported Not Reported [57]

Metabolic Diseases

Diabetes Acetone, Isoprene, Isopropanol, Ethanol,
Methyl nitrate Breath 0.85–1.8 ppm 0.39–0.8 ppm [16,17,20,25]

Hyperglycemia Ethylbenzene, Methyl Nitrate, Xylene Breath Not Reported Not Reported [16]

Phenylketonuria Phenylacetic acid Sweat, Urine, Skin Not Reported Not Reported [16]

Methionine
Malabsorption

Syndrome
α-hydroxybutyric acid Breath, Skin Not Reported Not Reported [16]

Hypermethioninemia Dimethyl Sulfide Breath, Urine Not Reported Not Reported [16]

Trimethylaminuria Trimethylamine Breath, Sweat Not Reported Not Reported [16]

Other Diseases

Asthma

2-Hexanone, 3,6-Dimethyldecane,
8-Isoprostane, Ammonia, Decane, Ethane,
H2O2, Hexane, Nonal, Nonane, Pentane,

Propanol, Tetradecane

Breath 8–16 ppm 10–30 ppm [16,20,25,46]

Chronic Obstructive
Pulmonary Disease

2-Acetylpyridine, 2-Butyloctanol,
2-Dimethyl-heptane, 2-Ethylmethyldecane,

2-Methylbutanoic Acid, 2-Pentanone,
2,4,4-Trimethylpentene, 2,4-Dimethylheptane,
2,6-Dimethyloctane, 3,4-Ethylmethylhexane,

3-Hexanone, 3-Methylcyclopentanone,
4-Heptanone, 4-Methyl-Octane,

4,7-Dimethyl-undecane, Acetaldehyde,
Alkanes, Aldehydes, An Unidentified

C16-Hydrocarbon, Butanal, Butane,
Butylatedhydroxytoluene, Cyclohexane,
Cyclohexanone, CO, Decane, Dimethyl

Disulphide, ∆-Dodecalactone, Ethane, H2O2,
Heptanal, Heptane, Hexadecane,

Hexylethylphosphonofluoridate, Indole,
Isoprene, Isopropanol, Limonene,

Methylisobutyrate, Methylpropylsulphide,
Nonanal, Nonanoic Acid, Nitro Tyrosine,

Octane, Pentane, Propanal, Propanoic Acid,
Tetradecane, Vinylpyrazine

Breath Low or negligible Elevated
levels [16,20,46,58]
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Table 1. Cont.

Disease VOC Biomarker Sample
Source

Concentration
(Normal)

Concentration
(Diseased) Reference

Halitosis

Allyl Isothiocyanate, Allyl Mercaptan, Allyl
Thiocyanate, Ammonia, Carbon Disulfide,

Dimethyl Amine, Dimethyl Pentasulfide, Dimethyl
Sulfide, Ethyl Propyl Sulfide, Hydrogen Sulfide,

Methyl Mercaptan, Methyl Thiolacetate, N-Butyric
Acid, Propyl Mercaptan, Skatole, Trimethyl Amine,

S-Methyl Pentanethioate

Breath, Saliva 250 ppb 400 ppb [16,59]

Inflammatory
Bowel Disease

Acetic Acid, Acetaldehyde, Acetone, Acetonitrile,
Acrylonitrile, Ammonia, Butanal, Butane, Butanol,

Butyric Acid, Carbon Disulfide, Cyclopentane,
Cumene, Decanal, Ethyl Cyanoformate, Ethyl

Phenol, Ethane, Ethanol, Hexanoic Acid, Hexanal,
Hexadecanal, Isoprene, Methyl Cyclopentene,
Methyl Ethyl Ketone, Methyl Nitrate, Methyl

Phenol, Methyl Sulfide, Nonanal, Octanal, Octane,
Pentadecene, Pentanal, Pentane, Pentanoic Acid,

Pentanol, Phenol, Propanoic Acid, Propane,
Propanol, Propene, Propyl Ester, Pyridine,

1-Butoxy-2-Propanol, 1-Decene, 1-Heptene,
1-Nonene, 1-Octene, 2,2,4-Trimethylhexane,

2,2,4-Trimethylpentane, 2,4-Dimethylpentane,
3-Methyl-1-Butanol, 3-Methyl-1-Butyl Ester,

3-Methylhexane, Dimethyl Disulfide, Dimethyl
Sulfide, Dimethylpyridine, Ethylene, Heptadecane,
Hydrogen Cyanide, Hydrogen Sulfide, Limonene,
Methanimine, 1-Hydroxy-2-Propanone, Methanol,
Nitrous Acid, Toluene, Triethyl Amine, Trimethyl

Amine, Trimethylpentane, Undecanal

Breath Not Reported Not Reported [16,48]

Heart failure NO Breath Not Reported Not Reported [16]

Hepatic
encephalopathy 3-methylbutanol; Limonene; Methyl Mercaptan Blood, Breath Not Reported Not Reported [16]

Liver failure

Acetic Acid, Acetaldehyde, Ammonia, Ethane,
Ethanol, Limonene, Methanol, Methylmercaptan,

Pentane, Propionic Acid, Trimethylamine,
Dimethyl Sulfide, Carbonyl Sulfide

Breath 2–836 ppb >1000 ppb [16,41,60]

Chronic Renal
Failure/Uremia

1,8-Cineol, 2-Butanone, 2-Ethyl-1-Hexanol,
2-Methyl Pentane, 2-Methylpropyl Methyl Ketone,

2,4-Dimethyl-Heptane, 2,2,6-Trimethyl-Octane,
3-Carene, 3-Heptanone, Acetaldehyde, Acetone,
Acetic Acid Ethyl Ester, Acetophenone, Azulene,

Cyclohexanone, Decane, Dihydro-2(3H)-Furanone,
Dimethylamine, Dimethyl Selenide, Ethyl

Cyclohexane, Ethylene Oxide, Heptane, Isoprene,
m-Xylene, Myrcene, n-Nonane, Octadecane,

Octanal, o-Xylene, Pentadecane, Phenol Alcohol,
p-Xylene, Sulfur Dioxide, Trichloroethene,

Trimethylamine, γ-Terpinene

Breath 250 ppb 400 ppb [16,17,61]

Schizophrenia 1-Hexanol, Carbon Disulfide, Ethane,
N-Butylamine, Pentane Breath 5–140 ppb Decreased

Levels [16,46,62]

Cystic fibrosis Hydrogen Cyanide, Methyl Thiocyanate Breath 0–12 ppb Not Reported [25,46,63]

Table 2. Summary of main VOC for infectious diseases.

Disease Biomarker Concentration
(Normal)

Concentration
(Diseased)

Sample
Source Reference

COVID-19

2-Butanone, 2,2-Dimethyloctane,
2,2,4-Trimethylheptane, 2-Pentyl Furan,

3,6-Methylundecane, Acetaldehyde, Acetone,
Benzaldehyde, Butane, Butene, Butyraldehyde,
Camphene, Carbon Dioxide, Decane, Decene,

Dimethyldecane, Dodecane, Ethan-1-ol, Ethanol,
Ethyl Butanoate, Heptanal, Iodobenzene, Isoprene,
Isopropanol, Methylcyclopentane, Methyldecane,
Methylpent-2-Enal, Nonanal, Nitrogen Monoxide,

Nitrogen Oxide, Octanal, Propanol, Propionic
Acid, SARS-CoV-2 RBD Spike Protein, Tridecane,

and Trimethyloctane

0.45 to 2.34 ppbv 3 to 10 ppbv Breath [64–71]
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Table 2. Cont.

Disease Biomarker Concentration
(Normal)

Concentration
(Diseased)

Sample
Source Reference

Influenza

1-Butyl-2-Ethylcyclopentane, 1-Docosene,
1-Decanal, 1-Hexadecene, 1-Octadecene,
1-Tetradecene, 1-Phenoxypropan-2-Ol,

1,2,6,6-Tetramethyl-1,3-Cyclohexadiene,
2-Butanamine, 2-Deoxyecdysone 22-Phosphate,

3-Methyl-Butane, 3-Methyl-Pentane,
4-Quinolinecarboxaldehyde, 4-Tetradecene,
5-(1-Methylpropyl)-Nonane, 6-Dodecene,

6-Methyl-4E-Decene, 7-Hexadecene, 7-Octadecene,
9-Eicosene, 9-Hexadecenoic Acid, Acetaldehyde,
Acetone, Alpha-Pinene, Benzoic Acid, Benzoic

Acid Alkane Ester I, Benzoic Acid Alkane Ester II,
Decanal, Dimethyl-2-Propylcyclohexane,
Dodecanal, Dodecyl Nonyl Ether, Ethyl
4-Ethoxybenzoate, Hexanal, Heptane,

Homotyrosine, L-Tyrosine Methyl Ester, Linalyl
Propionate, Lubiminol, Octadecanoic Acid,

Octanal, Propanol, N-Propyl Acetate, Tetradecanal,
Tridecadienoic Acid, Tridecynoic Acid,

Trimethyl Octene

1–100 ppb >500 ppb Breath, Cell
Culture [72–75]

Tuberculosis

1-Methyl-Naphthalene, 1,2,3-Trimethylbenzene,
1,4-Dimethyl-Cyclohexane, 1-Nitroadamantane,

1-Propynylbenzene, 2-Ethylhexyl Isobutyl Sulfite,
2-Pinene, 2,2,3-Trimethylhexane,

2,2,4,6,6-Pentamethylheptane,
2,3,6-Trimethylheptane, 2,3,6-Trimethylnapthalene,

2,5-Dimethyldecane, 3-Heptanone, 3-Pentanol,
3-Hydroxy-3-Methylbutanoic Acid,
4-Ethyl-2,2,6,6-Tetramethylheptane,

4-Methyl-1-Decene, 4-Tert-Amyl Phenol, Azulene,
Benzophenone, Butyl Acetate, Cyclohexane,

Cymol, Ethyl Butyrate, Heptanal, Indane,
Isopropyl Acetate, Naphthalene, O-Xylene,

beta-Phellandrene

Low or negligible 2 to 5 ppbv Breath, Cell Culture,
Urine [76,77]

Chronic hepatitis

1-Decene, 1-Heptene, 1-Nonene, 1-Octene,
2-Propanol, Acetaldehyde, Acetone, Acrylonitrile,
Ammonia, Benzene, Carbon Disulfide, Dimethyl

Sulfide, Ethane, Ethanol, Hydrogen Sulfide,
Isoprene, Pentane, Triethyl Amine, Trimethyl

Amine, 3-Methylhexane

0.45 to 1.2 ppbv 1.08 to 2.08 ppbv Breath [75,78,79]

Sinusitis,
pneumonia

1-Vinylaziridine, 2-Aminoacetophenone,
2-Methylbutyric Acid, 2-Nonanone, 2-Propanol,
Acacetamide, Acetaldehyde, Acetone, Acetoin,

Acetic Acid, Benzoic Acid, Benzyl Alcohol,
Benzophenone, Butan-1-ol, Butyrolactone,

Caprolactam, Dimethylsulfide, Dimethylsulfone,
Furfuryl Alcohol, Hydroxyacetone, Indole,

Isobutyric Acid, Isovaleric Acid, Methyl
Thiocyanate, Nitrogen Oxide, p-Cresol,
p-Ethylphenol, Phenol, Propanoic Acid,

3-Hydroxy-2-Butanone, 3-Methyl-1-Butanol,
3-Methylpyrrole, Pyrrole, 1-Undecene

0.5 to 1.5 ppbv 1 to 10 ppbv Sinus
Mucus [80,81]

Bronchitis,
pneumonia

Butraldehyde, octyle acetate, tridecanol,
dodecanal, butanoic acid,

N-acetyl-S-(4-hydroxy-2-butenyl)-l-cysteine,
N-acetyl-S-(2-carbamoylethyl)-l-cysteine,

N-acetyl-S-(2-cyanoethyl)-l-cysteine,
N-acetyl-S-(N-methylcarbamoyl)-l-cysteine,

N-acetyl-S-(benzyl)-l-cysteine,
N-acetyl-S-(3-hydroxypropyl-1-methyl)-l-cysteine,

Benzene, 1,4-Dichlorobenzene, Ethylbenzene,
o-Xylene, Styrene, Trichloroethene, Toluene,

p-Xylene

0.5 to 1 ppbv 1 to 2 ppbv Blood, Urine [82,83]

The ultimate goal of research in this field is to develop non-invasive, cost-effective
diagnostic methods that can replace traditional invasive, complex, and time-consuming
approaches. These new methods aim to enable early detection of both infectious and
non-infectious diseases, as well as continuous health monitoring, especially in resource-
limited areas where traditional methods are not feasible. Beyond healthcare, VOC detection
technologies have potential applications in environmental and industrial monitoring, where
they could be used to detect pollutants or hazardous substances.
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This review focuses on innovative analytical methods that go beyond traditional off-
line sample collection and laboratory analysis, with a particular emphasis on on-site and in
situ techniques, as shown in Scheme 1. It provides an overview of these methods, high-
lighting significant advancements and their primary functions. Although there are various
ways to categorize VOC characterization, this review is organized around the different
analytical approaches used for detection. To aid ongoing research, in this review we present
a comprehensive summary of biomarkers associated with a range of diseases, based on
studies from the past decade involving various biofluids. We also include tables outlining
the tentative chemical profiles of VOCs linked to both infectious and non-infectious dis-
eases, identified through spectrometry techniques. These tables offer valuable reference
materials for researchers working to bridge the gap between laboratory-based discoveries
and practical diagnostic applications.
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2. Screening Methods for VOC Analysis

A variety of gas sensors and sensor arrays are employed for detecting volatile organic
compounds (VOCs). When assessing the efficacy of VOC gas sensors and their respec-
tive sensing methodologies, it is vital to consider several indicators that determine their
performance. Key metrics include sensitivity—the sensor’s ability to detect the lowest
concentration of gases; selectivity—the sensor’s ability to identify specific gases within a
gas mixture; reversibility—whether the sensor can return to its baseline state after detecting
gases; as well as response time, energy consumption, and fabrication costs. These metrics
not only define the sensor’s functionality but also influence its design and application,
ensuring that the sensors are not only effective but also economical and durable. The
discussion and comparison of these factors will be elaborated in Section 4. Furthermore, for
a gas sensor to be suitable for commercial use, it must demonstrate consistent performance
over time. Factors contributing to a sensor’s instability include design imperfections, phase
shifts in materials, and external environmental impacts. To mitigate these issues, strategies
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involve selecting materials that are both chemically and thermally stable and implementing
advanced technological processes during the sensor’s surface pre-treatment.

The upcoming discussion will provide an in-depth analysis of the sensitivity and
selectivity of various VOC sensing methods, underscoring their crucial roles in the precise
detection and characterization of volatile organic compounds.

2.1. Methods Based on Variation of Electrical Properties
2.1.1. Electrochemical Sensors

Electrochemical sensors detect volatile organic compounds (VOCs) by reducing or
oxidizing them through redox reactions at the working electrode interface within an elec-
trochemical cell, which may contain a solid, liquid, or gaseous electrolyte or ionic con-
ductor. The operation of these sensors hinges on the electrochemical reactions at the
electrodes, where the transfer of charge and subsequent flow of current directly correlate
with the concentration of VOCs. These sensors are versatile in their operational modes,
offering amperometry-based detection, which measures the flow of redox current, and
potentiometry-based detection, which assesses potential differences. Additionally, they can
perform cyclic voltammetry, a technique that provides unique oxidation or reduction peaks
for each VOC, enabling highly selective and precise detection. Innovations in electrochemi-
cal sensor (ECS) materials have significantly enhanced sensor performance and broadened
their applications. ECS materials are specially designed to detect and measure specific
chemical substances by facilitating electrochemical reactions that produce measurable
electrical signals. For instance, Silverster noted the advantages of using ionic liquids as
electrolytes, highlighting their wide potential range and ability to extend sensor lifespan
under dry conditions and aiding in device miniaturization [84]. Miha et al. explored the
use of polypyrroles as a sensor material, discussing the impact of doping, surface modifica-
tions, and side-chain selection on sensor efficiency [85]. Kumar et al. discussed the use of
metal–organic frameworks in ECSs, detailing strategies like doping and functionalization
to optimize detection capabilities [86]. These sensors are celebrated for their selectivity,
accuracy, and reliability in detecting VOCs in various environments, from industrial set-
tings to healthcare. Their ability to perform functions like amperometry, potentiometry,
and cyclic voltammetry. Moreover, their versatility extends to applications in air quality
monitoring, food safety, and even wearable health devices that monitor biomarkers in
bodily fluids like sweat, showcasing their broad utility and the continued advancement in
electrochemical sensing technology [87]. The endless selection of sensor geometry, configu-
rations, and electrode materials renders these sensors applicable to many environments
while maintaining broadband detection. These sensors have numerous advantages: low
detection limit, low power consumption, rapid response times, simple fabrication, and
low cost [88]. However, their main limitations are their limited shelf life and low baseline
stability, leading to degraded performance over time [89].

Ardisana et al. [90] developed a lactate biosensor using a screen-printed carbon elec-
trode modified with lactate oxidase and a nanocomposite of carbon nanofibers functional-
ized with platinum. This biosensor exhibited a linear detection range of 25–1500 µM and
was successfully applied to lactate measurement in sweat samples. Despite its strong perfor-
mance, the authors concluded that sweat lactate is not a reliable indicator for determining
the lactate threshold.

In a more recent study, Kim et al. [91] introduced a non-invasive mouthguard biosensor,
modified with Prussian blue and lactate oxidase, for continuous monitoring of salivary
lactate. While this mouthguard biosensor demonstrated significant potential as a wearable
device for real-time fitness monitoring, the authors did not establish a correlation between
salivary and blood lactate concentrations before or after physical activity.

Lv et al. designed an electrochemical sensor based on zirconia nanofibers for methyl
parathion detection which showed lower levels of detection, acceptable recovery, and
good stability. Their fabrication process can be seen in Figure 1. While the results are
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promising, the stability of these sensors needs to be further improved to achieve long-term
usability [92].

In summary, electrochemical sensors offer key advantages such as high sensitivity, low
power consumption, room temperature operation, and rapid, real-time detection, making
them ideal for portable monitoring. However, they have limitations in sensitivity and
selectivity, with limited baseline stability and cross-sensitivity to other gases. Additionally,
a shorter life and higher maintenance requirements can impact long-term usability. Despite
these drawbacks, they remain effective for fast, cost-efficient monitoring applications where
very high selectivity is not critical.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 37 
 

 

 
Figure 1. Fabrication of PEDOT/YSZ@rGO/SS electrode [92]. Reprinted from [92], Copyright (2022), 
with permission from Elsevier. 

2.1.2. Chemiresistors 
Chemiresistors, which first gained attention in the 1960s for their potential in VOC 

sensing, utilize thin films of electrically conductive polymers that are sensitive to the pres-
ence of volatile organic compounds (VOCs) in the vapor phase. These films undergo vol-
umetric expansion in response to VOC exposure, a process quantitatively measured 
through variations in electrical resistance. This swelling effect is reversible, enabling the 
device to return to its baseline state once the VOCs are no longer present, thus allowing 
for repeated use without the need to replace any components [93]. Arrays of these minia-
ture, low-energy devices have demonstrated efficacy in detecting multiple chemical con-
taminants. Notably, chemiresistors are devoid of moving parts and require only basic di-
rect current (DC) circuitry to monitor changes in resistance. These devices are distin-
guished by several advantages that have facilitated their adoption in commercial settings, 
such as their straightforward manufacturing process, a diverse array of effective sensing 
materials, and simple operational mechanisms. 

Over the years, the materials used in chemiresistors for detecting VOCs have broad-
ened significantly. These include metal oxides, metal nanoparticles, conductive polymers, 
inorganic semiconductors (such as phosphorene), carbon-based materials, hybrids and 
composites, and ionic conductors. For instance, chemiresistors that incorporate mono-
layer-capped nanoparticles modify their resistance by altering the spacing between nano-
particles as they interact with VOCs, thereby providing a measure of the VOC concentra-
tion or composition. Conversely, resistance changes in chemiresistors using conductive 
polymers are driven by processes like swelling, doping, and protonation when exposed 
to VOCs. Kumar et al. showed that using the metal oxide palladium increased the surface-
to-volume ratio and improved sensing performance [94]. Figure 2 showcases the fabrica-
tion steps of the device. 

 

Figure 1. Fabrication of PEDOT/YSZ@rGO/SS electrode [92]. Reprinted from [92], Copyright (2022),
with permission from Elsevier.

2.1.2. Chemiresistors

Chemiresistors, which first gained attention in the 1960s for their potential in VOC
sensing, utilize thin films of electrically conductive polymers that are sensitive to the
presence of volatile organic compounds (VOCs) in the vapor phase. These films undergo
volumetric expansion in response to VOC exposure, a process quantitatively measured
through variations in electrical resistance. This swelling effect is reversible, enabling the
device to return to its baseline state once the VOCs are no longer present, thus allowing for
repeated use without the need to replace any components [93]. Arrays of these miniature,
low-energy devices have demonstrated efficacy in detecting multiple chemical contami-
nants. Notably, chemiresistors are devoid of moving parts and require only basic direct
current (DC) circuitry to monitor changes in resistance. These devices are distinguished by
several advantages that have facilitated their adoption in commercial settings, such as their
straightforward manufacturing process, a diverse array of effective sensing materials, and
simple operational mechanisms.

Over the years, the materials used in chemiresistors for detecting VOCs have broad-
ened significantly. These include metal oxides, metal nanoparticles, conductive polymers,
inorganic semiconductors (such as phosphorene), carbon-based materials, hybrids and
composites, and ionic conductors. For instance, chemiresistors that incorporate monolayer-
capped nanoparticles modify their resistance by altering the spacing between nanoparticles
as they interact with VOCs, thereby providing a measure of the VOC concentration or
composition. Conversely, resistance changes in chemiresistors using conductive polymers
are driven by processes like swelling, doping, and protonation when exposed to VOCs.
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Kumar et al. showed that using the metal oxide palladium increased the surface-to-volume
ratio and improved sensing performance [94]. Figure 2 showcases the fabrication steps of
the device.
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Nanomaterials remain a popular choice in this research area due to their large surface
areas and enhanced sensitivity, highlighting the continuous evolution and application
of chemiresistors in sensing technologies [95–97]. Srivastava et al. produced successful
results incorporating graphite oxide to fabricate toluene sensors, which showed excellent
selectivity and sensitivity while maintaining fast response and recovery times [98]. While
the use of nanomaterials enhances the sensors’ sensitivity, it also introduces challenges such
as non-uniform surfaces, complex processes, and high costs. Materials like graphene are
also susceptible to oxygen absorption, blocking activation sites and degrading performance.
Methods to counter these effects, such as UV irradiation, have been shown to be promising
in improving the lifespan and performance of these altered sensors [99]. Nonetheless,
chemiresistors have shown promise in various fields.

Metal oxide semiconductor (MOS) sensors are a specific type of chemiresistor and one
of the most prevalent devices for detecting volatile organic compounds (VOCs), often used
in electronic noses. These sensors utilize a metal oxide thin film whose resistance and con-
ductivity change upon interaction with ambient gases. They measure oxidizing or reducing
compounds based on the chemisorption of oxygen on the semiconductor surface, which
alters the electron availability. N-type MOS (e.g., TiO2) decreases in conductivity when
exposed to oxidizing VOCs and increases with reducing ones, while P-type sensors (like
NiO) operate in the reverse manner. The performance of MOS sensors can be influenced
by composition, surface area, doping, temperature, and humidity. Their utility extends
across various applications, including detecting bacterial infections and viral diseases in
plants [100–102].

In a broader context, research on MOS sensors has significantly advanced, focusing
on enhancing their selectivity and sensitivity through innovative approaches such as dop-
ing with rare earth elements or using nanostructured metal oxides. These advancements
have led to the development of sensors capable of operating at lower temperatures and
providing more precise detections. Despite their broad application and improvements in
sensor technology, MOS sensors still face challenges like sensor drift due to environmental
changes and a generally slow response time due to the kinetics of gas adsorption and
desorption. Recent research has focused on enhancing MOS sensors through innovative
fabrication methods, including nanostructuring which improves selectivity and operational
temperature. Acharyya et al. discriminated VOCs using a tin-oxide-based hollow sphere
MOS, calculating kinetic interactions for enhanced sensitivity [103]. Fois et al. increased
selectivity by doping metal oxides with rare earth elements [104], while Pargoletti and
Cappelletti achieved performance gains by integrating carbonaceous materials [105]. Addi-
tionally, Baur et al. explored temperature-cycled operations and machine learning to reveal
MOS’s hidden potential [106], and Gao et al. improved the MOS structure with hierarchi-
cally porous designs [107]. Despite their widespread use, MOS sensors have limitations,
such as high power consumption due to their need for high operational temperatures, slow
adsorption and desorption rates leading to lengthy measurement times, and susceptibility
to environmental factors like temperature and humidity.
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Certain nanostructures decrease the melting temperature of MOS, potentially leading
to deformation. Damage is also more likely to occur during fabrication due to the nanos-
tructure’s high surface-to-volume ratio. Song et al. explored using tin oxide nanoflowers
to improve sensing properties while maintaining a simple and low-cost preparation. The
schematic structure of the gas sensor device is presented in Figure 3 [108].
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Nonetheless, they remain valuable in detecting a broad range of VOCs and some
inorganic gases like CO and NOx, although their long-term stability can be an issue [109].
They also offer a balance of durability, portability, and cost-effectiveness, with simple
operation and real-time response capabilities that make them ideal for non-destructive,
on-site applications. While they can detect a broad spectrum of gases, their relatively
low sensitivity and selectivity, along with their sensitivity to humidity and temperature
fluctuations, can limit performance in complex environments. Moreover, their need for
high operating temperatures and fragility during preparation reduces their flexibility.
Nevertheless, chemiresistors remain a practical choice for gas detection where simplicity,
portability, and cost-efficiency are prioritized.

2.2. Methods Based on Variations of Other Properties
2.2.1. Quartz Crystal Microbalance (QCM)

Quartz Crystal Microbalance (QCM) technology is widely recognized for its afford-
ability and accessibility. Operating on the principle of resonance frequency, QCM devices
excel in both liquid and gas sensing applications, offering versatility across industries,
including environmental monitoring, food safety, and healthcare diagnostics. A voltage
is applied to a quartz crystal, initiating oscillation via the reverse piezoelectric effect. The
crystal is subsequently coated with a film analogous to those utilized in Surface Acoustic
Wave (SAW) sensors. When volatile organic compounds (VOCs) adsorb onto the coated
surface, the resultant mass change leads to a measurable shift in the crystal’s resonant
frequency. Owing to their viscoelastic characteristics, ionic liquids have emerged as a
promising coating material for Quartz Crystal Microbalances (QCMs) in recent scientific
investigations [110,111]. Zhang et al. designed a QCM sensor based on a chitosan-halloysite
nanotube composite that improved the sensor’s selectivity and repeatability [112]. Figure 4
shows the preparation process of the CS-HNTs film-coated QCM humidity sensor.
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These coating materials have also improved long-term stability and repeatability; how-
ever, more improvements need to be made to increase sensor lifespan. Additionally, certain
coating materials, such as graphene-based products, may be difficult to fabricate, lack
surface uniformity, or be expensive [113]. The straightforward design of QCM systems has
facilitated the development of multiple commercial modules. However, their reliance on
mass detection for VOC sensing can compromise selectivity due to susceptibility to nonspe-
cific interactions. To address this, QCMs can employ various coating layers, including metal
oxides, polymers, and other materials, to control VOC sensing capabilities [110,114,115].

QCM sensors are known for their long lifespan, low LOD, and ease of modification,
making them versatile and portable. However, they require precise calibration, are sen-
sitive to humidity and temperature, and have a limited measurement range and poor
reproducibility, which can restrict their utility.

2.2.2. Surface Acoustic Wave Sensors

Resonators have emerged as the leading choice for gravimetric VOC sensing due
to their simplicity of fabrication. Surface Acoustic Wave (SAW) devices operate on the
principle of a standing wave formed between interdigitated electrodes on a piezoelectric
material’s surface. Exposure to VOCs alters the frequencies of waves traversing the SAW
device surface, inducing changes in conductivity, stress, mass loading, and viscoelasticity.
Various coating layers with different affinities, including metal oxides, graphene, poly-
mers, and carbon nanotubes, have been employed to enhance the performance of SAW
VOC sensors [116]. Gao et al. introduced a novel SAW variant termed dual transduction
SAW, which detects variations in both mass and resistance within the sensing material. By
leveraging the interplay between these factors, they successfully distinguished between
different VOCs [117]. Viespe et al. demonstrated a significant enhancement in SAW sensor
sensitivity by incorporating nanoparticles into the polymer sensing film [118]. Similarly,
Kus et al. achieved notable sensitivity improvements by employing functionalized gold
nanorods [119]. Palla-Papavlu et al. conducted a comprehensive review focusing on sen-
sitive materials and coating technologies for SAW sensors [120]. Pan et al. developed a
433 MHz passive wireless surface acoustic wave (WSAW) gas sensor for detecting dimethyl
methylphosphonate (DMMP) to address the challenge of long-term monitoring of environ-
mental warfare agents with chemical gas sensors. The sensor features a YZ lithium niobate
(LiNbO3) substrate with metallic interdigital transducers (IDTs) and a DMMP-sensitive
viscoelastic polymer fluoroalcoholpolysiloxane (SXFA) film, operating effectively between
−30 ◦C and 100 ◦C with humidity less than 60% RH. It achieved a lower detection limit
of 0.48 mg/m3 and a sensitivity of 4.63◦/(mg/m3). Notably, the sensor operates without
batteries, can be used in hazardous areas, and is lightweight, small, and capable of with-
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standing harsh environmental conditions. The schematic and working principle of the
sensor are illustrated in Figure 5 [121].

SAW sensors are versatile, portable, and cost-effective, with fast response times and
long lifespans. Like QCM sensors, they are sensitive to temperature, have limited measure-
ment ranges, and suffer from noise and poor reproducibility, which limits their precision
and reliability.
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2.2.3. Thermal Sensor (Pellistors)

Pellistors are solid-state devices designed to detect combustible gases or gases that
exhibit a significant difference in thermal conductivity compared to air. These sensors
feature small catalyst-loaded ceramic “pellets” whose resistance changes in the presence
of target gases, combining the elements of a “pellet” and a “resistor” to form the term
“pellistor”. Typically, the detection limit for calorimetric sensors like pellistors is in the ppm
range. Pellistors are categorized into two types: catalytic and thermal conductivity (TC).
Catalytic pellistors function by measuring the heat generated from the catalytic oxidation
of gas analytes, making them more commonly used in commercial settings. They detect
gases by combusting the target gas, thus measuring specific combustion enthalpies and
allowing for the detection of low concentrations in short response times. However, catalytic
pellistors are sensitive to changes in the environment. On the other hand, TC sensors
operate based on the thermal conductivity of gases, using either a platinum resistance
temperature detector or a thermistor to measure temperature changes induced by gas
interactions. Originally developed as successors to the flame safety lamp for detecting
combustible gases, catalytic sensors offer enhanced accuracy and integration into complex
detection systems. However, they are prone to catalyst poisoning caused by specific
impurities in gas samples, which can lead to a severe and sometimes irreversible reduction
in catalyst activity. Consistent maintenance is required to ensure safe handling of these
sensors [122–124]. To address pellistors’ inadequate sensitivity and responsivity due to
their passive nature, Nemirovsky et al. developed a novel type of thermal sensor called
the thermal transistor MOS (TMOS), using the standard CMOS-SOI process and released
through post-etching [125]. The TMOS offers high responsivity due to its built-in transistor
amplification and subthreshold operation, making it suitable for a wide range of battery-
powered applications. Their paper introduces a new gas sensor, named GMOS, which
is based on TMOS technology. GMOS functions as a catalytic gas sensor, like pellistors,
detecting combustible gases in the air. The use of CMOS-SOI technology and tungsten
metallization allows GMOS to operate at very high temperatures (up to 450 ◦C in testing).
Both the sensors and the readout circuitry are fabricated using the same CMOS-SOI process.
In another study, they focused on understanding the sensor’s performance under high
humidity conditions, using advanced computational fluid dynamics (CFD) simulations
to model the effects of humidity on operating temperature and sensing response. The
cross-section scheme of the GMOS sensing pixel deposited above the buried oxide (BOX) is
shown in Figure 6 [125–127].
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Pellistors are small, cost-effective, and durable, with fast response times, making them
suitable for harsh conditions. However, their moderate limit of detection and sensitivity to
environmental changes necessitates maintenance and calibration, reducing their versatility
in complex environments.
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2.2.4. Optical Methods

Optical chemical sensors are sophisticated devices used to detect and analyze chemical
interactions through the modulation of radiation intensity across infrared, visible, or
ultraviolet spectra. These sensors typically consist of a light source, a substrate or sample
cell where analytes interact with the light, and a detector that captures changes in specific
wavelengths. This technology leverages different optical properties such as absorption,
scattering, and luminescence to identify various chemical substances. In this discussion, we
will explore examples of optical sensors, including nondispersive infrared sensors (NDIRs),
chemiluminescence sensors, colorimetric sensors, and fluorescent VOC sensors, to illustrate
the range and utility of these technologies [128].

Incorporating optical sensors in the detection of volatile organic compounds (VOCs),
fluorescent VOC sensors exemplify precision through their ability to detect subtle changes
in fluorescence emissions. These sensors, which are critical in monitoring low concen-
trations of chemical entities, evaluate parameters such as emission peak shifts, intensity
changes, and fluorescence lifetimes. This capability provides a robust analytical plat-
form suitable for detecting a broad spectrum of VOCs, demonstrating high sensitivity
and specificity essential for various applications [129,130]. The main challenge in fluores-
cent sensor development is their limited anti-interference ability. To improve sensitivity
and reduce the effect of background interference, carbon dots have proven to be promis-
ing [131]. Yang et al. utilized a red emissive carbon dot-based fluorescent sensor to
monitor polarity changes in biological systems with minimal interference from background
fluorescence [132]. Keerthana et al. synthesized dual emissive carbon dots to correct
environmental interference and improve selectivity [133]. In a recent study, Liu et al. de-
veloped a Ni(II)-MOF-based luminescent sensor for the detection of the 3-nitrotyrosine
(3-NT) biomarker and 6-propyl-2-thiouracil (6-PTU) anti-thyroid drug in urine. The sensor
exhibited strong fluorescence at 448 nm upon excitation at 336 nm, showing excellent
sensitivity and selectivity for the target analytes. Notably, the sensor was unaffected by
common urine components, highlighting its potential for non-invasive, real-time diagnos-
tics in disease monitoring and early detection [134]. On a simpler but equally effective front,
colorimetric sensors employ a straightforward optical response to chemical or physical
stimuli. This direct visual cue, augmented by the use of ubiquitous digital color detection
technologies, renders these sensors particularly helpful for immediate on-site analyses and
real-time monitoring. Commonly applied across environmental monitoring, healthcare
diagnostics, and food safety, colorimetric sensors are valued for their simplicity and rapid
response [129,135–138]. Chemiluminescence (CL) sensors are another innovative approach
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within optical sensing technologies. These sensors operate based on the principle of light
emission during chemical reactions, such as those between ozone and various nitrogen or
sulfur-containing compounds. The unique ability of CL sensors to offer exceptionally low
detection limits, alongside their capability to distinguish between different compounds via
specific light emission wavelengths, positions them as highly effective tools for identifying
and tracing environmental pollutants. Integration with analytical methodologies like gas
chromatography further enhances their specificity and sensitivity, making them invaluable
in sophisticated detection systems [139,140].

Ohira et al. utilized CL to measure isoprene levels in human breath, while Mukosera
et al. detected dinitrosyl iron complexes, essential intermediates in NO metabolism, using
ozone chemiluminescence [141]. Zhao et al. introduced a CL method for determining
chemical oxygen demand in water, noted for its environmental friendliness and rapid-
ity [142]. Similarly, Matsumoto measured total ozone reactivity from BVOCs in forest air
using CL [143]. Conversely, the chemiluminescence reaction of ozone can also gauge ozone
concentrations, such as in the atmosphere when using isoprene gas as a reaction partner.

Additionally, nondispersive infrared sensors (NDIRs) provide targeted detection of
gas-phase analytes through the absorption of infrared light, capitalizing on molecular
vibrations and rotations. Unlike conventional infrared spectrometers, NDIR sensors utilize
optical filters instead of diffraction gratings or prisms, allowing for selective analysis of
spectral regions emitted from a broadband source. While NDIR sensors efficiently detect a
variety of common gases, including CO2, CO, NO, NO2, SO2, H2S, and CH4, their semi-
selective nature may lead to challenges in distinguishing overlapping absorption spectra,
necessitating careful calibration and setup. This careful setup often requires expensive and
large instrumentation, making NDIR sensors difficult to miniaturize. Each of these sensor
types leverages unique optical properties to fulfill critical roles in diverse applications,
highlighting the expansive utility and adaptability of optical chemical sensors in modern
analytical and diagnostic practices [144,145].

Tan et al. introduced a multiplexed NDIR gas sensing platform featuring a narrowband
infrared detector array, enabling multi-gas sensing without the need for bulky bandpass
filters and detectors [146]. Similarly, Xu et al. demonstrated a similar system capable of si-
multaneous analysis of multiple automobile exhaust gases [147]. Esfahani et al. showcased
the versatility of NDIRs as sensors in electronic noses, addressing issues such as sensor drift,
poor repeatability, lack of robustness, replicability, and susceptibility to temperature and
humidity effects. A nondispersive infrared (NDIR) sensor system consists of three main
parts: the emitter (IR source), gas flow path, and IR detector can be seen in Figure 7 [148].
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All in all, NDIR sensors offer high stability, low power consumption, and real-time
response, making them suitable for long-term use in portable applications. However, they
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are limited by their inability to miniaturize easily and their sensitivity to environmental
factors, making them more specialized for specific gas detection.

Another optical sensor with promising results is the Raman sensor. These sensors
utilize Raman spectroscopy, a technique that involves using a laser to excite the molecules
in a sample. When the laser interacts with these molecules, the majority of the light scatters
elastically, but a small portion scatters inelastically, causing a shift in wavelength. The
Raman sensor detects these shifts to generate a spectrum, with each peak providing a
‘fingerprint’ of the VOCs present. These sensors have been shown to be highly sensitive,
but they suffer from difficult instrumentation and often require complex algorithms to
process data [149,150]. The specificity of these sensors is partly due to the development
of surface-enhanced platforms. Zhao et al. successfully developed a surface-enhanced
Raman sensor (SERS) for the detection of formaldehyde by incorporating gold nanorods,
achieving a limit of detection as low as 0.86 nM [151]. Xu et al. developed a flat graphene
surface with a plasmonic metal nano-island array that provided increased strong magnetic
hotspots for Raman enhancement and greater stability [152]. Ding et al. developed a novel
film that can be applied to SERS for rapid, in situ detection of carbaryl, providing a low
limit of detection and affordable fabrication [153]. Other methods of sensor enhancement
have been explored. Velez et al. utilized a multimode blue laser diode to enhance trace
gas sensing [154], while Hanf et al. explored utilizing fiber-enhanced Raman spectroscopic
for a versatile gas sensing and breath analyzer [155]. While challenges remain in fully
optimizing these systems, their potential selectivity and specificity make these sensors a
compelling choice.

2.2.5. Photoionization Detectors

Photoionization detectors (PIDs) utilize UV light to ionize gas molecules, effectively
ionizing most organic compounds without affecting the primary components of air. They
can detect a wide range of volatile organic compounds (VOCs) and some inorganic gases
like ammonia and hydrogen sulfide, but they are ineffective with methane and other
very low molecular weight VOCs. The ions generated produce an electric current at an
electrode, which serves as the detector output. PIDs have long been used to monitor
worker exposure to VOCs across various industries, and research into enhancing their
capabilities continues. PID sensors provide a concentration value of the sample being tested,
without any additional information of the chemical composition. However, Covington
and Agbroke have developed a PID sensor that can differentiate between some VOCs and
provide compositional insights. The sensor features detection electrodes on one side and
signal processing electronics on the other, with an ionization chamber and fluidics fitted
over the detectors [156]. A system illustration can be seen in Figure 8.
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Similarly, Pang et al. have investigated replacing flame ionization detectors (FID)
with PIDs in gas chromatography (GC), finding them comparably effective with the added
benefits of better portability and no reliance on hydrogen. They also explored using
different lamps to enhance functionality [157].

Additionally, Spadi et al. conducted studies with a standalone PID, successfully classi-
fying different rosemary species by analyzing the temporal kinetics of their VOC emissions,
which provided unique ‘fingerprints’ for each variety [158]. Like PIDs, flame ionization
detectors (FIDs) are used for VOC detection, typically as GC detectors or standalone instru-
ments. While FIDs are more responsive to carbon chains, PIDs excel in detecting functional
groups, with the detection signal being proportional to the number of non-oxidized carbon
atoms. Despite the continued use of FIDs in total VOC analysis, innovation in this area has
shifted, largely due to the limitations of requiring hydrogen gas for operation [87,159]. PIDs
provide real-time responses, low limits of detection, and portability, but their sensitivity to
humidity, inconsistent performance, and limited gas detection range hinder their overall
performance in complex environments. Additionally, their poor selectivity limits their
ability to distinguish between similar gases, further affecting their effectiveness in diverse
or mixed gas environments.

2.2.6. Gas Chromatography Coupled with Mass Spectrometer and Ion Mobility
Mass Spectrometer

Gas chromatography coupled with mass spectrometry (MS) is highly valued in an-
alytical chemistry for its accuracy in identifying molecular weights and structures, with
high-resolution versions capable of pinpointing exact molecular formulas. Although tra-
ditional MS systems are generally large and power-intensive, they consist of three key
components: an ion source, a mass analyzer, and a detector [160]. Recent advancements
have greatly improved ion sources, yet the portability of these systems is still limited by
the mass analyzer, which needs vacuum conditions and significant space for ion separation.
Moreover, simplifying the operational complexity is crucial for effective use in the field.
Despite these challenges, there have been advancements in developing portable MS sys-
tems, especially for detecting volatile organic compounds (VOCs). This paper discusses the
progress in standalone MS and Ion Mobility Spectrometry (IMS) technologies, emphasizing
their potential for portable applications [161,162]. Gas chromatography–mass spectrometry
(GC-MS)-based sensors have gained increasing interest over the last few years due to
their accuracy and fast performance. Allsworth successfully developed a GC-MS-based
sensor with sub 1 ppm mass accuracy across various VOCs, including benzene, toluene,
ethylbenzene, and o-xylene [163]. Vietro et al. developed a GC-MS-based system that could
potentially diagnose transplanted kidney rejection through VOC monitoring by detecting
increases in concentration [164]. Ion Mobility Spectrometry (IMS) combines elements of gas
chromatography (GC) and mass spectrometry. It differs from traditional MS by performing
ion separation at atmospheric pressure instead of in a vacuum. In this technique, ions move
through a gas medium, typically air, and their separation is based on their mobility, which
is influenced by their mass-to-charge ratio and shape. IMS is very adaptable; when paired
with ionization technologies such as radioactive H electron emitters, X-ray ionization units,
or atmospheric pressure chemical ionization (APCI), it becomes compact enough for hand-
held devices. This flexibility allows IMS to function either as a standalone tool or together
with GC, improving ionization processes and adding more analytical dimensions [165–167].
A significant development in IMS technology is the simplified, miniaturized drift tube
designed by Ahrens et al., which has been incorporated into a standalone, battery-powered
portable device [168]. In practice, Fulton et al. demonstrated that a handheld IMS device
can detect the drug fentanyl by measuring its vapor form of N-phenylpropanamide, avoid-
ing direct contact with the substance [169]. The overall schematic of the handheld IMS can
be seen in Figure 9.
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Additionally, Ratiu et al. used an aspiration IMS to distinguish between metabolic
VOCs emitted by bacteria, applying statistical methods to analyze the IMS fingerprints [170].
Furthermore, research by Guo et al. comparing GC-MS and GC-IMS in analyzing oolong
teas revealed 27 unique VOCs identified solely through IMS, showcasing its potential when
combined with other mass spectrometry techniques [171].

Gas chromatography coupled with mass spectrometry and Ion Mobility Spectrometry
provide highly sensitive and selective detection with low limits of detection, but they are
expensive, energy-consuming, and require regular calibration and maintenance, making
them impractical for many portable or low-cost applications.

3. Functionalized MIP-Based Sensors

Molecularly imprinted polymers (MIPs) consist of synthetic polymers crafted from
functional monomers and cross-linkers. These sensors can be tailored with specific sites
and structures to accommodate diverse classes of target analytes, with cavities within
MIP networks customized to capture targets within specific sizes, shapes, or functional
group ranges [172,173]. Their versatility has been demonstrated in various sensing fields,
spanning chemical and biosensing applications [174]. However, despite their immense
potential in chemical sensing, their application in detecting volatile organic compounds
(VOCs) has been insufficiently explored [175]. The evolution of molecularly imprinted
polymers (MIPs) has encompassed various methodologies, including bulk, precipitation,
emulsion polymerization, sol-gel techniques, and electro-polymerization. In terms of
combining MIPs with transducers, these approaches can be categorized into ex situ and in
situ methodologies. Ex situ methods involve immobilizing pre-made MIP particles onto a
transducer through physical treatments like drop-casting or spin-coating, or via chemical
coupling [176].

Since 2017, our team has been developing functionalized molecularly imprinted
polymers (MIP)-based sensors for biomarker VOCs aimed at diagnosing various diseases.
Related studies by Emam et al. have focused on conditions such as Alzheimer’s disease [93]
and lung cancer [177]. As soon as COVID-19 was declared a pandemic in early 2020, our
team initiated the development of functionalized molecularly imprinted polymer (MIP)-
based electrochemical sensors. These sensors are designed to detect SARS-CoV-2 pathogens
in aerosols, forming the basis for a COVID-19 breathalyzer [71]. Our initial approach
involved using the full-length spike proteins of SARS-CoV-2 as template molecules to
develop these MIP sensors. This strategy achieved high sensitivity but resulted in relatively
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poor specificity. Since full-length spike proteins have molecular weights in the range of
180–200 kDa [178], which are too large for MIP sensors, we tried to use the S1 subunit
of the spike proteins of the SARS-CoV-2 with molecular weights of nearly 78 kDa [179].
At the same time, we used functionalized MIP sensors by using 1-pyrenebutyric acid
N-hydroxy succinimide ester (PBSE) and cysteamine to bind the S1 proteins before using
the functionalized S1 proteins as template molecules. This effort led to pathogen sensors
for detecting SARS-CoV-2 from the aerosol with significantly improved sensitivity and
specificity. To further improve the sensitivity and specificity, we used the RBD subunit
of the spike proteins of the SARS-CoV-2, which further reduced the molecular weight
to nearly 26 kDa, and successfully achieved ultra-high sensitivity by a new functional
monomer of dopamine. With these background efforts in mind, we present, for the first
time, the development of highly accurate electrochemical sensors for ultrafast detection of
SARS-CoV-2 in aerosols, alongside innovative testing methodologies and algorithms. The
sensors we developed target the omicron-variant receptor-binding domain (RBD) spike
proteins, demonstrating over 99% accuracy across various SARS-CoV-2 variants. These
sensors feature rapid response and brief recovery times, delivering results in under 30 s.
Our approach utilizes a molecularly imprinted polymer that is specifically functionalized
to enhance accuracy, operating on the principle that the ohmic resistance of the sensor
changes in response to the presence of COVID-19 pathogens in aerosol samples [71]. Our
fabrication process is shown in Figure 10.
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Figure 10. Schematic of the fabrication process and testing of the pathogen sensor, which employs
functional monomers and template molecules (SARS-CoV-2 spike proteins) to create an artificial
antibody (lock) designed specifically to detect SARS-CoV-2 pathogens (key) with high specificity [71].
Reprinted from [71], Copyright (2023), with permission from Elsevier.

Table 3 shows a comparison to other market-available methods (see Table 1). Our
pathogen aerosol-based sensor proves to be a viable and effective option for rapid COVID-
19 testing [71].

Table 3. A comparison between the novel sensors developed in this work with those already available
on the market for COVID-19 testing [71].

Method Approach Sensitivity Specificity Time Body Fluids Vendors

RT-PCR RNA 95–100% 95–100% 3 h Respiratory
Specimens

LabCrop,
Roche, etc.

Antibody IgM, IgG 80–100% 90–100% 15–30 min Blood Cellex, etc.

Antigen RNA 20–71% 85–100% 15–30 min Blood UCSD
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Table 3. Cont.

Method Approach Sensitivity Specificity Time Body Fluids Vendors

CRISP-based RNA 95% 100% 40 min Respiratory
specimens

Sherlock
Biosciences

LAMP-based RNA 97% 100% 30 min Respiratory
specimens MicrosensDx

Saliva-based RNA 91% 98% 45 min Saliva Yale School of
Public Health

Breath-based GC-MS VOC 91% 99% 5–10 min Air Inspect-IR,
Breathomix

Our Sensor RBD S-Protein 98.40% 100% 10 s Aerosol/Air Winchester
Technologies

Antibody IgM, IgG 80–100% 90–100% 15–30 min Blood Cellex, etc.

Antigen RNA 20–71% 85–100% 15–30 min Blood UCSD

CRISP-based RNA 95% 100% 40 min Respiratory
specimens

Sherlock
Biosciences

Table 4 compares the performance of wavelet-based and deep-learning-based models
with human visual inspection and curve-fitting results. The deep learning model offers
a better balance of true positive and true negative rates but is more complex. In low-
computation scenarios, the wavelet-based classifier is a good alternative [71].

Table 4. A comparison between the human-brain decision with the outputs of three different
theoretical classifying methods in terms of sensitivity, specificity, and accuracy (obtained based on
the sensor’s R(t) profiles) for a sensor exposed to a positive test kit [71].

Method Sensitivity Specificity Accuracy

Human-Brain Decision 98.41% 100% 99.26%
Wavelet Method 92.10% 90.30% 91.10%

Deep-Learning Method 95.20% 90.30% 92.60%
Curve-Fitting Method 95.23% 100% 97.78%

MIPs offer the ability to target specific molecules with high sensitivity, selectivity,
and a low limit of detection, while also being portable and cost-effective. However, their
performance can be affected by temperature and humidity, requiring careful management
during fabrication and use.

4. Discussion and Outlook

Many of the methods discussed earlier are susceptible to variations in humidity,
temperature, or atmospheric pressure, which can significantly alter the performance and
reliability of the detection method. Addressing these environmental factors is critical
for ensuring accurate and consistent outcomes. Various solutions, such as incorporating
humidity control systems, have been explored to mitigate these issues. Researchers like
Paknahad et al. have developed humidity removal membranes for microfluidic-based gas-
sensing devices to mitigate environmental influences [180]. Additionally, temperature and
pressure regulating systems could be incorporated into sensor setups to further enhance
stability. Sensor arrays with individual selectivity have been commonly employed in these
methods. Nevertheless, these systems introduce complexities in analysis, demand frequent
calibration, and may require component replacements due to sensor drifts. As such, there
is still a demand for simpler, more reliable sensors [181].

The capabilities of the analytical methods mentioned in this article are summarized
in Table 5, which summarizes the suitable analytes for each method along with their
respective advantages and limitations. For the detection of volatile organic compounds
(VOCs), electrochemical sensors and nondispersive infrared sensors (NDIRs) are superior
choices. Electrochemical sensors offer a broad detection range, low power consumption,
durability, and a rapid response time, making them highly versatile for various applications.
These sensors are cost-effective and operate efficiently at room temperature, with good
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limits of detection (LOD) for low concentrations of VOCs. Despite their limitations, such
as a limited shelf life and baseline instability, their advantages make them suitable for
real-time monitoring. Continuously, NDIR sensors provide fast response times, long-term
stability, and insensitivity to environmental changes, which are crucial for consistent and
reliable VOC detection. Although these sensors tend to be more expensive and challenging
to miniaturize, their high selectivity and stability make them ideal for applications requiring
precise and long-term monitoring. Together, these technologies offer a balance of sensitivity,
reliability, and operational efficiency, making them the leading choices for modern VOC
detection needs.

Table 5. An overview of analytical methods, focusing on their sensitivity, selectivity, and the associ-
ated advantages and limitations.

Sensor Type Sensitivity Selectivity Comments Reference

Photoionization Detectors
(PID) ++++ ++

+ real-time response
+ low LOD

+ cost-effective
+ portable and simple to use

— requires maintenance
– sensitive to humidity
– limited gas detection
– inconsistent response

[109,182–184]

Electrochemical Sensors +++++ ++++

+ broadband sensors
+ low power consumption

+ durable
+ real-time response

+ room temperature operation
+ cost-effective

+ low LOD
+ rapid response

– limited shelf life
– cross-sensitivity to other gases

– requires maintenance
– low baseline stability

[184–187]

Chemiresistors +++ ++

+ good durability
+ portable

+ cost-effective
+ simple and easy to use

+ real-time response
+ non-destructive

+ portable
+ responds to significant number of gases
– influenced by humidity and temperature

– high working temperature
– not very flexible

– more fragile, easily damaged during
preparation

[184,188–191]

Quartz Crystal
Microbalance (QCM) ++++ +++

+ real-time response
+ cost-effective
+ long lifetime

+ non-destructive
+ low power consumption

+ ease of modification
+ portable
+ low LOD

– humidity/temperature sensitive
– limited measurement range
– requires precise calibration

– limited to specific target molecules
– poor reproducibility

[184,192,193]
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Table 5. Cont.

Sensor Type Sensitivity Selectivity Comments Reference

Surface Acoustic Wave
(SAW) ++++ +++

+ versatile
+ portable

+cost-effective
+ low power consumption
+ high-frequency operation

+ fast response
+ long lifetime

– limited measurement range
– temperature sensitive
– signal-to-noise ratio

– noisy
– poor reproducibility

– limited to specific target molecules

[167,177]

Nondispersive infrared
sensors (NDIRs) +++ +++++

+ real-time response
+ long-term stability

+ portable
+ low power consumption
– difficult to miniaturize
– limited to specific gases

– humidity/temperature sensitive
– expensive instrumentation

[136,137,167]

Raman Sensors +++ ++++

+ non-destructive
+ minimal sample preparation

+ high specificity
+ real-time response

– expensive instrumentation
– limited portability

– complicated data analysis

[149–152]

Chemiluminescence
Sensors ++++ +++

+ lower background emission than fluorescent
sensors, avoiding noise caused by light

scattering.
+ low LOD

+ detects chemicals with short lifespan
+ versatile with many catalysts

+ stable in most conditions
+ easy to use

+ has cost-effective options
– irreversible exposure limits lifespan

– reagents are expensive and often poisonous
– conventional sensors only operate within

400–850 nm range
– limited commercial availability

– often limited portability

[194–198]

Fluorescent Sensors ++++ +++

+ rapid response
+ portable

+ real-time monitoring
+ simple operation

+ strong reversibility and recovery
post-exposure

+ stable, withstands range of temperatures and
pH variations

– limited portability
– more background interference compared to

other sensors

[199–202]

Gas Chromatography
Coupled with Mass

Spectrometer and Ion
Mobility Mass
Spectrometer

+++++ +++++

+ fast response
+ low LOD
– expensive

– high energy consumption
– operates well in ambient conditions

– Regular calibration and maintenance needed
– tends to struggle with certain chemicals like

alkenes
– large instruments

[101,203]
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Table 5. Cont.

Sensor Type Sensitivity Selectivity Comments Reference

Molecularly Imprinted
Polymers (MIPs) +++++ +++++

+can be designed to operate in various
environments.

+ cost-effective
+ portable
+ low LOD

– limited to the specific molecules for which
they are imprinted

– sensitive to temperature and humidity
– requires careful template removal

[66,156]

Pellistors +++ ++++

+ small
+ cost-effective

+ fast response time
+ cost-effective

+ durable in harsh conditions
– moderate LOD

– sensitive to environment changes
– maintenance required

[102,204]

Colorimetric +++ ++++

+ disposable
+ low LOD

+ simple to use
+ portable

+ cost-effective
+ easy fabrication

+ operate at room temperature
– susceptible to environmental changes

– slower response time compared to some
advanced sensor types

– may require frequent recalibration depending
on the application

[193,205,206]

Note: “+” indicates advantages, and ““ indicates disadvantages in this table. The selectivity and sensitivity are
also represented by the number of “+” signs.

It is important to note that therapeutic agents and biosensors designed for VOC
biomarker detection face challenges related to off-target effects, where non-target com-
pounds interfere with detection, and poor selectivity. To address these issues, one viable
solution is the use of highly selective sensors based on molecularly imprinted polymers
(MIPs), which can be tailored to bind only to specific biomarkers, reducing interference
from other VOCs. Additionally, advanced computational techniques like in silico modeling
can help predict potential cross-reactivity with other compounds before sensor develop-
ment, ensuring higher specificity [207]. Moreover, multi-sensor arrays can be employed
to cross-check readings from different sensors, helping to mitigate off-target effects by
providing more comprehensive data on the sample. Lastly, developing biodegradable and
biocompatible sensor materials, such as biodegradable polymers like polylactic-co-glycolic
acid (PLGA) or natural fiber composites, ensures that the sensors are safe, environmentally
friendly, and minimally invasive, while maintaining their performance in various clinical
environments [208]. This approach also reduces concerns about poor biodegradability,
enhancing the sustainability of the sensors.

5. Conclusions

This review provides a thorough examination of VOC sensing, emphasizing the latest
progress in the field. It explores state-of-the-art innovations in sensing materials along with
the advent of new sensing systems and applications. The review highlights promising
advancements while addressing the significant challenges that remain. Although there
has been notable progress, VOC sensing technologies still need to fulfill the requirements
of varied applications, such as detecting diseases, wearable monitoring devices, and de-
tecting indoor toxic VOCs. Future VOC sensors would focus on improving sensitivity
and selectivity through advanced materials, innovative structures, and the application
of machine learning techniques. With the spread of affordable and miniaturized sensing
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components, VOC sensors are poised to become widespread in various settings. Looking
forward, the development of superior sensing materials and novel applications is antici-
pated. Achieving these goals will require extensive research to overcome the hurdles that
limit the commercial potential of emerging VOC sensing technologies.
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