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Abstract: Aiming at the uncertainty of target motion and observation models in multi-maneuvering
target tracking (MMTT), this study presents an innovative data-driven approach based on a Gaussian
process (GP). Traditional multi-model (MM) methods rely on a predefined set of motion models to
describe target maneuvering. However, these methods are limited by the finite number of available
models, making them unsuitable for handling highly complex and dynamic real-world scenarios,
which, in turn, restricts the adaptability and flexibility of the filter. In addition, traditional methods
often assume that observation models follow ideal linear or simple nonlinear relationships. However,
these assumptions may be biased in actual application and so lead to degradation in tracking per-
formance. To overcome these limitations, this study presents a learning-based algorithm-leveraging
GP. This non-parametric GP approach enables learning an unlimited range of target motion and
observation models, effectively mitigating the problems of model overload and mismatch. This
improves the algorithm’s adaptability in complex environments. When the motion and observation
models of multiple targets are unknown, the learned models are incorporated into the cubature
Kalman probability hypothesis density (PHD) filter to achieve an accurate MMTT estimate. Our
simulation results show that the presented approach delivers high-precision tracking of complex
multi-maneuvering target scenarios, validating its effectiveness in addressing model uncertainty.

Keywords: data-driven; multi-maneuvering target tracking; Gaussian process; model-free tracking

1. Introduction

Maneuvering target tracking (MTT) involves monitoring the velocity, acceleration,
position, and other state information of a moving target by using sensors that predict and
track the target’s trajectory using algorithms. This technology has extensive applications in
video surveillance, robotic vision, and military operations [1–6]. MTT remains challenging
due to external environment and disturbance effects, where the target motion may exhibit
irregular and highly dynamic characteristics [7].

Traditional MTT methods, which are model-driven (MD), describe the dynamic char-
acteristics of the target through reasonable assumptions and modeling of target motion.
These methods utilize recursive filtering techniques to process sensor measurements and
system noise. The interactive multiple model (IMM) algorithm is a typical representative
of this category. It employs multiple motion models simultaneously to describe different
target motion models. It dynamically adjusts the weights of each model during filtering
to achieve optimal state estimation of the target [8–13]. To further improve the flexibility
and adaptability of MTT, ref. [14] proposed the variable-structure IMM algorithm, which
handles changes in target motion models more effectively. However, these methods are
primarily designed for single-target tracking problems. With an increasing number of
targets in the surveillance area, the applicability of these methods decreases significantly.

The multi-model (MM) approach is an effective solution for multi-maneuvering target
tracking (MMTT), which is widely applied to solving multi-target tracking problems with
various motion patterns. Several MMTT filtering algorithms have been developed, based
on this approach. For example, refs. [15,16] introduced the MM probability hypothesis
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density (PHD) filter; ref. [17] proposed an MM cardinalized PHD filter, to address the
problem of inaccurate target cardinality estimation in MMTT; ref. [18] proposed a variable-
structure MM-PHD (VSMM-PHD) filter to improve the efficiency and accuracy of MMTT.
Unlike the traditional MM-PHD filter, VSMM-PHD uses a different set of models for
each target at different times, better adapting to changes in target motion. In addition,
refs. [19–21] developed various MM MeMBer filters to meet the needs of different tracking
scenarios. However, as the uncertainty of target trajectories increases and the diversity of
target motion patterns increases, model-based methods become increasingly inadequate
for handling such complex variations. These methods are subject to certain limitations
in practical application. Firstly, model-based methods rely heavily on initial conditions.
Inaccurate initial settings can adversely affect estimation performance. Secondly, although
increasing the number of models can improve tracking accuracy, an excessive number of
models significantly increases the computational cost and complexity.

To overcome the limitations of the traditional methods, the data-driven (DD) approach,
which is mainly based on a Gaussian process (GP) [22], provides promising alternatives.
By contrast, GP-based techniques can learn the underlying models and model parameters
from training data through non-parametric regression, thus eliminating the dependence on
motion models in the classic MTT approach. The advantage of this strategy is its ability to
adapt to different target motion models and produce more reliable state estimates. In recent
years, GP-based target-tracking methods have increasingly become a popular research
area, and they provide a substitute for traditional methods. A GP is a non-parametric
machine learning regression method based on Bayesian inference. The distribution of
output variables is modeled through a GP, which updates this distribution, using obser-
vational data. As a flexible model, a GP can adapt to various input and output data in
multi-dimensional spaces and perform adaptive optimization based on the data. Moreover,
a GP can seamlessly integrate state space models and Bayesian filtering. For instance,
refs. [23,24] demonstrates using the GP to learn prediction and observation models from
training data; ref. [25] combines Kalman filtering (KF) with a GP to create an efficient GP
estimator for a spatiotemporal dynamic GP. Furthermore, ref. [26] modeled unknown per-
turbations as the GP and proposed an adaptive KF to improve the estimation performance.

Recent studies have applied the GP to MTT to address issues related to unknown
target motion models or mismatches between motion models and actual target motion.
For example, ref. [27] proposed a model-free MTT method that leverages the flexibility
of the GP to enable switching between a large number of models and state estimates.
Another study [28] introduced a DD method for MTT and smoothing, which showed
significant performance improvements compared to traditional MD methods; ref. [29]
presented a new GP-based approach to learning motion models and applied it within
particle filtering to track targets in different surveillance regions. Furthermore, ref. [30]
used a GP to approximate the transition density of the Bayesian optimal Bernoulli filter
and proposed a particle implementation of the Bernoulli filter to handle unknown target
motion model transitions, while [31] proposed a hybrid strategy that combines DD and
MD approaches and effectively improves the tracking performance of strong maneuverable
targets by integrating the advantages of both methods. Despite the success of these GP-
based approaches in a variety of application scenarios, research for model-free MMTT in
the context of random finite set (RFS) theory [32] has not yet been implemented. Further
exploration of this area is essential to advance the development of MMTT technology.

To this end, this study proposes a novel MMTT algorithm to improve tracking accuracy
in complex environments. The main contributions of this paper are as follows:

(1) A data-driven MMTT state estimation method is proposed by combining a GP and
the PHD filter. The method models the MMTT motion and observation models as
nonlinear functions over time. It uses a GP to learn the unknown characteristics of the
target motion and observation models from training data.

(2) Based on the GP model learning, a cubature Kalman filter (CKF) [33] is utilized
to propagate the uncertainty of the system to achieve accurate estimation. The GP
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possess provide model-learning capability, while the CKF efficiently handles nonlinear
system through the ‘cubature sampling’ technique. This innovative design allows the
GP-PHD filter to achieve excellent tracking accuracy and stability in uncertain and
complex environments.

(3) To verify the effectiveness of the proposed algorithm, two groups of simulation
experiments with different scenarios are designed. The results demonstrate that,
compared to the traditional MD method, the GP-based method offers significant
advantages in an environment with unpredictable and highly dynamic target motion.

Furthermore, the existing GP-based MTT algorithms are limited to scenarios involving
a single target. However, the proposed algorithm overcomes this limitation, enabling simul-
taneous tracking of multi-maneuvering targets. This capability is particularly important in
scenarios with numerous targets and frequent dynamic changes. The proposed method
imposes no restrictions on the number of targets. It can effectively handle target generation,
disappearance and maneuvering behavior, demonstrating its applicability and flexibility in
complex MMTT scenarios.

The remainder of the paper is organized as follows. Section 2 introduces the problem
definition and background, and Section 3 introduces the Gaussian process. A detailed
implementation of the proposed algorithm is given in Section 4. Simulation results are
provided in Section 5, and Section 6 concludes the paper.

2. Problem Definition and Background
2.1. System Model

Consider a discrete-time dynamic model with a transfer dynamics equation and
observation equation as

xt+1 = f (xt) + ϕt (1)

zt = g(xt) + ςt (2)

where xt = [ζt, ζ̇t, φt, φ̇t]T represents the state for a target in two-dimensional space at time
t,
(
ζt, ζ̇t

)
represents the position along the x- and y-axis, (φt, φ̇t) denotes the corresponding

velocity; zt denotes sensor measurement. The f and g are nonlinear process transfer
functions and observation functions; ϕt and ςt are the zero mean, white additive Gaussian
process and measurement noise, respectively.

2.2. Multi-Target Bayesian Filtering

Based on the RFS theory [32], the state and measurement sets for multiple targets
are represented as RFS Xt = {xt,1, . . . , xt,nx} and Zt = {zt,1, . . . , zt,nz}, respectively; nx
and nz specify the number for targets and measurements, respectively. According to the
Chapman–Kolmogorov Equation [34], the multi-target prediction equation at time t can be
derived as

ft|t−1 (Xt|Z1:t−1 ) =
∫

ft|t−1

(
Xt

∣∣∣Xt|t−1

)
ft−1

(
Xt|t−1 |Z1:t−1

)
δXt|t−1 (3)

where ft|t−1 and ft−1

(
Xt|t−1 |Z1:t−1

)
denote a multi-target state transfer function and state

at time t − 1, respectively. According to Bayes’ rule, after a new set Zt of measurements is
received at time t, the multi-target update equation is given by

ft|t
(

Xt|t |Z1:t

)
=

Lt|t
(

Zt|t

∣∣∣Xt|t
)

ft|t−1

(
Xt|t |Z1:t−1

)
∫

Lt|t
(

Zt|t

∣∣∣Xt|t
)

ft|t−1

(
Xt|t |Z1:t−1

)
δXt|t

(4)

2.3. PHD Filter

Suppose νt and νt|t−1 denote the intensity functions corresponding to multi-target
posterior density pt alongside predicted density pt|t−1 , respectively. The multi-target
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intensity function at time t − 1 is given by the νt, and its prediction equation of the PHD
filter can be expressed as

νt|t−1 (x) =
∫

ps,t
(
x′
)

ft|t−1
(

x
∣∣x′ )νt−1

(
x′
)
dx′ +

∫
βt|t−1

(
x
∣∣x′ )νt−1

(
x′
)
dx′ + γt(x) (5)

where ps,t(x′) denotes the probability of surviving, ft|t−1 (x|x′ ) represents the transition
probability density of a single target. At time t, βt|t−1 (x|x′ ) and γt(x) represent the
intensity of the spawned and birth targets, respectively. Given the set of measurements Zt
at time t, the update Equation for the PHD filter is

νt|t (x) = (1 − pd,t(x))νt|t−1 (x) + ∑
z∈Zt

pd,t(x)gt(z|x )νt|t−1 (x)
κt(z) +

∫
pd,t(x′)gt(z|x′ )νt|t−1 (x′)dx′ (6)

where pd,t(x) denotes detection probability, gt(z|x ) represents the measurement likelihood
of a single target, and κt(z) signifies the intensity for clutter.

3. Gaussian Process

Using a training dataset, the GP is a complex non-parametric learning algorithm
primarily used to learn unknown functions. The dataset contains input–output pairs, and
the GP provides a mapping between them. The critical aspect that comprises GP involves
the flexibility of modeling as it facilitates simulating the behavior of a system in the face
of uncertainty.

3.1. Basic Gaussian Process Model

The GP represents a distribution of the function based on the training data. Suppose
there is a set of training data Td = ⟨X, y⟩, where d-dimensional input vector xi are arranged
in the matrix X = [x1, x2, . . . , xn], where n denotes the number of training points, and
y = [y1, y2, . . . , yn] is the vector containing the scalar training output. Assume that the
measurement values are derived from the noise process

yi = h(xi) + ε (7)

where ε is additive Gaussian white noise with zero mean and variance is σ2
n . The Gaussian

predictive distribution on the output y∗ for training data Td = ⟨X, y⟩ and test inputs x∗, the
mean and variance are specified by the GP, i.e.,

GPm(x∗, Td) = kT
∗K−1y (8)

GPv(x∗, Td) = k(x∗, x∗)− kT
∗K−1k∗ (9)

In this case, k∗ is a vector formed by the kernel values between the test input x∗ and
the training input X, where k indicates the kernel function for the GP, and the training
input values are represented by the n × n dimensional kernel matrix K, which means
that, k∗[i] = k(x∗, xi) and K[i, j] = k

(
xi, xj

)
. It should be emphasized that process noise,

both the correlation between the test input and the training data, influence the prediction
uncertainty as reflected by variance GPv.

The exact application scenario determines the kernel function to be utilized, with the
squared exponential or the Gaussian kernel with additive noise being the most popular

k
(
x, x′

)
= σ2

f e−
1
2 (x−x′)A(x−x′)T

+ σ2
nδ (10)

and the signal variance is given by σ2
f , thus regulating the degree of prediction uncertainty

in the area of low training data density. The length scale of the process is contained in
the diagonal matrix A, for example, A = diag

([
1
/

a2
1, 1

/
a2

1, . . . , 1
/

a2
d
])

. In different input
dimensions, the length scale reacts to how smooth the operation is overall. σ2

n is the final
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GP parameter, which controls the noise of the whole process. Figure 1 illustrates a one-
dimensional GP example. In the figure, the red × denotes the training point, the blue curve
represents the prediction result, and the blue shading represents uncertainty. It can be seen
from the figure that the uncertainty is lower near the training points and increases in areas
away from the training points.

0 2 4 6 8 10 12 14
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
 Train
 Predict
 Uncertainty

f(
x)

x

Figure 1. One-dimensional GP.

3.2. Hyperparameter Learning

The hyperparameters of the GP are represented by θ =
[

A, σf , σn

]
. By maximizing

the log marginal likelihood of the training output for a given input, they can be trained

θmax = arg max
θ

{log(p(y|X, θ ))} (11)

It is possible to express the logarithmic component in (11) as

log(p(y|X, θ )) = −1
2

yT
(

K(X, X) + σ2
n I
)−1

y − 1
2

log
∣∣∣K(X, X) + σ2

n I
∣∣∣− n

2
log 2π (12)

Numerical optimization methods such as conjugate gradient ascent can be employed to
solve this optimization problem [21]. To perform this optimization, it is essential to use the
partial derivatives of the log-likelihood, as given below

∂

∂θt
log(p(y|X, θ )) =

1
2

tr
[(

K−1y
)(

K−1y
)T ∂K

∂θt

]
(13)

Each element of ∂K[i,j]
∂θt

in (13) represents a partial derivative of a kernel function in regard
to its hyperparameters

∂k
(
xi, xj

)
∂σf

= 2σf e−
1
2 (xi−xj)A(xi−xj)

T
(14)

∂k
(

xi, xj
)

∂σn
= 2σnδ (15)
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∂k
(
xi, xj

)
∂Aii

= −1
2
(
xi[i]− xj[i]

)2
σ2

f e−
1
2 (xi−xj)A(xi−xj)

T
(16)

Due to the non-convex nature of this optimization problem, finding the global optimal
solution cannot be guaranteed. However, in practical applications, such optimization
problems often yield satisfactory results.

3.3. Learning Prediction and Observation Models Using Gaussian Process

The GP is possibly employed straight to the Bayesian filter in (3), and it has been
shown to satisfy the conditions for learning predictive and observational models. In the
context of the application in this work, the model needs to provide both expected mean
and predicted uncertainty or noise. The GP inherently satisfies both objectives in its
unique manner.

The training data are obtained by dynamically sampling and observing the system.
They are expected to be representative of the system, i.e., they can span the state space
encountered during normal operation. A set of input–output relations forms the training
data for each GP. In the predictive model, state and control variables (xt, ut) are mapped to
state transitions ∆xt = xt+1 − xt. Then, the previous state is added to the state transition
to determine the subsequent state. The state xt is mapped into observation zt using the
observation model. Consequently, the training dataset for prediction and observation
should have the following form

Tp =
〈
(X, u), X′〉 (17)

To = ⟨X, Z⟩ (18)

where the matrix containing the real states is indicated by X, and the matrix created when
these states experience a transfer of control in application u is X′ = [∆x1, ∆x2, . . . , ∆xt].
The observation matrix for the corresponding state X is denoted by Z. The prediction and
observation models for the GP are subsequently obtained as

p(xt|xt−1, ut−1 ) ≈ N
(
GPm

(
[xt−1, ut−1], Tp

)
, GPv

(
[xt−1, ut−1], Tp

))
(19)

p(zt|xt ) ≈ N(GPm(xt, To), GPv(xt, To)) (20)

It is important to note that the mean and variance of these models, for both input
and training data, are nonlinear functions, even though they correspond to a Gaussian
distribution. Moreover, due to their local Gaussian character, these models are seamlessly
integrated into Bayesian filters.

The GP is typically defined in the case of scalar outputs. However, the GP Bayesian
filter is represented for the vector output model by learning a distinct GP for each output
dimension. Since the output dimensions are no longer interdependent, the resulting noise
covariance matrix of the GP becomes diagonal.

4. Gaussian Process Bayesian Filter

In the following phase, a GP model will be introduced into the Bayesian filter to
address the uncertainty in the motion and observation models of MMTT.

4.1. Gaussian Process for System Model

Some existing MD methods represent the motion and observation states of a target
through one or more defined equations of motion and observations. However, GP-based
approaches eliminate the need for precise equations of motion and observation. This
reduces the reliance on the target motion and observation models by encoding the target
state through the learned GP state and observation models.
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The GP state model GP f and observation model GPh can be used to express the state
and measurement equations as shown below

xt = GP f
m
(
[xt−1, ut−1], Tp

)
+ ϕt−1 (21)

zt = GPh
m(xt, To) + ςt (22)

where
ϕt−1 ∼ N

(
0, GP f

v
(
[xt−1, ut−1], Tp

))
(23)

ςt ∼ N
(

0, GPh
v (xt, To)

)
(24)

4.2. GP-CK-PHD Gaussian Mixture Implementation

Based on the Gaussian mixture (GM) recursive construction of the standard PHD
filter, the posterior intensity of the multi-target state is expressed as a weighted sum of
multiple non-Gaussian functions, derived through the recursive propagation in (5) and (6).
Gaussian functions can approximate each non-Gaussian component, and similar to the CKF
method, the ‘cubature sampling’ approach can be used to calculate the GM approximating
components of the posterior intensity at subsequent time steps while approximating the
weight of each component.

Therefore, this study proposes a nonlinear GM implementation based on the GP-PHD
filter to address the challenges posed by uncertain motion and observation models in
MMTT. This method leverages the GP learning approach and employs cubature sampling
for propagation, making it an effective solution for tackling the problems of uncertain
motion and observation models under nonlinear conditions in MMTT.

Considering the properties of nonlinear systems, it is impossible to represent the
posterior intensity explicitly in GM form, so it is necessary to approximate the non-Gaussian
component of the posterior intensity using an appropriate Gaussian distribution. The GM
form for the birth RFS intensity is

γt(x) =
Jγ,t

∑
a=1

wa
γ,tN

(
x; ma

γ,t, Pa
γ,t

)
(25)

where Jγ,t, wa
γ,t, ma

γ,t, Pa
γ,t, a = 1, . . . , Jγ,t are the model parameter given to determine the

birth intensity. The particular procedure is described below:
(1) Consider the following as an approximation of the posterior intensity at time t − 1

can be approximated by

νt−1(x) ≈
Jt−1

∑
a=1

wa
t−1N

(
x; ma

t−1, Pa
t−1

)
(26)

Then, at the time t, the predicted intensity is

νt|t−1(x) = νs,t|t−1(x) + γt(x) (27)

where

νs,t|t−1(x) ≈ ps,t

Jt−1

∑
j=1

wj
t−1N

(
x; mj

s,t|t−1 , Pj
s,t|t−1

)
(28)

According to the Cubature rule, 2n weighted Cubature sampling points
[

xl
t|t−1 , wl

t|t−1

]
are selected, and the quantity of sampling points is l = 0, 1, . . . , 2n. Then, the model of the
unknown system is linearized, where

xl,t−1 = xt−1 ±
√

Pt−1αl (29)
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xl
t|t−1 = GPm

(
[xl,t−1, ut−1], Tp

)
(30)

Qt = GPv
(
[xt−1, ut−1], Tp

)
(31)

mj
s,t|t−1 =

1
2n

2n

∑
l=0

xl
t|t−1 (32)

Pj
s,t|t−1 =

1
2n

2n

∑
l=0

(
xl

t|t−1 − mj
s,t|t−1

)(
xl

t|t−1 − mj
s,t|t−1

)T
+ Qt (33)

(2) Suppose that a Gaussian mixture can be used to roughly represent the predicted
intensity at time t, i.e.,

νt|t−1 (x) ≈
Jt|t−1

∑
j=1

wj
t|t−1 N

(
x; mj

t|t−1 , Pj
t|t−1

)
(34)

Then the posterior intensity at time t is likewise in the structure of a GM, denoted as

νt(x) = (1 − pd,t)νt|t−1 (x) + ∑
z∈Zt

νd,t(x; z) (35)

where

νd,t(x; z) =
Jt|t−1

∑
j=1

wj
t(z)N

(
x; mj

t|t (z); Pj
t|t

)
(36)

wj
t(z) =

pd,tw
j
t|t−1 qj

t(z)

κt(z) + pd,t

Jt|t−1

∑
j=1

wj
t|t−1 qj

t(z)

(37)

wj
t|t−1 = ps,tw

j
t−1 (38)

qj
t(z) = N

(
z; η

j
t|t−1 , Sj

t

)
(39)

mj
t|t (z) = mj

s,t|t−1 + K j
t

(
z − η

j
t|t−1

)
(40)

xl
t|t = mj

s,t|t−1 ±
√

Pj
s,t|t−1αl (41)

zl
t|t−1 = GPm

(
xl

t|t , To

)
, l = 0, . . . , 2n (42)

Rt = GPv

(
mj

t|t−1 , To

)
(43)

η
j
t|t−1 =

1
2n

2n

∑
l=0

zl
t|t−1 (44)

Sj
t =

1
2n

2n

∑
l=0

(
zl

t|t−1 − η
j
t|t−1

)(
zl

t|t−1 − η
j
t|t−1

)T
+ Rt (45)

Pj
xz,t =

1
2n

2n

∑
l=0

(
xl

t|t−1 − mj
s,t|t−1

)T(
zl

t|t−1 − η
j
t|t−1

)T
(46)

K j
t = Pj

xz,t

(
Sj

t

)−1
(47)

Pj
t|t = Pj

t|t−1 − K j
tS

j
t

(
K j

t

)−1
(48)
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Given the GM intensity νt|t−1 and νt, the appropriate weights can be summed jointly
to yield the associated expected number of targets n̂t|t−1 and n̂t.

According to the prediction step, the mean value of the predicted number of targets is

n̂t|t−1 = n̂t−1 ps,t +
Jγ,t

∑
j=1

wj
γ,t (49)

According to the update step, the mean value of the updated target number is

n̂t = n̂t|t−1 (1 − pd,t) + ∑
z∈Zt

Jt|t−1

∑
j=1

wj
t(z) (50)

(3) Pruning & Merging
The GP-PHD filter encounters the same computational challenges as the standard

GM-PHD filter, especially the growth of the Gaussian components over time. To address
this issue, an efficient pruning strategy is employed to reduce the number of Gaussian
components passed to subsequent time steps [15]. The specific steps of the GP-PHD
algorithm are described in Algorithm 1.

Algorithm 1 The GP-PHD algorithm

Input:
{

wa
t−1, ma

t−1, Pa
t−1

}Jt−1
a=1, Zt, Tp, To

1: Predict
2: (1) predict newborn targets
3: a = 0
4: for j = 1 : Jγ,t do
5: a = a + 1
6: wi

t|t−1 = wj
γ,t, mi

t|t−1 = mj
γ,t, Pi

t|t−1 = Pj
γ,t

7: end for
8: (2) predict existing targets
9: for j = 1 : Jt−1 do

10: a = a + 1
11: use (29)–(33) calculate the predictive parameters mj

s,t|t−1 and Pj
s,t|t−1 for the birth

targets
12: end for
13: Jt|t−1 = i
14: Update
15: for j = 1 : Jt|t−1 do
16: wa

t = (1 − pd,t)wa
t|t−1 , ma

t = ma
t|t−1 , Pa

t = Pa
t|t−1

17: end for
18: q = 0
19: for b = 1 : length(Zt) do
20: q = q + 1
21: for j = 1 : Jt|t−1 do

22: wj
t = pd,tw

j
t|t−1 qj

t(z)

23: use (36), (38)–(48) calculate the update parameters mj
t|t and Pj

t|t
24: end for
25: use (37) calculate the update parameters wj

t
26: end for
27: Jt = qJt|t−1 + Jt|t−1

Output:
{

wi
t, mi

t, Pi
t
}Jt

i=1
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5. Simulation Experiments
5.1. Performance Evaluation

To evaluate the effectiveness of the proposed GP-PHD filtering algorithm in this part,
employ the Generalized Optimal Subpattern Assignment (GOSPA) distance [35], which is
defined as

d(c,α)
p (X, Y) ≜ [min

γ∈Γ
( ∑
(i,j)∈γ

d
(
xi, yj

)p
+

cp

α
(|X|+ |Y| − α|γ|))]

1
P (51)

The parameters are assigned to c = 50, p = 2, α = 2.

5.2. Simulation Results

(1) Scenario 1: For a two-dimensional surveillance region [−800, 800]× [−800, 800] m
contains clutter and an unknown number of targets which evolve over time. Each target
moves autonomously according to its motion model

xt = FCV/CTxt−1 + ϕt (52)

FCV =


1 ∆ 0 0
0 1 0 0
0 0 1 ∆
0 0 0 1

 (53)

FCT =


1 (sin θ)

θ 0 − (1−cos θ)
θ

0 cos θ 0 − sin θ

0 (1−cos θ)
θ 1 (sin θ)

θ
0 sin θ 0 cos θ

 (54)

with ϕt ∼ N(0, Qt)

Qt = σ2


∆4/4 ∆3/2 0 0
∆3/2 ∆2 0 0

0 0 ∆4/4 ∆3/2
0 0 ∆3/2 ∆3/2

 (55)

where σ = 0.1, ∆ = 1 s represents the sampling interval. Model 1 is a CV model (M1);
Model 2 has a turn rate of θ = −9 °/s and represents a left-turning model (M2); Model
3 is a right-turn model and the turn rate is θ = 6 °/s (M3). For each target, the survival
probability and detection probability are ps,t = 0.97 and pd,t = 0.95, respectively. The
observation consists of the orientation and distance

zt =

 arctan
(

ζy
ζx

)√
ζ2

x + ζ2
y

+ ςt (56)

where ςt ∼ N(0, Rt), Rt = diag
([

σ2
θ , σ2

r
]T

)
, σθ = 2× (π/180) rad/s, σr = 10 m. The clutter

model is modeled using a uniform Poisson model with a clutter rate λc = 10. Additionally,
a GM of the form is also utilized as the birth model of the target

γt(x) =
5

∑
i=1

wi
bN

(
x; mi

b, Pi
b

)
(57)

where wi
b = 0.1 and

m1
b =

[
50 0 250 0

]T , m2
b =

[
−250 0 −250 0

]T ,

m3
b =

[
−250 0 250 0

]T , m4
b =

[
250 0 −250 0

]T ,

m5
b =

[
0 0 150 0

]T , Pi
b = diag

(
[200, 100, 200, 100]T

)
.
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The length of the training data L1 = 1000, and the length of testing data
L2 = 100. The real trajectories used for training and testing are distinct, i.e., the train-
ing and testing data are from different datasets but follow the same motion model. For the
targets’ motion process, the testing target moves in M2 at 20 ∼ 40 s, M3 at 60 ∼ 80 s, and
M1 at other moments. Figure 2 displays the trajectory of the test targets. Furthermore, the
efficacy of the proposed approach is evaluated by averaging 500 independent Monte Carlo
(MC) experiments.

−800 −600 −400 −200 0 200 400 600 800
−800

−600

−400

−200

0

200

400

600

800

y 
(m

)

x (m)

 target1
 target2
 target3
 target4
 target5
 Intial targets position
 Final targets position

Figure 2. True trajectory of maneuvering targets .

Figures 3 and 4 illustrate the cardinality estimation and cardinality estimation error
with detection probability pd = 0.95, respectively. The results in Figure 3 indicate that both
the GP-PHD, VSMM-PHD, and MM-PHD filters outperform the single-model PHD filter
in terms of performance and stability of cardinality estimation. When there is a significant
model mismatch, the cardinality estimate error of the single model PHD filter increases
observably and, therefore, cannot accurately estimate the actual number of targets in the
environment. In contrast, the GP-PHD, VSMM-PHD, and MM-PHD filters show similar
performance in MMTT cardinality estimation. A closer analysis reveals that the GP-PHD
filter outperforms the others in target cardinality estimation. The histogram with error
bars for cardinality estimation errors of several algorithms is shown in Figure 4, which
is intended to visually and accurately present the mean value of cardinality estimation
errors and their fluctuations of each algorithm so as to provide strong support for the
comparison of different algorithms in terms of cardinality estimation accuracy. In this
figure, the height of the histogram represents the mean value of the cardinality estimation
error, while the error bars serve as a quantitative indicator of the fluctuation or uncertainty
of the data, and the longer the error bars are, the greater the fluctuation or uncertainty
of the data. After careful analysis, it can be clearly observed that the proposed GP-PHD
algorithm performs the best in terms of the mean value of cardinality estimation error with
the smallest mean value, which fully proves the excellent performance of the algorithm in
the task of multi-maneuvering target cardinality estimation. Meanwhile, the VSMM-PHD
and MM-PHD filters exhibit similar performance in cardinality estimation, but the VSMM-
PHD filter shows a slight advantage in the mean value of cardinality estimation error. In
contrast, the other single-model algorithms perform poorly in terms of both the mean
cardinality estimation error and the range of fluctuation, which are large and fluctuate
significantly, demonstrating significant shortcomings in cardinality estimation performance.
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This phenomenon further underscores the accuracy and stability of the GP-PHD algorithm
for cardinality estimation of multi-maneuvering targets in complex environments.
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Figure 3. Cardinality estimation comparison under pd = 0.95.
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Figure 4. Cardinality estimation error comparison under pd = 0.95.

Figures 5 and 6 show the GOSPA distance with detection probability pd = 0.95, under
various clutter conditions. Figure 5 demonstrates that the GP-PHD filter has an advantage
over the VSMM-PHD, MM-PHD, and other single-model filters. By better adapting to
changes in maneuvering target kinematics, the GP-PHD filter results in a smaller GOSPA
distance. This is due to the GP’s ability to model the target’s dynamic properties flexibly,
automatically learn the target’s motion models, adapt to different motion trajectories, and
thus reduce the position estimation error. In addition, the precise modeling of the target
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motion can also effectively cope with the uncertainty of the target potential, thus reducing
the occurrence of missed targets and false detections. This property plays a crucial role in
reducing the GOSPA distance. Therefore, the GP-PHD filter outperforms other algorithms
in terms of GOSPA distance. For instance, during the 40–60 s and 60–80 s, when the motion
model of the maneuvering target changes, the GP-PHD filter maintains stable estimation
performance with minimal degradation in accuracy. In contrast, the VSMM-PHD and
MM-PHD filters do not perform as well as the GP-PHD filter because the multi-model
approach generally suffers from model assumption limitations and model switching lags.
These issues lead to increased errors in target location and cardinality estimation, thereby
adversely affecting the GOSPA distance. Furthermore, when a single-model PHD filter is
used for estimation, significant estimation errors are often observed due to the mismatch
between the model and the actual target motion. Figure 6 illustrates the average GOSPA
distance under varying clutter conditions. The average GOSPA distance for all algorithms
tends to increase as the clutter density increases. However, the average GOSPA distance of
the GP-PHD filter is less sensitive to the clutter density, maintaining the best estimation
performance across all conditions. This further highlights the advantages of the GP-PHD
filter in MMTT and its strong adaptability to complex environments.
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Figure 5. GOSPA distance under pd = 0.95.

To thoroughly assess the performance of the proposed algorithm in a low-signal-to-
noise ratio (SNR) environment, Figure 7 demonstrates the average GOSPA distance of the
algorithm under different settings of the measurement noise covariance. An increase in
the measurement noise covariance matrix Rt, a key parameter affecting the SNR, leads to a
reduction in SNR. It can be observed through Figure 7 that the GP-PHD filter exhibits the
smallest GOSPA distance in each noise level test, highlighting its significant advantage in
target tracking accuracy and robustness to noise interference. This advantage stems from
the GP filter’s non-parametric modeling capability, which not only effectively learns the
features of the target model but also adapts to the unknown characteristics of the noise
covariance. Meanwhile, the VSMM-PHD and MM-PHD filters perform acceptably under
initial low-noise conditions. Still, the GOSPA distance of these two filters increases rapidly
with the growth in the measurement noise covariance, indicating a significant deficiency in
their adaptability in high-noise environments. The performance degradation of the other
single-model PHD filters is more significant in the presence of increased noise, underscoring
the limitations of the single-model algorithm in terms of flexibility and estimation accuracy.
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Figure 6. Average GOSPA distance under different clutter number under pd = 0.95.

Figure 7. Average GOSPA distance under different Rt under pd = 0.95.

Figures 8–10 evaluate the tracking performance of different algorithms with a detec-
tion probability of 0.7. Figures 8 and 9 show that a lower detection probability significantly
affects the cardinality estimation of multi-maneuvering targets, with all algorithms ex-
hibiting some bias. However, the cardinality estimation of the GP-PHD filter remains
closer to the actual situation. In contrast, the VSMM-PHD and MM-PHD filters show more
significant deviations, while the other single-model methods deviate even more. Figure 9
further illustrates this phenomenon using cardinality estimation error statistics. Despite
the impact of low detection probability, the GP-PHD filter maintains better robustness in
cardinality estimation and outperforms traditional MD algorithms. Figure 10 compares the
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GOSPA distance and shows that the proposed GP-PHD filter outperforms both MM-PHD
and single-model PHD filters. This also highlights that the GP-PHD filter is beneficial in
MMTT estimate. The GP-PHD filter demonstrates superior performance by maintaining a
lower GOSPA distance even under challenging conditions with low detection probability.
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Figure 8. Cardinality estimation comparison under pd = 0.7.
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Figure 10. GOSPA distance under pd = 0.7.

Table 1 presents the average GOSPA distance of various filtering algorithms for
500 MC experiments at a detection probability of 0.7 under different clutter conditions.
As the amount of clutter increases, the average GOSPA distance for all filters increases
accordingly. However, the proposed GP-PHD filter exhibits a low average statistical error
in these scenarios, highlighting its superiority in estimating multi-maneuvering target
motion states when facing uncertain motion and observation models. In contrast, the MD
MM-PHD filter performs slightly worse than the GP-PHD filter algorithm, while the other
three single-model PHD filters perform poorly in low detection probability scenarios due
to mismatched motion models. This difference shows that the GP-PHD filter maintains
robust performance even under challenging conditions with low detection probability and
high clutter rates.

Table 1. Average GOSPA distance statistics in different λc.

λc = 10 λc = 20 λc = 30 λc = 40

GP-PHD 18.81 28.82 39.19 53.52
VSMM-PHD 24.26 36.43 47.57 64.93

MM-PHD 27.03 38.68 50.13 67.65
GM-PHD-M1 39.46 49.49 62.61 74.69
GM-PHD-M2 39.85 52.84 64.05 77.04
GM-PHD-M3 45.07 54.24 68.35 79.02

(2) Scenario 2: A more complex MMTT environment is designed to further validate
the effectiveness of the proposed approach. In this experimental setup, the maneuverabil-
ity of the targets is significantly increased, imposing higher demands on the estimation
performance of the MTT algorithms. The targets’ motion models still include M1, M2, and
M3, but the turning rates of M2 and M3 have significantly changed with θ = −12 °/s and
θ = 12 °/s. This complex environment makes the trajectories of targets more diverse and
uncertain, which poses greater challenges to the adaptability and robustness of tracking
algorithms. Through this setup, the performance of the GP-PHD filter in highly dynamic
and complex environments can be comprehensively evaluated and compared with other
traditional MD algorithms. In addition, a GM of the form is employed, as well as the target
birth model
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γt(x) =
5

∑
i=1

wi
bN

(
x; mi

b, Pi
b

)
(58)

with wi
b = 0.1 and

m1
b =

[
50 0 250 0

]T , m2
b =

[
−250 0 −250 0

]T ,

m3
b =

[
−250 0 250 0

]T , m4
b =

[
250 0 −250 0

]T ,

m5
b =

[
−100 0 −100 0

]T .

The remaining of the multi-target motion and tracking environment parameters are set
as in Scenario 1. The testing targets move in M2 during 10 ∼ 30 s and 41 ∼ 60 s, M3 during
31 ∼ 40 s and 61 ∼ 90 s, and M1 during the other intervals. The efficacy of the proposed
approach is further validated through the aggregating 500 independent MC experiments.
In Scenario 2, the actual trajectory used for testing is shown in Figure 11. As can be seen in
the figure, the maneuverability of the targets has significantly increased due to changes in
their turning rates. The intense maneuver introduces more significant uncertainty, which
poses a more substantial challenge for tracking moving targets.

Figure 12 compares the cardinality estimation for MMTT in a highly dynamic scenario.
It is observed that the high maneuverability of the target movements significantly influences
the cardinality estimation of multiple targets. The GP-PHD, VSMM-PHD, and MM-PHD
filters exhibit varying degrees of deviation in their cardinality estimation. However, the GP-
PHD filter, with its ability to learn motion models, better adapts to different maneuvering
variations and outperforms both the VSMM-PHD and MM-PHD in multi-target cardinality
estimation. Other single-model approaches generally fail to account for such maneuvering
variations and, in most cases, do not accurately estimate the cardinality of multiple targets.
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Figure 11. True trajectory of maneuvering targets.

Figure 13 further elucidates the differences between the algorithms using the cardinal-
ity estimation error statistics. The results indicate that although the cardinality estimation
error statistics of the GP-PHD, VSMM-PHD, and MM-PHD filters exhibit similar per-
formance, notable differences still exist. Compared to the VSMM-PHD and MM-PHD
filters, the GP-PHD filter demonstrates smaller mean and median of the error statistics
of cardinality estimation, highlighting its higher stability and accuracy in multi-target
cardinality estimation. For the VSMM-PHD and MM-PHD filters, it is observed that
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there is no significant difference between the two in terms of cardinality estimation error,
with the VSMM-PHD filter exhibiting a slight advantage. Other single-model filters ex-
hibit issues such as scattered data, high variability, and numerous outliers, which render
them inadequate for such a highly dynamic environment. The performance illustrated in
Figures 12 and 13 underscores the robustness and adaptability of the GP-PHD filter in
tracking highly maneuverable targets. The GP-PHD filter’s ability to learn and adapt to
different motion models ensures a more accurate and reliable cardinality estimate, even in
challenging scenarios with significant target maneuverability.
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Figure 12. Cardinality estimation comparison under pd = 0.95.
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Figure 13. Cardinality estimateion error comparison under pd = 0.95.
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Figures 14 and 15 present the GOSPA distance and the average GOSPA distance for
MMTT. Figure 14 shows that the GP-PHD, VSMM-PHD, and MM-PHD filters exhibit
smaller GOSPA distance than other single-model filters, indicating higher accuracy in
estimating target positions, missed detections, and false alarms. Variations in target states
lead to fluctuations in GOSPA distance, as observed in periods such as 40 ∼ 50 s and
50 ∼ 70 s, where changes in target motion states and increased target counts result in
significant increases in GOSPA distance. Notably, the GP-PHD filter shows a more sta-
ble GOSPA distance variation and is less sensitive to environmental changes than the
other filters.

Figure 14. GOSPA distance under pd = 0.95.

Figure 15. Average GOSPA distance under pd = 0.95 .

Figure 15 displays the average GOSPA distance, with the GP-PHD filter exhibiting
the smallest average GOSPA distance, further confirming its superiority in MMTT. These
results highlight the robustness and adaptability of the GP-PHD filter in complex scenarios.
Compared to traditional methods, the GP-PHD filter can estimate MMTT states more
accurately and achieve a smaller GOSPA distance, thereby underscoring its effectiveness.
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Overall, the GP-PHD filter maintains a smaller GOSPA distance even under significant
changes in target motion, demonstrating its superiority in handling dynamic and complex
environments. It can adapt to various target motion models while ensuring precise tracking,
greatly enhancing the potential application of the GP-PHD filter.

Table 2 presents the average GOSPA distance for different detection probability condi-
tions. The table shows that as detection probability decreases, the estimated performance
of both GP-PHD and other filters shows a declining trend. However, the performance of
the GP-PHD filter consistently outperforms that of VSMM-PHD, MM-PHD, and single-
model PHD filters. This advantage is particularly important in real-world applications,
where environmental factors can cause fluctuations in detection probability, making it
essential to reliably and accurately track targets under diverse and challenging conditions.
The GP-PHD filter maintains higher tracking accuracy even at low detection probabil-
ities, indicating its adaptability and robustness in highly uncertain environments. In
contrast, VSMM-PHD, MM-PHD, and single-model PHD filters exhibit noticeable per-
formance degradation under low detection probability conditions and struggle to track
multiple maneuvering targets reliably. This further underscores the advantage of the GP-
PHD filter in MMTT applications, especially in dynamic and uncertain target motion and
observation models.

Table 2. Average GOSPA distance statistics in different pd.

pd = 0.95 pd = 0.85 pd = 0.8 pd = 0.75 pd = 0.7

GP-PHD 22.03 23.87 25.63 27.72 30.64
VSMM-PHD 23.15 24.04 26.49 28.93 32.75

MM-PHD 23.62 25.31 27.92 30.22 34.93
GM-PHD-M1 42.51 44.86 47.14 49.81 52.39
GM-PHD-M2 33.81 35.63 36.74 39.23 41.98
GM-PHD-M3 37.88 40.62 44.17 46.31 49.46

Pruning plays a crucial role in the proposed algorithm, and it largely determines
the computational efficiency of the algorithm. Figure 16 deeply analyzes the impact of
pruning on the performance of the algorithm in practical applications by analyzing the
execution time. Both cases are implemented in the MATLAB (2021b) environment on a
computer equipped with a 3.9 GHz CPU (Inter Core i3-7100) (Santa Clara, CA, USA). From
the comparison of the data in the figure, it is obvious that the algorithm with pruning
algorithm maintains a stable and efficient performance at all time points. In contrast, the
running time of the unpruned algorithm increases sharply with the increase in the number
of Gaussian components. This trend significantly reduces the applicability of the algorithm
in practical scenarios. Therefore, introducing the pruning step is of great significance in
ensuring the real-time and practicality of the algorithm.

(3) Summary: Through a series of simulation experiments in different scenarios, the
proposed GP-PHD filter demonstrates superior robustness when compared to the tradi-
tional tracking methods, and it effectively adapts to the complexity and uncertainty of
the target motion in the tracking scenarios more effectively. This advantage is primarily
reflected in the following aspects: (1) The GP-PHD filter can adaptively capture the dy-
namic behavior of the target without reliance on specific model assumptions, due to the
modeling flexibility of GP. This characteristic makes the method particularly suitable for
handling complex and variable target motion scenarios and can effectively address sudden
maneuvers and nonlinear motion trajectories of the target. (2) The GP model has the ability
to deal with similarities and differences in target motion, which makes the GP-PHD filter
able to accurately distinguish and track the trajectories of different targets in complex
scenarios when facing multi-target interactions. (3) The GP model can effectively deal
with the uncertainty and noise in the observation, and the filter can still maintain excellent
tracking performance even under conditions of low detection probability or serious clutter
interference. Therefore, the GP-PHD filter shows its unique advantages and wide applica-
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bility in dealing with the challenges in the field of MMTT and offers an effective solution to
the MMTT problem in complex environments.
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Figure 16. Runtime comparison.

6. Conclusions

This study proposes a model-free GP-PHD filter to effectively address the challenges
of target motion and observation model uncertainty in MMTT. The filter leverages the GP
to learn the unknown maneuvering targets’ motion and observation models and employs
the ’cubature sampling’ method to create GM approximation of the posterior intensity for
the next time step. Additionally, the study provides a concrete implementation of this
filter utilizing the GM method. The experiments compare the performance of the GP-PHD
filter with the VSMM-PHD, MM-PHD, and single-model GM-PHD filters. The results
demonstrate that the GP-PHD filter exhibits robust adaptability in learning uncertain
target motion and observation models, outperforming the VSMM, MM, and single-model
methods. These advantages make the GP-PHD filter a preferred solution for MMTT. Its
ability to learn and adapt to various target motion models ensures more accurate and
reliable tracking in complex scenarios with highly maneuverable targets. In future research,
applying the GP-PHD filter in multi-extended target tracking will be further explored for
more challenging tracking tasks.
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