
Citation: Costa, H.; Silva, M.;

Sánchez-Gendriz, I.; Viegas, C.M.D.;

Silva, I. An Evolving Multivariate

Time Series Compression Algorithm

for IoT Applications. Sensors 2024, 24,

7273. https://doi.org/10.3390/

s24227273

Academic Editors: Adnan Shahid, Eli

De Poorter and Jaron Fontaine

Received: 8 September 2024

Revised: 28 October 2024

Accepted: 12 November 2024

Published: 14 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

An Evolving Multivariate Time Series Compression Algorithm
for IoT Applications
Hagi Costa 1 , Marianne Silva 1,2 , Ignacio Sánchez-Gendriz 3 , Carlos M. D. Viegas 3 and Ivanovitch Silva 1,3*

1 UFRN-PPgEEC, Postgraduate Program in Electrical and Computer Engineering,
Federal University of Rio Grande do Norte, Natal 59078-970, Brazil; hagi.costa.062@ufrn.edu.br (H.C.);
marianne.silva@penedo.ufal.br (M.S.)

2 Campus Arapiraca, Federal University of Alagoas, Penedo 57200-000, Brazil
3 UFRN, Department of Computing Engineering and Automation, Federal University of Rio Grande do Norte,

Natal 59078-970, Brazil; ignaciogendriz@dca.ufrn.br (I.S.-G.); carlos.viegas@ufrn.br (C.M.D.V.)
* Correspondence: ivanovitch.silva@ufrn.br

Abstract: The Internet of Things (IoT) is transforming how devices interact and share data, espe-
cially in areas like vehicle monitoring. However, transmitting large volumes of real-time data can
result in high latency and substantial energy consumption. In this context, Tiny Machine Learning
(TinyML) emerges as a promising solution, enabling the execution of machine-learning models
on resource-constrained embedded devices. This paper aims to develop two online multivariate
compression approaches specifically designed for TinyML, utilizing the Typicality and Eccentricity
Data Analytics (TEDA) framework. The proposed approaches are based on data eccentricity and
do not require predefined mathematical models or assumptions about data distribution, thereby
optimizing compression performance. The methodology involves applying the approaches to a case
study using the OBD-II Freematics ONE+ dataset, which is focused on vehicle monitoring. Results
indicate that both proposed approaches, whether parallel or sequential compression, show significant
improvements in execution time and compression errors. These findings highlight the approach’s
potential to enhance the performance of embedded IoT systems, thereby improving the efficiency
and sustainability of vehicular applications.

Keywords: IoT; TinyML; evolving algorithm; data compression; OBD-II edge

1. Introduction

The Internet of Things (IoT) has significantly transformed the operation of industries
by enabling real-time communication and data exchange among interconnected devices [1].
This paradigm shift has driven advances in sectors such as healthcare, manufacturing, and
transportation, increasing operational efficiency, enabling predictive maintenance, and
driving innovation in products and services [2]. Projections indicate that the number of
connected devices could exceed 75 billion by 2025, underscoring the importance of the IoT
in the future of industry [3].

However, the enormous volume of data generated by IoT devices presents consider-
able challenges in terms of storage and processing [4]. IoT networks, particularly those
handling multivariate time series data from multiple sensors, require efficient methods to
manage this large amount of information [5]. Traditional storage systems often struggle to
scale to handle such large and rapid data streams, which raises concerns about their sus-
tainability [6]. Furthermore, processing this data in real-time to derive actionable insights
requires computational resources and advanced algorithms, which can be expensive and
complex to implement [3,7].

These challenges are particularly evident in the context of autonomous and/or con-
nected vehicles, where IoT plays an important role [8]. Vehicles equipped with multiple

Sensors 2024, 24, 7273. https://doi.org/10.3390/s24227273 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24227273
https://doi.org/10.3390/s24227273
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0661-0227
https://orcid.org/0000-0002-8277-7571
https://orcid.org/0000-0002-3885-9510
https://orcid.org/0000-0001-5061-7242
https://orcid.org/0000-0002-0116-6489
https://doi.org/10.3390/s24227273
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24227273?type=check_update&version=1

Sensors 2024, 24, 7273 2 of 27

sensors generate extensive data streams, encompassing information on speed, engine per-
formance, environmental conditions, and driver behavior [9]. Managing and analyzing this
data in real-time is essential to ensure safety and efficiency of driving systems. For instance,
real-time data processing enables the detection of potential road hazards, optimizes route
planning, and provides immediate feedback to vehicle control systems, demonstrating the
practical application of IoT in the automotive industry [10]. Additionally, beyond vehicle
monitoring, applications such as industrial machinery tracking, smart grid data analysis,
and even environmental monitoring are examples where similar challenges of multivariate
data compression and processing on resource-limited devices are important.

Considering the volume and complexity of IoT data, particularly in time series form,
it is essential to use data compression techniques to minimize storage and processing
costs [11]. Univariate techniques, such as the Tiny Anomaly Compressor (TAC) [12],
have already proven effective in reducing data volume while preserving information by
identifying anomalies in time series from a single sensor.

In this context, TinyML emerges as a promising approach, enabling the deployment
of machine-learning algorithms on low-power devices, such as sensors and microcon-
trollers [13]. This approach is relevant for embedded systems and IoT, where energy
efficiency and local processing are important [14]. Compared to conventional ML tech-
niques, TinyML offers lower energy consumption and reduced latency, which is important
in IoT applications where power resources are constrained and connectivity may be inter-
mittent. Additionally, TinyML models allow data processing closer to the source, which
minimizes the need for constant data transmission, thus saving energy and improving
efficiency [15].

The Tiny Anomaly Compressor (TAC) is an example of a TinyML technique designed
to operate on resource-constrained devices. Based on the Typicality and Eccentricity Data
Analysis (TEDA) framework, TAC is an approach that, unlike traditional methods that rely
on data density, evaluates whether a sample is an outlier by examining its typicality and
eccentricity [12]. Eccentricity measures the extent to which a data point deviates from the
others in the dataset, while typicality assesses how representative or common that point is
within the same dataset [16,17]. Implementing TAC on TinyML devices is advantageous
because it allows the execution of compression and anomaly-detection algorithms directly
on the sensors, taking advantage of local processing to minimize the need for transmitting
large volumes of data. The main research problem addressed in this study is the limitation
of univariate techniques, like TAC, in effectively handling multivariate data from multiple
interconnected sensors, where variables may interact and exhibit complex dependencies
that are essential for accurate anomaly detection.

Thus, to address this limitation, this work proposes two extensions of TAC to a
multivariate framework: the Multivariate Parallel Tiny Anomaly Compressor (MPTAC)
and the Multivariate Sequential Tiny Anomaly Compressor (MSTAC). These approaches
allow TAC to be applied in contexts where multiple variables are monitored simultaneously,
accounting for correlations and interactions among them. A case study using vehicle
data collected by a Freematics ONE+ OBD-II device was conducted in order to compare
the performance of MPTAC and MSTAC. In summary, this work presents significant
innovations by expanding the capabilities of TAC for multivariate IoT applications, thus
addressing both data volume and resource constraints.

• Extension of TAC: Development of the MPTAC and the MSTAC for multivari-
ate data compression and anomaly detection, which enables efficient handling of
interrelated variables.

• Processing efficiency: Improvement in real-time analysis by considering correlations
between variables and facilitating on-device data compression.

• Cost and energy efficiency: Reduction in energy consumption and data transmission
requirements by leveraging TinyML processing capabilities, demonstrating advan-
tages over traditional ML approaches in constrained IoT environments.

Sensors 2024, 24, 7273 3 of 27

• Practical validation: Effectiveness demonstrated through a case study using vehicle
data, showcasing potential for broader IoT scenarios.

Preliminary results indicate that both approaches offer significant improvements in
execution time and compression, with MPTAC particularly enhancing data processing
efficiency for embedded IoT systems. While this study focuses on vehicular data, the
methodology has potential applications across diverse IoT domains, including smart cities,
industrial automation, and environmental monitoring.

The remainder of this paper is organized as follows. Section 2 presents related works
that influenced our defined methodology and implementation. Section 3 provides the
essential background information needed to understand the problem and the context of
our algorithms. Section 4 details the proposed algorithms. Section 5 presents the case study
by outlining the research questions and providing a detailed description of the dataset and
the metrics used for evaluating the algorithms. Section 6 discusses the main results, and
finally, Section 7 presents conclusions and promising directions for future research.

2. Related Works

The processing and compression of temporal data have been the focus of extensive
research due to the exponential growth in data generated by IoT devices, monitoring
systems, and other sources [11]. Several techniques have been developed to address the
challenges associated with the efficient storage and analysis of these data [18]. This section
reviews the main approaches to time series compression.

In [19], the authors present a compression approach for resource-constrained IoT
applications that handle univariate and multivariate time series data. The method integrates
the lifting scheme implementation of the Discrete Wavelet Transform (DWT) with an error-
bound lossy compressor known as Squeeze (SZ). This combination reduces data size
while maintaining essential data quality by denoising and smoothing the input signal
for more effective compression. The algorithm has been applied to various IoT datasets,
demonstrating its adaptability to different sensor data types and activities. However, the
approach’s effectiveness depends on the stationarity and noise characteristics of the time
series data, which can affect compression performance in multivariate cases where signal
noise and variations across dimensions differ.

In the work [20], the authors introduce a compression algorithm tailored for non-
equidistant multivariate integer time series data, specifically applied in the context of
vehicle sensor data. The proposed algorithm, named Binary Shift Compression (BiSCo),
operates by first adjusting signal values using a bit-shift method based on a defined
maximum absolute error and a signal-specific factor. This is followed by a zero-order
prediction model that compresses the data by storing only significant changes in the sensor
readings. The algorithm is specifically designed for handling large volumes of sensor
data generated by vehicle networks. Its real-time efficiency and high compression ratio
make it suitable for automotive applications, but its design for integer-only data introduces
limitations in contexts that require floating-point precision or highly dynamic data. This
may be especially challenging in applications that need to maintain accuracy for signal
variability in multivariate setups.

In the study [21], the authors propose a transfer-learning-based multimodal con-
volutional denoising autoencoder (M-CDAE) designed for compressing biosignals such
as electrocardiogram (ECG), electromyogram (EMG), and electroencephalogram (EEG),
which are commonly used for diagnosing chronic diseases. The proposed algorithm works
by jointly compressing these signals into a unified representation before transmission.
This approach reduces computational costs and enhances the battery life of wearable de-
vices. The compression process is optimized by using transfer learning, which leverages
pre-trained weights from similar datasets to improve the reconstruction quality of the
biosignals from their compressed forms. This method, though effective for biosignals,
could struggle with the unique characteristics of multivariate sensor data in IoT, where
diverse signals may not correlate closely, affecting transfer learning’s generalization ca-

Sensors 2024, 24, 7273 4 of 27

pability. Additionally, while transfer learning reduces training times, initial pre-training
remains computationally demanding.

In the research presented in [22], the authors propose LFZip, a lossy compression algo-
rithm for multivariate floating-point time series data. The algorithm employs a prediction-
quantization-entropy coding framework, starting with the prediction of the next value in
the time series using models such as Normalized Least Mean Square (NLMS) or neural
networks. The prediction error is then quantized and the resulting data are entropy coded.
LFZip has been applied to various time series datasets from domains like activity recog-
nition, power consumption, and sensor data. The algorithm is designed to work with a
user-specified maximum absolute error. Nonetheless, LFZip’s dependency on prediction
models may reduce efficiency in non-stationary environments, particularly if changes in
time series patterns are not quickly adapted by the neural network. This limitation is more
pronounced in resource-constrained environments where computational overheads hinder
real-time performance.

In [23], the authors propose a physiological signal-compression algorithm tailored
for mobile health (mHealth) applications, leveraging an optimized Spindle Convolutional
Autoencoder (SCAE). This method is designed to compress multimodal biosignals such
as ECG, EEG, and EMG by encoding the signals into a lower-dimensional space before
reconstruction. Its use of channel pruning and quantization enables high-efficiency com-
pression, but its focus on biosignals, which may not generalize well to IoT sensor data
due to inter-signal dependency characteristics in health data. Consequently, this algorithm
might require adaptation to effectively handle more loosely related multivariate IoT data.

In their research [24], the authors propose a near-lossless compression method for time
series data, specifically designed to optimize data transmission and storage in resource-
constrained environments such as IoT devices. The algorithm operates in two main stages: a
data transformation phase followed by entropy encoding. In the data transformation phase,
the method uses quantization to reduce the precision of floating-point numbers, followed
by statistical analysis and deviation coding to minimize data redundancy. The resulting
data are then encoded using an entropy-based compression algorithm, such as adaptive
arithmetic coding, to further reduce the data size. The algorithm has been applied to
various datasets, including those from wearable sensors and household power consumption
monitoring, making it suitable for a wide range of IoT applications. Despite its effectiveness,
limitations arise with non-stationary multivariate data, where statistical assumptions may
not hold, and quantization may compromise the integrity of individual signals.

In the article [25], the authors propose a sliding window-based time series compression
algorithm named Window Delta (WD). This algorithm is designed to handle time series
data characterized by frequent fluctuations, which can pose challenges for traditional
compression methods. WD operates by applying a sliding window of size 3 to smooth
the data, reducing the impact of fluctuations on the compression process. The algorithm
computes intermediate values, termed w-deltas, which represent the difference among data
points within the window and their average. While effective for data with rapid changes,
WD’s approach may be constrained by its simplistic structure, which lacks the adaptability
needed for multivariate data, especially in IoT settings where fluctuations are irregular and
may vary in amplitude across dimensions.

In the investigation [26], the authors present a lossless compression algorithm called
Ant, specifically designed for floating-point time series data commonly generated in IoT
applications. The algorithm converts double-precision floating-point numbers into integer
form, calculates the delta among consecutive values, and then applies Zigzag encoding to
convert the delta into unsigned integers. This approach effectively minimizes the storage
requirements by focusing on the significant bits of the encoded values while discarding
unnecessary leading zeros. Ant is applied to various time series datasets, particularly those
involving industrial monitoring and sensor data, demonstrating its utility in IoT scenarios
where efficient storage and transmission of large data volumes are critical. Although Ant’s
method for minimizing storage requirements by transforming floating-point values into

Sensors 2024, 24, 7273 5 of 27

integers is innovative, its applicability is limited in data with large variations between
adjacent values, where precision is important. The conversion to integers can result in
lossiness for multivariate datasets requiring high decimal precision.

From another perspective, ref. [12] proposes TAC, an anomaly-detection-based com-
pression approach for time series. TAC compresses only the detected anomalies, making
it efficient for data where normal patterns dominate, yet univariate TAC limitations un-
derscore the necessity for advancements in multivariate monitoring scenarios. Expanding
TAC to a multivariate framework can bridge this gap, especially in TinyML settings that
require robust, resource-efficient anomaly compression. The main advantage of TAC is its
ability to efficiently identify and represent anomalous events, which are considered critical
information for compression.

Overall, while the reviewed techniques address various compression challenges, the
need for scalable, multivariate-aware solutions for TinyML applications remains unfulfilled.
By enhancing the multivariate capacity of TAC through MPTAC and MSTAC, our approach
aims to address these limitations, particularly in adaptability and computational efficiency,
which are essential for resource-limited devices.

Table 1 presents a comparative summary of these approaches, highlighting their key
features and limitations. The table details whether the algorithm handles multivariate time
series maintains floating-point precision, employs online learning, uses machine learning,
and performs compression in a single stage. This comparative analysis emphasizes that
while several methods attempt to tackle multivariate and resource-constrained challenges,
none fully integrate these capabilities in a unified solution.

Table 1. Summary of related works.

Work Multivariate
Input

Float-Point
Precision

Online
Learning

Machine
Learning

1-Stage
Compres.

Azar et al. [19] Yes Yes No No No
Vox et al. [20] Yes No No No No
Ithayarani et al. [21] Yes Yes No Yes Yes
Chandak et al. [22] Yes Yes Yes Yes No
Barot et al. [23] Yes Yes No Yes Yes
Agrawal et al. [24] Yes Yes No No No
Meng et al. [25] No Yes No No No
Li et al. [26] No Yes No No No
Signoretti et al. [12] No Yes Yes Yes Yes
Proposed work Yes Yes Yes Yes Yes

3. Theoretical Background

This section reviews the foundational concepts and existing methodologies that un-
derpin our work, with a particular focus on the TEDA framework and the TAC.

3.1. Typicality and Eccentricity Data Analysis

The TEDA framework, derived from recursive density estimation algorithms, uses
the concepts of typicality and eccentricity to distinguish normal from anomalous data
samples [16]. Unlike traditional methods that rely on data density, TEDA assesses whether
a sample is an outlier by examining its typicality and eccentricity. These measures are
computed without requiring specific parameters or thresholds.

TEDA is designed to function without many of the restrictive assumptions that tradi-
tional statistical methods require. It does not assume independence among data samples,
nor does it require a large sample size or prior knowledge of the data distribution, such
as normality. This framework relies on data proximity and mutual distribution, allowing
for flexible, non-parametric anomaly detection that adapts to diverse data types. TEDA’s
threshold is selected to enable sensitivity to deviations, dynamically adapting based on data

Sensors 2024, 24, 7273 6 of 27

variability. This flexibility allows TEDA to effectively identify anomalies without capturing
minor fluctuations, ensuring accurate and adaptive performance in real-time applications.

In TEDA, typicality reflects how well a data sample aligns with the general pattern of
the dataset. This measure assesses the representativeness of each data point in relation to
the dataset context, where a high typicality value indicates that the data point is consistent
with established data trends. In contrast, a low typicality value implies that the data point
deviates from these patterns, which may suggest anomalous behavior.

Eccentricity in TEDA measures the extent to which a data point diverges from the
dataset’s central tendency. It is calculated based on the distance from the sample to the mean
and variance in the data up to that point, quantifying deviation without fixed parameters
or thresholds. Data points with high eccentricity are identified as significantly divergent.
When paired with low typicality, high eccentricity signals an outlier, equipping TEDA with
the ability to detect anomalies in dynamic, evolving datasets.

The eccentricity of a sample, ξ, for Euclidean distance, can be represented as fol-
lows [27]:

ξk(xk) =
1
k
+

(µk − xk)
T(µk − xk)

kσ2
k

, σ2
k > 0, k > 1 (1)

where k ∈ N is the sampling instant, xk ∈ Rn is the k-th n-dimensional sample (n ∈ N),
µk ∈ Rn is the recursively updated mean (Equation (2)), and σ2

k ∈ R is the recursively
updated variance (Equation (3)).

µk(xk) =


0, i f k = 0
xk, i f k = 1
k−1

k µk−1 +
xk
k , i f k > 1

(2)

σ2
k (xk) =

{
0, i f k ≤ 1
k−1

k σ2
k−1 +

||xk−µk ||2
k−1 , i f k > 1

(3)

The typicality of a given sample xk at the k-th iteration can be described as the comple-
ment to eccentricity, as follows [27]:

τk(xk) = 1− ξk(xk) (4)

Additionally, ref. [27] defines the normalized eccentricity, which can be computed
as follows:

ζk(xk) =
ξk(xk)

2
,

k

∑
i=1

ξk(xk) = 1, k > 1 (5)

To distinguish normal state data from abnormal state data, it is essential to establish a
comparison threshold. For anomaly detection, the mσ threshold is commonly used [28].
However, this approach requires an assumption about the distributional characteristics of
the analyzed data, such as assuming a Gaussian distribution [27]. Chebyshev’s inequality,
on the other hand, can be applied to any data distribution. It asserts that the probability of
data samples deviating more than mσ from the mean is at most 1/m2, where σ represents
the standard data deviation [29].

The condition that yields results equivalent to Chebyshev’s inequality, without making
any assumptions about the data or its independence, can be expressed as follows:

ζk >
m2 + 1

2k
(6)

where m is the comparison threshold [27].
Finally, Algorithm 1 presents the details of TEDA in pseudocode form.

Sensors 2024, 24, 7273 7 of 27

Algorithm 1: TEDA
Input: xk: k-th sample; m: comparison threshold
Output: outlier: sample classification as outlier or normal

1 begin
2 while receive xk do
3 if k = 1 then

// Initialize mean and variance
4 µk ← xk;
5 σ2

k ← 0;
6 else

// Compute mean, variance, eccentricity and normalized
eccentricity, respectively

7 µk ← k−1
k µk−1 +

xk
k ;

8 σ2
k ←

k−1
k σ2

k−1 +
||xk−µk ||2

k−1 ;

9 ξk ← 1
k +

(µk−xk)
T(µk−xk)

kσ2
k

;

10 ζk ← ξk
2 ;

// Check if xk is an anomaly

11 if ζk >
m2+1

2k then
12 outlier ← true;

13 else
14 outlier ← f alse;

15 k← k + 1;

3.2. Tiny Anomaly Compressor (TAC)

The TAC algorithm builds upon the principles of typicality and eccentricity discussed
in TEDA [27] to compress single-variable time series data using anomaly detection. Like
TEDA, TAC does not require predefined mathematical models or assumptions about data
distribution. It leverages recursive calculations, ensuring efficiency with low computational
cost, minimal memory usage, and reduced processing power demands [12]. This approach
is effective for time series data that exhibit spatial or temporal correlation, such as sensor-
generated data streams, by focusing specifically on anomalies within that single dimension.

TAC introduces differences compared to the TEDA framework outlined in Algorithm 1.
The first difference in TAC is the use of a dynamic “anomaly window”. This window tracks
the number of anomalies detected since the last sample was saved. In addition, a new
hyperparameter, windowLimit, is introduced to specify the number of anomalies required
to consider the window full. This hyperparameter controls the model’s sensitivity to
concept drifts: higher values mean that more anomalies are needed before the model resets
and saves a new sample, thus tuning the response to changes in the signal.

When the anomaly window is not full, no new samples are saved. Once the window
reaches its capacity and an additional anomaly is detected, that sample is preserved. This
indicates a potential concept drift in the time series. The window then resets, and the
model’s internal parameters—such as k, mean, and variance—are reset to their initial states
to start a new window. Finally, the pseudocode for TAC method is provided in Algorithm 2.

Sensors 2024, 24, 7273 8 of 27

Algorithm 2: Tiny Anomaly Compressor (TAC)
Input: xk: k-th sample; m: comparison threshold; windowLimit: window size
Output: keepPoint: saved sample

1 begin
2 while receive xk do
3 if k = 1 then

// Initialize mean (scalar) and variance
4 µk ← xk;
5 σ2

k ← 0;
// Save the sample from the first execution

6 if time = 1 then
7 keepPoint← true;
8 else
9 keepPoint← false;

10 else
// Compute mean (scalar) and variance for k > 1

11 µk ← k−1
k µk−1 +

xk
k ;

12 σ2
k ←

k−1
k σ2

k−1 +
(xk−µk)

2

k−1 ;
// Discard the sample if it is identical to the previous

one and the calculated variance is 0
13 if x = lastValue and σ2 = 0 then
14 keepPoint← false;
15 else

// Compute eccentricity and normalized eccentricity,
respectively

16 ξk ← 1
k +

(µk−xk)
2

kσ2
k

;

17 ζk ← ξk
2 ;

// Check if xk is an anomaly

18 if ζk >
m2+1

2k then
19 isAnomaly← true;
20 anomalyCount← anomalyCount + 1;
21 else
22 isAnomaly← false;

// Save the next detected anomaly after the window is
full and reset the window

23 if anomalyCount > windowLimit then
24 resetWindow();
25 keepPoint← true;
26 else
27 keepPoint← false;

28 time← time + 1;
29 k← k + 1;
30 lastPoint← xk;

4. Proposed Algorithm

In this section, we present the development of the algorithms underpinning MPTAC
and MSTAC. Both algorithms are designed to compress multivariate data, but they differ
in their approaches to handling multiple variables.

Sensors 2024, 24, 7273 9 of 27

4.1. Multivariate Parallel Tiny Anomaly Compressor

The proposed work extends the TAC algorithm from its original single-variable appli-
cation to a multidimensional framework, enhancing its applicability in scenarios where
multiple interrelated variables are monitored simultaneously. This extension is depicted in
Figure 1, highlighting how TAC’s functionality is enhanced for managing and analyzing
multidimensional data.

Read new sample

Repeat

send data to the intended
recipient device (fog nodes,
cloud servers, and/or end-

user devices)

MPTAC Algorithm

update internal metrics
(vector equations)

calculate the
eccentricity of

the new sample
(vector equation)

compare with the
eccentricity inequality

Yes

No

Is it an
anomaly?

Repeat

discard sample

increment the anomaly
count of the anomaly

window

No Yes
Is the

window full?

reset the
anomaly window

keep the sample

Input sample

Sensor 1

Sensor 2

Sensor 3

Sensor N

Output sample

Sensor 1

Sensor 2

Sensor 3

Sensor N

Edge Device

Figure 1. Flowchart of the MPTAC algorithm.

However, we adapt the anomaly detection process to account for correlations and
interactions among multiple variables. This adaptation enables the algorithm to identify
anomalies not only within individual dimensions but also in their relationships.

The resulting algorithm, named MPTAC, builds on the foundational logic of the
TAC. While the original TAC was implemented and evaluated using simplified forms of
Equations (1)–(5) for univariate time series [12], this study generalizes the approach to
handle the case where xk is an n-dimensional sample, applying the full version of the
TEDA framework.

The primary difference between TAC and MPTAC lies in the treatment of input data.
TAC processes a single variable xk at a time, calculating the mean µk and variance σ2

k as
scalar quantities. In contrast, MPTAC processes vectors of multiple variables xk ∈ Rn,
computing the mean µk as a vectorial quantity (variance σ2

k remains a real value). This
approach enables MPTAC to capture correlations among variables, which are important for
detecting anomalies in a multivariate context.

Moreover, MPTAC incorporates the calculation of the vectorial distance (µk−xk)
T(µk−xk),

allowing the algorithm to identify deviations not only within individual dimensions, but
also across the overall vector. This capability makes MPTAC more effective in detect-
ing complex anomalies that would be overlooked by univariate methods. Finally, the
pseudocode for this parallel compression approach is provided in Algorithm 3.

Sensors 2024, 24, 7273 10 of 27

Algorithm 3: Multivariate Parallel Tiny Anomaly Compressor
Input: xk: k-th sample; m: comparison threshold; windowLimit: window size
Output: keepPoint: saved sample

1 begin
2 while receive xk do
3 if k = 1 then

// Initialize mean (vector) and variance
4 µk ← xk;
5 σ2

k ← 0;
// Save the sample from the first execution

6 if time = 1 then
7 keepPoint← true;
8 else
9 keepPoint← false;

10 else
// Compute mean (vector) and variance for k > 1

11 µk ← k−1
k µk−1 +

xk
k ;

12 σ2
k ←

k−1
k σ2

k−1 +
||xk−µk ||2

k−1 ;
// Discard the sample if it is identical to the previous

one and the calculated variance is 0
13 if x = lastValue and σ2 = 0 then
14 keepPoint← false;
15 else

// Compute eccentricity and normalized eccentricity,
respectively

16 ξk ← 1
k +

(µk−xk)
T(µk−xk)

kσ2
k

;

17 ζk ← ξk
2 ;

// Check if xk is an anomaly

18 if ζk >
m2+1

2k then
19 isAnomaly← true;
20 anomalyCount← anomalyCount + 1;
21 else
22 isAnomaly← false;

// Save the next detected anomaly after the window is
full and reset the window

23 if anomalyCount > windowLimit then
24 resetWindow();
25 keepPoint← true;
26 else
27 keepPoint← false;

28 time← time + 1;
29 k← k + 1;
30 lastPoint← xk;

Sensors 2024, 24, 7273 11 of 27

4.2. Multivariate Sequential Tiny Anomaly Compressor

A sequential multivariate compressor, named the MSTAC, is an approach that oper-
ates by applying the unidimensional TAC algorithm independently to each variable in a
multivariate dataset. Specifically, the MSTAC algorithm is composed of n separate instances
of the TAC algorithm, where n corresponds to the number of variables in the dataset.

Each instance of the TAC algorithm within the MSTAC framework is dedicated to
compressing a single variable. This means that for each variable, the algorithm performs
sequential compression tailored to that variable’s unique statistical properties and charac-
teristics. By handling each variable independently, MSTAC ensures that the compression
process is optimized for the specific dynamics and variations inherent in each data stream.

The corresponding flowchart of the MSTAC algorithm is illustrated in Figure 2,
which provides a visual representation of the sequential compression process applied
to each variable.

Input sample

Sensor 1

Sensor 2

Sensor 3

Sensor N

Read new sample

Repeat

send data to the intended
recipient device (fog nodes,
cloud servers, and/or end-

user devices)

MSTAC Algorithm
Output sample

Sensor 1

Sensor 2

Sensor 3

Sensor N

Edge Device

TAC (Sensor 1)

TAC (Sensor 2)

TAC (Sensor 3)

TAC (Sensor N)

No
keep the
sample?

Yes

Figure 2. Flowchart of the MSTAC algorithm.

The pseudocode for this sequential compression approach is provided in Algorithm 4.
In this algorithm, xk[v] represents the value of the v-th variable in the k-th sample, m[v]
denotes the corresponding m value used by the TAC algorithm for the v-th variable, and
windowLimit[v] specifies the window size used to control the compression process for
the v-th variable. The MSTAC algorithm thus performs compression by processing each
variable in sequence (for instance, xk[3] is processed only after xk[2] has been processed),
with each instance of TAC operating independently to compress its designated variable.

Algorithm 4: Multivariate Sequential Tiny Anomaly Compressor
Input: xk: k-th sample; m: comparison threshold list; windowLimit: window size

list
Output: keepPoint: saved sample list

1 begin
2 while receive xk do
3 keepPoint[1] = TAC(xk[1], m[1], windowLimit[1]);
4 keepPoint[2] = TAC(xk[2], m[2], windowLimit[2]);
5 keepPoint[3] = TAC(xk[3], m[3], windowLimit[3]);
6 .
7 .
8 .
9 keepPoint[v] = TAC(xk[v], m[v], windowLimit[v]);

Sensors 2024, 24, 7273 12 of 27

Finally, Figure 3 illustrates the processing flow of the TAC, MPTAC, and MSTAC algo-
rithms, highlighting their key differences. The TAC processes univariate data, computing
mean and variance to detect anomalies in a single dimension. The MPTAC extends this
concept to multiple dimensions by processing multivariate data in parallel, with vector-
ized calculations of mean and variance, enabling simultaneous anomaly detection across
several variables.

The MSTAC, on the other hand, follows a sequential approach, applying the TAC
independently to each dimension of the multivariate data. This approach allows for more
granular anomaly detection, with decisions made separately for each variable. Both MTAC
and MSTAC are built upon the TAC foundation, but they offer different methods for
handling the complexity of multivariate data.

x_k
(Univariate)

Calculation of the mean, μ_k
input: scalar

output: scalar

Calculation of the eccentricity ξ_k, ζ_k
input: scalar

output: scalar

Decision: keep or discard sample

x_k
(Multivariate)

Calculation of the mean, μ_k
input: vector

output: vector

Calculation of the eccentricity ξ_k, ζ_k
input: vector

output: scalar

Decision: keep or discard sample

Calculation of the variance, σ²_k
input: scalar

output: scalar

Calculation of the variance, σ²_k
input: vector

output: scalar

Anomaly Detection Anomaly Detection

x_k
(Multivariate)

Calculation of the mean, μ_k
(by Dimension)

Calculation of the eccentricity ξ_k, ζ_k
(by Dimension)

Decision: keep or discard sample
(by Dimension)

Calculation of the variance, σ²_k
(by Dimension)

Anomaly Detection
(by Dimension)

TAC MPTAC MSTAC

Figure 3. Differences between TAC, MPTAC, and MSTAC.

4.3. Algorithm Characteristics of MPTAC and MSTAC

The computational complexity of the MPTAC and MSTAC algorithms is O(n), where
n represents the number of monitored variables, meaning that data dimensionality is the
sole factor impacting performance. Both algorithms are designed for continuous data
streams and scale linearly; however, MPTAC stands out in practical efficiency due to
parallel processing, which reduces execution time, especially in high-dimensional scenarios
such as IoT applications and multivariate systems.

The flexibility of these algorithms allows tuning of anomaly-detection sensitivity
through two main parameters: anomaly window size and m-threshold. The anomaly
window size defines the number of consecutive anomalies required before a data point is
retained. A smaller window size makes the algorithm more responsive, capturing frequent
or sporadic anomalies and useful for detecting subtle deviations, although it may lead to
false positives in more volatile data. A larger window size, on the other hand, requires more
consistent anomalies before retention, offering robustness in highly variable data streams.

Sensors 2024, 24, 7273 13 of 27

The m-threshold defines the eccentricity level required to classify a point as an anomaly.
Lower m values make the algorithm more sensitive to minor variations, detecting smaller
deviations but possibly increasing false positives. Higher m values are more suitable for
data with natural variability, as they decrease sensitivity to minor fluctuations, though they
may miss subtler anomalies.

Additionally, the algorithms differ in handling correlations between variables, impact-
ing both compression performance and anomaly detection. While MPTAC calculates a
single eccentricity score for the multivariate sample, capturing collective patterns among
correlated variables, MSTAC treats each variable independently, increasing precision in
detecting deviations specific to each dimension. In resource-constrained applications,
such as IoT, selecting representative variables from strongly correlated groups can reduce
redundant processing by monitoring only those with the highest informational value.

Finally, these algorithms are robust in handling edge cases in data, such as very
smooth or highly erratic data streams, through appropriate parameter adjustments. For
smoother data, lowering the m-threshold and anomaly window size increases sensitivity
to subtle anomalies, preserving data integrity during compression. In volatile time series,
raising these parameters prevents excessive data retention, ensuring that only significant
deviations are preserved.

These characteristics make MPTAC and MSTAC versatile and efficient algorithms,
adapting to different data types and operational conditions to maximize compression
without compromising anomaly-detection accuracy.

5. Case Study

The objective of this case study is to assess the performance of the proposed MPTAC
algorithm in terms of compression errors, processing efficiency, and data compression ef-
fectiveness. This involves comparing MPTAC with various instances of the TAC algorithm,
each configured with different parameter settings, as well as with the MSTAC. In both
cases, linear interpolation was the technique used for decompression.

5.1. Research Questions

This section addresses the following research questions:

1. How efficient is the MPTAC algorithm in terms of compression ratio compared to the
MSTAC algorithm across various parameter settings?

2. How does the MPTAC algorithm compare to MSTAC in terms of precision, measured
by root mean squared error (RMSE), when evaluated with different parameters and
when adjusted to the same parameterization?

3. How does the processing time of the MPTAC algorithm compare to the processing
time of the MSTAC algorithm for data compression?

4. What are the main advantages and disadvantages of the MPTAC algorithm compared
to the MSTAC algorithm, considering reconstruction error metrics?

5.2. Database Selection

This study considered the dataset provided by the Conect2AI (https://conect2ai.dca.
ufrn.br/, accessed on 7 September 2024) group. It contains 10.365 records from automotive
sensors, sampled at a rate of 1 Hz (1-s sampling interval), using the Freematics ONE+
device, which is an Arduino-compatible vehicle telematics prototyping platform [30]. It
includes a total of 36 columns, each representing a different feature of the vehicle. For
this analysis, we specifically focused on five variables: battery voltage, engine load, RPM,
speed, and throttle—since they represent a mix of dynamic data, which varies rapidly, and
more stable data, as noted in Table 2. Furthermore, we note that no preprocessing steps
were applied to the dataset, as the raw data was utilized directly.

https://conect2ai.dca.ufrn.br/
https://conect2ai.dca.ufrn.br/

Sensors 2024, 24, 7273 14 of 27

Table 2. Descriptive statistics of the original data for each variable.

Battery
Voltage (V)

Engine Load
(%) RPM Speed (km/h) Throttle (%)

of samples 10.365 10.365 10.365 10.365 10.365
Mean 13.52 11.07 1608.33 45.42 18.86
Std 0.79 8.38 442.92 25.97 7.55
Min 10.64 0.00 0.00 0.00 11.00
Max 15.39 49.00 3401.00 102.00 88.00

In addition, as shown in Figure 4, the data exhibit significant variability in the RPM
and speed, while battery voltage remains relatively stable. This selection enables the
performance evaluation of compression algorithms across both types of data, ensuring a
comprehensive assessment of their effectiveness.

11

12

13

14

15

0

10

20

30

40

50

0

1000

2000

3000

0

20

40

60

80

100

0 2k 4k 6k 8k 10k

20

40

60

80

Battery Voltage

Engine Load

RPM

Speed

Throttle

B
at

te
ry

 V
o

lt
ag

e
E

n
g

in
e

L
o

ad
R

P
M

S
p

ee
d

T
h

ro
tt

le

Figure 4. Time series of selected variables: battery voltage, engine load, RPM, speed, and throttle.

Sensors 2024, 24, 7273 15 of 27

5.3. Evaluation Metrics

To evaluate the performance of a compression encoder for time series data, three
key characteristics are considered: compression ratio, processing speed, and compression
error [31].

Compression ratio—This metric measures the effectiveness of a compression tech-
nique and is defined as follows:

ρ =
s′

s
(7)

where s′ is the size of the compressed representation and s is the size of the original time
series. Other key metrics related to the compression ratio include the compression rate (CR)
and the compression factor (CF):

CR = 1− ρ (8)

CF =
1
ρ

(9)

Processing speed—The following are the definitions of the two metrics associated
with processing speed:

• Compression time (CT): Compression time is the amount of time required to convert
the original data into its compressed form. It is a critical metric for evaluating the
efficiency of a compression algorithm, especially in applications that require real-time
or near-real-time data processing;

• Decompression time (DT): Decompression time is the amount of time required to recon-
struct the original data from its compressed form. This metric is crucial for applications
where quick access to the original data is necessary after compression.

Compression error—Compression error measures the fidelity of the reconstructed
time series relative to the original. Various metrics can be used to assess this fidelity,
like mean squared error (MSE), root mean squared error (RMSE), signal-to-noise ratio (SNR),
normalized cross correlation (NCC) and compression Fβ coefficient (CFβ) [12]. These metrics
allow not only the evaluation of reconstruction accuracy but also insight into the impact of
decompression errors on specific applications.

MSE =
1
n

n

∑
i=1

(xi − x̂i)
2 (10)

RMSE =
√

MSE (11)

SNR =
∑n

i=1
x2

i
n

MSE
(12)

NCC =
1
n

n

∑
i=1

(xi − µx)(x̂i − µx̂)

σx ∗ σx̂
(13)

CFβ = (1 + β2)
CR ∗ NCC

(β2 ∗ CR + NCC)
(14)

where xi, x̂i, xpeak, µx, µx̂, σx and σx̂ are, respectively, the original data points, the recon-
structed data points, the maximum value in the original time series, the original data points
mean, the reconstructed data points mean, the original data points standard deviation and
the reconstructed data points standard deviation. β is a positive real parameter used to ad-
just the relative importance of each metric in the CFβ calculation. The parameter is selected
so that the NCC is β times more important than the CR. Finally, when β = 1, the equation
assigns equal weight to both metrics, effectively becoming a simple harmonic mean.

In critical applications, such as real-time monitoring and anomaly-detection systems,
errors can result in significant distortions in the signal pattern, affecting decision-making
accuracy. For instance, a high MSE or low SNR may indicate a substantial deviation

Sensors 2024, 24, 7273 16 of 27

between the original and decompressed data, which could hinder the ability to detect
trends or anomalies. Similarly, a low NCC value could mean that important variations are
not preserved, impacting predictive maintenance applications that rely on high fidelity to
original data trends.

The CFβ metric further supports balancing compression ratio and fidelity, adjusting the
weight of each based on application demands. For applications where fidelity is critical, a
higher β emphasizes the NCC over the CR, ensuring that the decompressed data maintains
close correlation with the original signal. Thus, these metrics collectively guide the trade-off
between compression efficiency and error tolerance, aligning the decompression quality
with application-specific requirements.

6. Results

In this section, we present the results obtained from the evaluation of the MPTAC and
MSTAC algorithms in the proposed case study.

To ensure optimal performance of the MPTAC and MSTAC algorithms, a grid search
was conducted for each algorithm. This process involved systematically exploring various
combinations of the key parameters windowLimit (ranging from 2 to 30) and m (ranging
from 0.1 to 2.1). These values were chosen based on [12]. The goal of this optimization was
to identify the parameter settings that maximize the algorithms effectiveness.

The evaluation metric used in this study was the average CFβ, with β = 1, which
assigns equal importance to both the CR and the NCC. This balanced approach ensures
that the algorithms achieve high compression efficiency while maintaining the integrity of
the original data.

The results are presented separately for each algorithm in the following subsections,
facilitating a more in-depth analysis of the performance of MPTAC and MSTAC.

6.1. MPTAC—Parallel Compression

Following the grid search optimization, the hyperparameters for which MPTAC
demonstrated the best performance were found to be windowLimit = 5 and m = 0.2. These
settings resulted in an average CFβ = 0.8170, with a compression rate of 86.25% (and a
compression factor of 7.27). Table 3 presents these values alongside additional compression
error metrics.

Table 3. MPTAC compression metrics (parallel approach).

Variables m windowLimit CR (%) CF RMSE NCC CFβ

Battery
voltage

0.2 5 86.25 7.27

0.56 0.7256 0.7882

Engine load 5.33 0.7832 0.8210
RPM 295.73 0.7645 0.8106
Speed 11.89 0.8929 0.8774

Throttle 5.52 0.7139 0.7812

Figure 5 illustrates the performance of the algorithm, showing the original val-
ues (blue line), the saved values (red dots), and the decompressed values (red line) for
each variable within the interval between samples 4100 and 4600, selected for improved
data visualization.

Sensors 2024, 24, 7273 17 of 27

12.5

13

13.5

14

14.5

15

15.5

0

10

20

30

1000

1500

2000

2500

0

20

40

60

80

4100 4200 4300 4400 4500 4600

10

15

20

25

30

35

Original

Decompressed

Sample saved

Original vs Decompressed

B
at

te
ry

 V
o

lt
ag

e
E

n
g

in
e

L
o

ad
R

P
M

S
p

ee
d

T
h

ro
tt

le

Figure 5. MPTAC compression results (parallel approach).

Supplementary to this, Figure 6 displays the probability density functions (PDFs) for
each variable, comparing the distributions of the original and decompressed data. These
figures, particularly Figure 6, validate the effectiveness of the MPTAC algorithm, demon-
strating its capability to maintain data integrity while achieving significant compression.

Sensors 2024, 24, 7273 18 of 27

11 12 13 14 15
0

0.2

0.4

0.6

0.8

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0 500 1000 1500 2000 2500 3000 3500
0

0.0005

0.001

0 20 40 60 80 100
0

0.005

0.01

0.015

10 20 30 40 50 60 70 80 90
0

0.02

0.04

0.06

0.08

0.1

Original

Decompressed

Battery Voltage

Engine Load

RPM

Speed

Throttle

D
en

si
ty

D
en

si
ty

D
en

si
ty

D
en

si
ty

D
en

si
ty

Figure 6. MPTAC compression PDFs (parallel approach).

6.2. MSTAC—Sequential Compression

A grid search was conducted for each instance of MSTAC to identify the optimal
parameters for the sequential approach. The best-performing parameters are summarized in
Table 4, which also presents the corresponding compression metrics. The table presents the
variables analyzed, along with their respective values for the window limit and compression
factor m. It includes key performance indicators such as CR, CF, RMSE, NCC, and CFβ to
evaluate the compression performance.

Table 4. MSTAC compression metrics (sequential approach).

Variables m windowLimit CR
(%) CF RMSE NCC CFβ

Battery
voltage 0.1 4 83.81 6.18 0.54 0.7424 0.7874

Engine load 0.1 5 87.16 7.79 5.43 0.7717 0.8186
RPM 0.1 5 86.08 7.18 294.68 0.7633 0.8091
Speed 0.2 27 96.83 31.60 13.60 0.8552 0.9083

Throttle 0.1 3 82.47 5.70 5.00 0.7638 0.7931

Sensors 2024, 24, 7273 19 of 27

For instance, the speed variable achieves the highest compression rate of 96.83%, with
a compression factor of 31.60, while maintaining a strong correlation (NCC = 0.8552) and
relatively low RMSE (13.60). Conversely, variables such as RPM shows higher RMSE values,
suggesting greater reconstruction error. These results indicate that the performance of
MSTAC varies across different variables, depending on their specific characteristics and the
optimal window size determined through the grid search.

Figure 7 shows the original values (blue line), the saved values (red dots), and the
decompressed values (red line) for each variable within the interval between samples 4100
and 4600.

12.5

13

13.5

14

14.5

15

15.5

0

10

20

30

1000

1500

2000

2500

0

20

40

60

80

4100 4200 4300 4400 4500 4600

10

15

20

25

30

35

Original

Decompressed

Sample saved

Original vs Decompressed

k

B
at

te
ry

 V
o

lt
ag

e
E

n
g

in
e

L
o

ad
R

P
M

S
p

ee
d

T
h

ro
tt

le

Figure 7. MSTAC compression results (sequential approach).

Figure 8 displays the probability density functions (PDFs) for each variable, comparing
the distributions of the original and decompressed data. Similar to MPTAC, these results,
particularly Figure 8, validate the effectiveness of the MSTAC algorithm by demonstrating
its ability to maintain data integrity while achieving significant compression performance.

In addition, to compare the algorithms, Table 5 consolidates the results from
Tables 3 and 4. Generally, the variables show similar hyperparameters and compres-
sion metrics across both approaches. However, there is a notable exception for the speed
variable: with windowLimit = 27 in the MSTAC approach, the compression factor is 31.60,
which is more than four times higher than that of the MPTAC, without a significant negative
impact on the compression error metrics.

Sensors 2024, 24, 7273 20 of 27

11 12 13 14 15
0

0.2

0.4

0.6

0.8

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0 500 1000 1500 2000 2500 3000 3500
0

0.0005

0.001

0 20 40 60 80 100
0

0.005

0.01

0.015

10 20 30 40 50 60 70 80 90
0

0.02

0.04

0.06

0.08

0.1

Original

Decompressed

Battery Voltage

Engine Load

RPM

Speed

Throttle

D
en

si
ty

D
en

si
ty

D
en

si
ty

D
en

si
ty

D
en

si
ty

Figure 8. MSTAC compression PDFs (sequential approach).

Despite this, the MPTAC algorithm demonstrated significantly faster performance,
processing a sample 4.17 times faster than the MSTAC. Consequently, for the dataset
considered, MPTAC proves to be a more suitable choice, effectively balancing compression
efficiency with processing speed.

Table 5. MPTAC versus MSTAC compression metrics.

Variable Algorithm Parameters CR (%) CF RMSE NCC CFβ

Battery voltage Parallel (0.2, 5) 86.25 7.27 0.56 0.7256 0.7882
Sequential (0.1, 4) 83.81 6.18 0.54 0.7424 0.7874

ine Engine load Parallel (0.2, 5) 86.25 7.27 5.33 0.7832 0.8210
Sequential (0.1, 5) 87.16 7.79 5.43 0.7717 0.8186

ine RPM Parallel (0.2, 5) 86.25 7.27 295.73 0.7645 0.8106
Sequential (0.1, 5) 86.08 7.18 294.68 0.7633 0.8091

ine Speed Parallel (0.2, 5) 86.25 7.27 11.89 0.8929 0.8774
Sequential (0.2, 27) 96.83 31.60 13.60 0.8552 0.9083

ine Throttle Parallel (0.2, 5) 86.25 7.27 5.52 0.7139 0.7812
Sequential (0.1, 3) 82.47 5.70 5.00 0.7638 0.7931

Finally, we compare the performance of MPTAC against MSTAC using the same de-
fined parameters (windowLimit = 4 and m = 0.1). These values were selected by averaging
the parameter values from the previous section, excluding the parameters of the TAC

Sensors 2024, 24, 7273 21 of 27

instance in MSTAC applied to the speed variable. This exclusion was necessary due to the
significant discrepancy in parameter values for speed compared to the other variables, as
shown in Table 6. This comparison highlights the performance differences between the two
algorithms under consistent settings.

In Figure 9, we present a visual representation to facilitate the interpretation of the
results. Figure 9 contains two subfigures: (a) it compares the overall compression metrics
by variable and algorithm, and (b) it presents the comparison of the absolute root mean
square error (RMSE) between the variables and algorithms, highlighting differences in
accuracy between MPTAC and MSTAC for the same parameterization conditions.

Battery Voltage

Engine Load

RPM Speed
Throttle

0

20

40

60

80

100

Battery Voltage

Engine Load

RPM Speed
Throttle

0

5

10

15

20

25

30

Battery Voltage

Engine Load

RPM Speed
Throttle

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Battery Voltage

Engine Load

RPM Speed
Throttle

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

MPTAC
MSTAC

CR (%) CF

NCC CF_beta

(a) Comparison of compression metrics by variable and algorithm.

MPTAC MSTAC0

0.1

0.2

0.3

0.4

0.5

MPTAC MSTAC0

1

2

3

4

5

MPTAC MSTAC0

50

100

150

200

250

300

MPTAC MSTAC0

2

4

6

8

10

12

14

MPTAC MSTAC0

1

2

3

4

5

R
M

S
E

Battery Voltage (V) Engine Load (%) RPM Speed (km/h) Throttle (%)

(b) Comparison of absolute RMSE by variable and algorithm.

Figure 9. Visual comparison of MPTAC and MSTAC performance metrics, using the same parameters.

Sensors 2024, 24, 7273 22 of 27

Table 6. MPTAC versus MSTAC compression metrics (same parameterization).

Variable Algorithm Parameters CR (%) CF RMSE NCC CFβ

Battery voltage Parallel 83.53 6.07 0.55 0.7360 0.7825
Sequential (0.1, 4) 83.81 6.18 0.54 0.7424 0.7874

ine Engine load Parallel 83.53 6.07 5.31 0.7861 0.8100
Sequential (0.1, 4) 85.10 6.71 5.49 0.7646 0.8055

ine RPM Parallel 83.53 6.07 291.00 0.7694 0.8010
Sequential (0.1, 4) 83.72 6.14 289.20 0.7702 0.8023

ine Speed Parallel 83.53 6.07 11.72 0.8953 0.8642
Sequential (0.1, 4) 84.77 6.57 11.93 0.8913 0.8690

ine Throttle Parallel 83.53 6.07 5.23 0.7335 0.7811
Sequential (0.1, 4) 85.25 6.78 5.56 0.6835 0.7587

6.3. Discussion of Results

In this subsection, we discuss the effectiveness of the MPTAC and MSTAC algorithms
based on the obtained results and address the proposed research questions.

Evaluating the effectiveness of the MPTAC algorithm in terms of CR (Question 1),
MPTAC and MSTAC, it is observed that MPTAC, with the parameters windowLimit = 5
and m = 0.2, presented a CR of 86.25%, while MSTAC achieved a varied compression ratio,
with the best rate of 96.83% for the speed variable when windowLimit = 27 and m = 0.2.
Despite the higher compression rate of MSTAC for the speed variable, MPTAC showed a
competitive compression rate in other variables, such as battery voltage and engine load.
These results suggest that MPTAC is effective in maintaining a high compression ratio
while preserving data integrity.

When comparing the MPTAC algorithm to MSTAC in terms of precision, as measured
by RMSE (Question 2), it is evident that the performance varies with different parameter
settings—Table 5, the MPTAC and MSTAC algorithms show distinct performance charac-
teristics in terms of RMSE. For battery voltage, MPTAC with parameters (0.2, 5) achieves an
RMSE of 0.56, compared to MSTAC with parameters (0.1, 4), which yields an RMSE of 0.54,
indicating slightly better precision for MSTAC. For engine load, MPTAC with parameters
(0.2, 5) has an RMSE of 5.33, while MSTAC with parameters (0.1, 5) results in an RMSE of
5.43, showing MPTAC’s advantage in this case. In the RPM category, MPTAC (0.2, 5) has an
RMSE of 295.73, whereas MSTAC (0.1, 5) yields 294.68, demonstrating a marginally better
precision for MSTAC. For speed, MPTAC with parameters (0.2, 5) has an RMSE of 11.89,
compared to MSTAC with parameters (0.2, 27), which has an RMSE of 13.60, indicating
better performance by MPTAC. Finally, for throttle, MPTAC (0.2, 5) shows an RMSE of 5.52,
whereas MSTAC (0.1, 3) has an RMSE of 5.00, highlighting MSTAC’s superior precision.
These observations suggest that the choice between MPTAC and MSTAC may depend on
the specific parameters used and the variable being considered, as each algorithm offers
distinct advantages in different contexts.

When evaluated with the same parameterization (m = 0.1, windowLimit = 4), Table 6,
the MPTAC and MSTAC algorithms exhibit similar performance in terms of RMSE, with
minor variations across specific variables. MSTAC demonstrated a slight advantage in
precision for battery voltage (0.54 vs. 0.55), RPM (289.20 vs. 291.00), and speed (11.93 vs.
11.72), while MPTAC performed better for engine load (5.31 vs. 5.49) and throttle (5.23 vs.
5.56). These differences are subtle, indicating that both algorithms are comparably effective,
with the choice between them depending on the relative importance of precision for specific
variables within the application’s context.

Regarding the processing time comparison between MPTAC and MSTAC (Question 3),
processing time is an important factor in selecting a compression algorithm, especially
in applications where efficiency and speed are essential. In the case of the MPTAC and
MSTAC algorithms, a significant difference in processing time was observed. MPTAC
demonstrated noticeably faster performance, with an average processing time per sample

Sensors 2024, 24, 7273 23 of 27

of 0.1997 ms, which is approximately 4.17 times faster than MSTAC, which has an average
time of 0.8326 ms per sample. The superior efficiency of MPTAC is especially advanta-
geous in scenarios that require low-latency real-time processing, where the speed of data
compression is as crucial as its efficiency. The advantage in processing time makes MPTAC
a preferred choice for applications that require high speed, such as embedded systems in
vehicles or IoT devices, where fast processing can directly impact overall performance and
user experience. On the other hand, although MSTAC presents higher processing time, it
can still be considered in situations where compression efficiency is prioritized over speed.

Complementary to these findings, the evaluation of the MPTAC and MSTAC algo-
rithms revealed different trade-offs between compression and accuracy, aspects that are
fundamental in applications with bandwidth and processing constraints. In situations
where compression rate is a priority, such as remote sensor networks, a more aggressive
compression is advantageous to reduce the volume of transmitted data. However, this
choice can introduce small losses in accuracy, which in some contexts, such as environmen-
tal monitoring, is acceptable to preserve bandwidth and storage efficiency. On the other
hand, in applications that require high accuracy, such as real-time anomaly detection in
automotive systems, a more moderate compression rate is preferred, which ensures a more
accurate reconstruction of the data and, therefore, greater reliability in the analysis.

In addition, the performance of the MPTAC and MSTAC algorithms strongly depends
on the adequate calibration of parameters such as the size of the analysis window and the
thresholds for compression and anomaly detection. During the study, a careful adjustment
of these parameters was performed through empirical tests on the automotive dataset,
allowing a balance to be reached between compression efficiency and reconstruction accu-
racy. This calibration process is also adaptable to other domains, such as health monitoring
and smart grids, where specific data characteristics require adjustments to optimize algo-
rithm performance. Thus, the choice between algorithms and their parameters depends
both on the specific application requirements and on the conditions and limitations of the
available data.

Finally, the main advantages and disadvantages of the MPTAC and MSTAC algorithms
are summarized in Table 7. This comparison highlights the key strengths and limitations of
each approach, focusing on important factors such as processing time, compression ratio,
and data integrity. By examining these aspects, the table provides a clear overview of the
trade-offs between the two algorithms.

Table 7. Advantages and disadvantages of MPTAC and MSTAC algorithms.

Algorithm Advantages Disadvantages

MPTAC

(1) Superior processing time: 4.17 times
faster than MSTAC.
(2) Competitive performance in recon-
struction metrics, with an average CFβ

of 0.7882, comparable to MSTAC.

(1) Lower maximum compression ratio
for certain variables (e.g., speed).
(2) May not achieve the same compres-
sion ratio for all variables as MSTAC.

ine MSTAC

(1) Achieved higher compression ra-
tios for certain variables, such as speed
(96.83%).
(2) Good ability to preserve data in-
tegrity, with a CFβ comparable to MP-
TAC.

(1) Significantly longer processing time
compared to MPTAC.
(2) Lower compression ratio for some
variables when compared to MPTAC.

In summary, the choice between MPTAC and MSTAC depends on the specific applica-
tion priorities. If processing speed is the primary concern, MPTAC is more advantageous.
However, if the compression ratio is more critical, MSTAC may be preferable, especially
for variables where it demonstrates a superior compression ratio. These findings extend
beyond the automotive context; they can be applied to various IoT applications, such

Sensors 2024, 24, 7273 24 of 27

as wearable devices and smart cities, where efficiency in data transmission and storage
is essential.

6.4. Limitations of MPTAC and MSTAC

While the MPTAC and MSTAC algorithms offer frameworks for multivariate time
series compression, they also exhibit certain limitations.

Scalability concerns—As the number of variables increases, both MPTAC and MSTAC
maintain a computational complexity of O(n) relative to the number of variables. However,
the constant multiplicative factor for MSTAC is higher due to its sequential processing
approach, which results in longer processing times. While MPTAC’s parallel handling
of multidimensional data can lead to increased memory usage and processing time, its
recursive and online processing nature allows it to maintain efficient performance even
with large sample sizes. Significant performance constraints for MPTAC would likely only
arise in extreme scenarios involving a high number of variables combined with very limited
computational power. In contrast, the sequential processing of MSTAC may lead to greater
inefficiencies in real-time applications as the number of variables grows.

Performance in highly dynamic environments—Both algorithms face challenges in
highly dynamic environments where concept drift occurs. Although the anomaly window
mechanism in MPTAC and MSTAC provides some level of adaptability, this mechanism
may not be sufficient in rapidly changing data distributions. In these situations, reinitializa-
tion of the algorithms may be required to maintain accuracy. This could disrupt continuous
monitoring and anomaly detection in scenarios where real-time response is critical, such as
in industrial IoT or smart grid systems.

Parameter sensitivity—The effectiveness of both MPTAC and MSTAC rely heavily on
careful tuning of hyperparameters, such as the comparison threshold and window size.
Incorrect selection of these parameters can significantly impact performance, potentially re-
sulting in a higher rate of false positives or missed anomalies. Scenarios that most challenge
parameter tuning are those with highly erratic (highly dynamic) time series or, conversely,
extremely smooth series, where inappropriate parameter choices can reduce detection ac-
curacy. In diverse applications, these parameters may need continuous adjustment, which
could limit the generalizability of the algorithms across varying use cases without prior
fine-tuning.

Handling of strong correlations—In MSTAC, the approach of processing variables
independently makes it less susceptible to misclassifying one variable due to “double
weighting” from strongly correlated variables, as each variable is evaluated on its own.
However, this independence assumption may lead to missed anomalies that arise from in-
terdependencies among variables, limiting its effectiveness in capturing the full complexity
of data in multivariate systems. MPTAC, by processing variables in parallel as a collective
sample, can better handle interdependent variables but may be more sensitive to strongly
correlated variables. In such cases, these correlations might carry greater influence when
classifying a sample as an anomaly.

Handling outliers—Both MPTAC and MSTAC rely on outliers as indicators of context
shifts, using them to identify and save relevant samples. The control of hyperparame-
ters, such as m and the anomalywindowsize, helps ensure that only significant outliers
are considered, avoiding the influence of less relevant anomalies. The eccentricity-based
anomaly-detection mechanism in both algorithms further supports this by flagging out-
liers before compression, allowing for tailored handling. Given this, handling outliers
is not a weakness of the algorithms; rather, it is an integral feature that enhances their
accuracy in capturing meaningful data shifts and improves the quality of compressed data
in dynamic environments.

7. Conclusions

This study aimed to evaluate and compare the performance of the proposed and im-
plemented compression algorithms MPTAC and MSTAC for time series data compression.

Sensors 2024, 24, 7273 25 of 27

The analysis was performed using an automotive dataset, focusing on compression ratio
metrics, data fidelity (compression error metrics), and processing speed.

The results showed that MPTAC outperformed MSTAC on several key metrics. Specif-
ically, MPTAC demonstrated significantly lower RMSE for most variables analyzed, indi-
cating data compression with less loss of accuracy. This result is relevant for applications
that require high fidelity of data after compression.

In terms of processing speed, MPTAC demonstrated remarkably superior perfor-
mance, processing samples 4.17 times faster than MSTAC. This efficiency is important for
applications where rapid compression and decompression are required, such as embedded
and real-time systems.

In addition, MPTAC consistently maintained data integrity, as evidenced by the NCC,
which remained high even with the most aggressive compression. This suggests that
MPTAC can effectively balance compression efficiency with preserving data quality, which
is essential for analysis and decision making based on compressed data.

For future research, it is recommended to explore the application of MPTAC and
MSTAC across various datasets and contexts to evaluate their versatility and robustness.
Investigating the adaptability of these algorithms to different window sizes and parameters
could provide further insights into their performance and applicability. Additionally,
conducting analyses on the application of the algorithms in real-time environments and on
hardware platforms such as the Freematics ONE+ will enhance our understanding of their
practical utility. These directions not only underscore the potential impact of this research
but also inspire further investigations into the development of data processing solutions.

Author Contributions: formal analysis, H.C. and M.S.; project administration, I.S.; software, H.C.
and M.S.; writing—original draft, H.C. and M.S.; research supervisors, I.S.-G., C.M.D.V., I.S. and M.S.
All authors have read and agreed to the published version of the manuscript.

Funding: We thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the
National Council for Scientific and Technological Development (CNPq).

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

Sensors 2024, 24, 7273 26 of 27

IoT Internet of Things
TinyML Tiny Machine Learning
DWT Discrete Wavelet Transform
MSE Mean Squared Error
RMSE Root Mean Squared Error
SNR Signal-to-Noise Ratio
PSNR Peak Signal-to-Noise Ratio
CF Compression Factor
CR Compression Rate
CFβ Compression Fβ Coefficient
TAC Tiny Anomaly Compressor
MPTAC Multivariate Parallel Tiny Anomaly Compressor
MSTAC Multivariate Sequential Tiny Anomaly Compressor
PDF Probability Density Function
BiSCo Binary Shift Compression
M-CDAE Multimodal Convolutional Denoising Autoencoder
ECG Electrocardiogram
EMG Electromyogram
EEG Electroencephalogram
SCAE Spindle Convolutional Autoencoder
WD Window Delta
mHealth Mobile Health

References
1. Du, J. Real-Time Information Exchange Strategy for Large Data Volumes Based on IoT. Comput. Intell. Neurosci. 2022, 2022, 1–10.

[CrossRef] [PubMed]
2. Mouha, R.A. Internet of Things (IoT). J. Data Anal. Inf. Process. 2021, 09, 77–101. [CrossRef]
3. Chataut, R.; Phoummalayvane, A.; Akl, R. Unleashing the Power of IoT: A Comprehensive Review of IoT Applications and

Future Prospects in Healthcare, Agriculture, Smart Homes, Smart Cities, and Industry 4.0. Sensors 2023, 23, 7194. [CrossRef]
[PubMed]

4. Barra, S.; D’Alessandro, F.; Sosovskyy, O. Exploring Architectural Choices and Emerging Challenges in Data Management for IoT:
A Focus on Digital Innovation and Smart Cities. In Proceedings of the Adjunct Proceedings of the 32nd ACM Conference on
User Modeling, Adaptation and Personalization, Cagliari, Italy, 1–4 July 2024; ACM: New York, NY, USA, 2024; pp. 429–436.
[CrossRef]

5. Diene, B.; Diallo, O.; Rodrigues, J.J.P.C.; Ndoye, E.H.M.; Teodorov, C. Data Management Mechanisms for IoT: Architecture,
Challenges and Solutions. In Proceedings of the 2020 5th International Conference on Smart and Sustainable Technologies
(SpliTech), Split, Croatia, 23–26 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [CrossRef]

6. Khan, W.; Rehman, M.; Zangoti, H.; Afzal, M.; Armi, N.; Salah, K. Industrial internet of things: Recent advances, enabling
technologies and open challenges. Comput. Electr. Eng. 2020, 81, 106522. [CrossRef]

7. Vaidya, B.; Mouftah, H.T. IoT Applications and Services for Connected and Autonomous Electric Vehicles. Arab. J. Sci. Eng. 2020,
45, 2559–2569. [CrossRef]

8. Tyagi, A.K.; Mishra, A.K.; Kukreja, S. Role of Artificial Intelligence Enabled Internet of Things (IoT) in the Automobile Industry:
Opportunities and Challenges for Society. In Proceedings of the Fifth International Conference on Computing, Communications,
and Cyber-Security, Online Event, 9 February 2024; Tanwar, S., Singh, P.K., Ganzha, M., Epiphaniou, G., Eds.; Springer: Singapore,
2024; pp. 379–397. [CrossRef]

9. Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A Survey of Autonomous Driving: Common Practices and Emerging
Technologies. IEEE Access 2020, 8, 58443–58469. [CrossRef]

10. Biswas, A.; Wang, H.C. Autonomous Vehicles Enabled by the Integration of IoT, Edge Intelligence, 5G, and Blockchain. Sensors
2023, 23, 1963. [CrossRef] [PubMed]

11. de Oliveira, M.A.; da Rocha, A.M.; Puntel, F.E.; Cavalheiro, G.G.H. Time Series Compression for IoT: A Systematic Literature
Review. Wirel. Commun. Mob. Comput. 2023, 2023, 1–23. [CrossRef]

12. Signoretti, G.; Silva, M.; Andrade, P.; Silva, I.; Sisinni, E.; Ferrari, P. An Evolving TinyML Compression Algorithm for IoT
Environments Based on Data Eccentricity. Sensors 2021, 21, 4153. [CrossRef] [PubMed]

13. Abadade, Y.; Temouden, A.; Bamoumen, H.; Benamar, N.; Chtouki, Y.; Hafid, A.S. A comprehensive survey on tinyml. IEEE
Access 2023, 11, 96892–96922. [CrossRef]

14. Wu, X.; Lin, X.; Zhang, Z.; Chen, C.M.; Gadekallu, T.R.; Kumari, S.; Kumar, S. TinyML-Enabled Intelligent Question-Answer
Services in IoT Edge Consumer Devices. IEEE Trans. Consum. Electron. 2024 . [CrossRef]

15. Chaudhari, B.S.; Ghorpade, S.N.; Zennaro, M.; Paškauskas, R. TinyML for low-power Internet of Things. In TinyML for Edge
Intelligence in IoT and LPWAN Networks; Elsevier: Amsterdam, The Netherlands, 2024; pp. 1–12.

http://doi.org/10.1155/2022/2882643
http://www.ncbi.nlm.nih.gov/pubmed/35676944
http://dx.doi.org/10.4236/jdaip.2021.92006
http://dx.doi.org/10.3390/s23167194
http://www.ncbi.nlm.nih.gov/pubmed/37631731
http://dx.doi.org/10.1145/3631700.3665238
http://dx.doi.org/10.23919/SpliTech49282.2020.9243728
http://dx.doi.org/10.1016/j.compeleceng.2019.106522
http://dx.doi.org/10.1007/s13369-019-04216-8
http://dx.doi.org/10.1007/978-981-97-2550-2_28
http://dx.doi.org/10.1109/ACCESS.2020.2983149
http://dx.doi.org/10.3390/s23041963
http://www.ncbi.nlm.nih.gov/pubmed/36850560
http://dx.doi.org/10.1155/2023/5025255
http://dx.doi.org/10.3390/s21124153
http://www.ncbi.nlm.nih.gov/pubmed/34204300
http://dx.doi.org/10.1109/ACCESS.2023.3294111
http://dx.doi.org/10.1109/TCE.2024.3417890

Sensors 2024, 24, 7273 27 of 27

16. Angelov, P. Outside the box: An alternative data analytics framework. J. Autom. Mob. Robot. Intell. Syst. 2014, 8, 29–35. [CrossRef]
17. Angelov, P.P.; Gu, X. Empirical Approach to Machine Learning; Springer International Publishing: Cham, Switherland, 2019;

Volume 800. [CrossRef]
18. Barron, A.; Sanchez-Gallegos, D.D.; Carrizales-Espinoza, D.; Gonzalez-Compean, J.L.; Morales-Sandoval, M. On the Efficient

Delivery and Storage of IoT Data in Edge–Fog–Cloud Environments. Sensors 2022, 22, 7016. [CrossRef] [PubMed]
19. Azar, J.; Makhoul, A.; Couturier, R.; Demerjian, J. Robust IoT time series classification with data compression and deep learning.

Neurocomputing 2020, 398, 222–234. [CrossRef]
20. Vox, C.; Broneske, D.; Piewek, J.; Sass, A.U.; Saake, G. Integer Time Series Compression for Holistic Data Analytics in the Context

of Vehicle Sensor Data. In Proceedings of the 2022 International Conference on Connected Vehicle and Expo (ICCVE), Lakeland,
FL, USA, 7–9 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–7. [CrossRef]

21. Ithayarani, P.; Fathima, A.J. Compressing Biosignal for Diagnosing Chronic Diseases. J. Phys. Conf. Ser. 2021, 1998, 012018.
[CrossRef]

22. Chandak, S.; Tatwawadi, K.; Wen, C.; Wang, L.; Ojea, J.A.; Weissman, T. LFZip: Lossy Compression of Multivariate Floating-Point
Time Series Data via Improved Prediction. In Proceedings of the 2020 Data Compression Conference (DCC), Snowbird, UT, USA,
24–27 March 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 342–351. [CrossRef]

23. Barot, V.; Patel, D.R. A physiological signal compression approach using optimized Spindle Convolutional Auto-encoder in
mHealth applications. Biomed. Signal Process. Control. 2022, 73, 103436. [CrossRef] [PubMed]

24. Agrawal, V.; Kuldeep, G.; Dey, D. Near Lossless Time Series Data Compression Methods using Statistics and Deviation. In
Proceedings of the 2022 IEEE Globecom Workshops (GC Wkshps), Rio de Janeiro, Brazil, 4–8 December 2022; IEEE: Piscataway,
NJ, USA, 2022; pp. 426–431. [CrossRef]

25. Meng, J.; Liu, L.; Liu, Y.; Wang, N. WD: A Sliding Window based Time Series compression algorithm. In Proceedings of
the 2023 5th International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Hangzhou, China,
15–17 December 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 148–152. [CrossRef]

26. Li, J.; Xu, G.; Yang, H.; Wu, Y. Ant: An Efficient Lossless Compression Algorithm for IoT Time Series Data. In Proceedings
of the 2023 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable
Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), Wuhan, China,
21–24 December 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 766–771. [CrossRef]

27. Angelov, P. Anomaly detection based on eccentricity analysis. In Proceedings of the 2014 IEEE Symposium on Evolving and
Autonomous Learning Systems (EALS), Orlando, FL, USA, 9–12 December 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–8.
[CrossRef]

28. Bernieri, A.; Betta, G.; Liguori, C. On-line fault detection and diagnosis obtained by implementing neural algorithms on a digital
signal processor. IEEE Trans. Instrum. Meas. 1996, 45, 894–899. [CrossRef]

29. Saw, J.G.; Yang, M.C.K.; Mo, T.C. Chebyshev Inequality with Estimated Mean and Variance. Am. Stat. 1984, 38, 130. [CrossRef]
30. Signoretti, G.; Silva, M.; Araujo, J.; Guedes, L.A.; Silva, I.; Sisinni, E.; Ferrari, P. Performance Evaluation of an evolving data

compression algorithm embedded into an OBD-II edge device. In Proceedings of the 2020 IEEE International Workshop on
Metrology for Industry 4.0 & IoT, Roma, Italy, 3–5 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 696–701.

31. Salomon, D. Data Compression; Springer: London, UK, 2007. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.14313/JAMRIS_2-2014/16
http://dx.doi.org/10.1007/978-3-030-02384-3
http://dx.doi.org/10.3390/s22187016
http://www.ncbi.nlm.nih.gov/pubmed/36146368
http://dx.doi.org/10.1016/j.neucom.2020.02.097
http://dx.doi.org/10.1109/ICCVE52871.2022.9743019
http://dx.doi.org/10.1088/1742-6596/1998/1/012018
http://dx.doi.org/10.1109/DCC47342.2020.00042
http://dx.doi.org/10.1016/j.bspc.2021.103436
http://www.ncbi.nlm.nih.gov/pubmed/36567676
http://dx.doi.org/10.1109/GCWkshps56602.2022.10008693
http://dx.doi.org/10.1109/MLBDBI60823.2023.10482339
http://dx.doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom59178.2023.00132
http://dx.doi.org/10.1109/EALS.2014.7009497
http://dx.doi.org/10.1109/19.536707
http://dx.doi.org/10.1080/00031305.1984.10483182
http://dx.doi.org/10.1007/978-1-84628-603-2

	Introduction
	Related Works
	Theoretical Background
	Typicality and Eccentricity Data Analysis
	Tiny Anomaly Compressor (TAC)

	Proposed Algorithm
	Multivariate Parallel Tiny Anomaly Compressor
	Multivariate Sequential Tiny Anomaly Compressor
	Algorithm Characteristics of MPTAC and MSTAC

	Case Study
	Research Questions
	Database Selection
	Evaluation Metrics

	Results
	MPTAC—Parallel Compression
	MSTAC—Sequential Compression
	Discussion of Results
	Limitations of MPTAC and MSTAC

	Conclusions
	References

