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Abstract: Abnormal behavior of crew members is an important cause of frequent ship safety accidents.
The existing abnormal crew recognition algorithms are affected by complex ship environments and
have low performance in real and open shipborne environments. This paper proposes an abnormal
crew detection network for complex ship scenarios (ACD-Net), which uses a two-stage algorithm
to detect and identify abnormal crew members in real-time. An improved YOLOv5s model based
on a transformer and CBAM mechanism (YOLO-TRCA) is proposed with a C3-TransformerBlock
module to enhance the feature extraction ability of crew members in complex scenes. The CBAM
attention mechanism is introduced to reduce the interference of background features and improve the
accuracy of real-time detection of crew abnormal behavior. The crew identification algorithm (CFA)
tracks and detects abnormal crew members’ faces in real-time in an open environment (CenterFace),
continuously conducts face quality assessment (Filter), and selects high-quality facial images for
identity recognition (ArcFace). The CFA effectively reduces system computational overhead and
improves the success rate of identity recognition. Experimental results indicate that ACD-Net
achieves 92.3% accuracy in detecting abnormal behavior and a 69.6% matching rate for identity
recognition, with a processing time of under 39.5 ms per frame at a 1080P resolution.

Keywords: abnormal behavior detection; identity recognition; YOLOv5s; facial images; face
quality assessment

1. Introduction

Maritime shipping activities have become increasingly prosperous, accompanied by
frequent maritime accidents during the development of the marine economy. The report
“Preliminary Overview of Maritime Injuries and Accidents 2014–2020” by the European
Maritime Safety Agency (EMSA) [1] states that a total of 22,532 maritime accidents occurred
over a period of 7 years. In total, 51% of these accidents resulted in serious casualties,
including 1650 deaths and 20,763 disabilities. The report highlights that human error [2] is
the primary cause of maritime casualties, with accidents due to abnormal crew behavior
accounting for 79% of human error incidents. Identifying abnormal behavior and crew
members can reduce human errors caused by crew abnormalities, lower the likelihood of
accidents, and provide critical support for accident warning and process analysis.

In recent years, many algorithms have been proposed in the fields of abnormal behav-
ior detection and identity recognition. These algorithms can be divided into three categories
based on the different collection devices. Personnel wearing portable smart sensing devices
(such as health monitors and WiFi devices) have certain advantages in detecting abnormal
behavior and identifying individuals in open areas through the collected physiological
signals (heart rate, gait, etc.) [3–6]. The complex onboard environment (such as humidity
and vibration, etc.) can lead to sensor failures, and the limitations of equipment lifespan
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and network connectivity can affect the timeliness and accuracy of data. Therefore, this
type of method is limited in the application of onboard personnel identification.

Video surveillance devices widely employ computer vision technology for anomaly
detection and identity recognition applications. Video-based detection methods can extract
features in the temporal dimension [7–10]. Although these methods demonstrate good
detection accuracy, they require high computational power, making them less suitable for
onboard applications. In contrast, image-based detection methods [11–13] maintain high
accuracy while having lower computational demands, making them more appropriate for
onboard monitoring.

Biometric devices, such as fingerprint scanners and iris scanners, are used for identity
verification through biological features [14–17]. Although these biometric identification
methods offer high accuracy, they require active cooperation from individuals and are
suitable for scenarios with high security requirements. Additionally, the complex maritime
environment, including factors, such as lighting variations and humidity, may affect the
accuracy of iris recognition.

This paper proposes an abnormal crew detection network for complex ship scenarios
(ACD-Net), which is used to detect abnormal behavior and for identity recognition of
crew members. The recognition process of ACD-Net is shown in Figure 1. The improved
YOLOv5s model based on a transformer and CBAM mechanism (YOLO-TRCA) is used
to detect abnormal behavior of crew members and track them through Deepsort. The
crew identity recognition algorithm (CFA) comprises face detection (CenterFace), face
quality assessment (Filter), and face recognition (ArcFace) to identify abnormal crew identi-
ties. The innovations of the paper are as follows: (1) A method called YOLO-TRCA has
been proposed for real-time detection of abnormal crew behavior. YOLO-TRCA adopted
a TransformerBlock self-attention mechanism [18] improved feature extraction network,
introduced a channel-spatial attention mechanism (CBAM) [19], and combined with a
CIoU loss function to realize abnormal behavior recognition of crew. (2) We innovatively
incorporate a fast face quality assessment algorithm called Filter into our identity recogni-
tion method (CFA). Filter can effectively avoid the interference of low-quality faces in the
pre-screening stage, reduce computational costs, and improve the recognition accuracy of
the method.
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2. Related Work

Traditional image-based anomaly behavior detection methods are categorized into
manual feature detection, dynamic Bayesian networks (DBN) [20,21], clustering models [22],
and sparse representation methods [23]. These algorithms perform well in simple scenarios
but struggle in complex application tasks. Deep learning-based anomaly detection models
are widely used to identify targets exhibiting abnormal behavior in images. Region-
based convolutional neural networks (Faster-RCNN) [24] utilize a two-stage structure,
which requires a large amount of computation and is unsuitable for real-time processing
scenarios. The single shot multibox detector (SSD) [25] experiences a high false positive
rate in complex backgrounds. End-to-end detection models in the YOLO series [26–30]
achieve relatively high accuracy and speed, making them suitable for real-time applications.
RetinaNet [31] has high accuracy in recognizing small objects. CenterNet [32] predicts
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targets through center point detection, suitable for dense scenes, but has a slower inference
speed than YOLO and SSD. The confirmation of crew identity is an important part of
identifying abnormal behavior among crew members. Image-based identity recognition
algorithms primarily identify individuals through facial features in images. Deep learning-
based face detection mainly includes cascade CNN face detection [33], which filters face
regions in multiple stages but is ineffective for small faces. MTCNN [34] performs well
in detecting faces of different scales but is sensitive to lighting and expression changes,
affecting detection performance. Faster R-CNN face detection [35] can handle faces in
complex scenes but has poor real-time performance. CenterFace [36] can manage densely
populated faces with good real-time capabilities but is easily influenced by pose and
lighting changes. Face recognition primarily involves facial feature extraction models.
For instance, FaceNet [37] has high detection accuracy but is affected by ambient light.
The VGG Face [38] network is deeper, resulting in slower inference speeds. ArcFace [39]
exhibits strong robustness to lighting variations, pose changes, and occlusions, making it
suitable for various application scenarios.

In recent years, researchers have conducted several studies on crew behavior detection
and identity recognition based on image data. Wawrzyniak et al. developed a vessel
monitoring system that uses background subtraction and feature matching techniques to
detect and track vessels on the sea surface in order to address interference from maritime
lighting and weather conditions [40]. This algorithm provides the idea for crew behavior
detection and identity recognition in onboard environments with varying lighting condi-
tions. Kim et al. designed a deep learning algorithm to identify vessels and crew, as well as
to detect abnormal overboard behavior of crew members. However, this algorithm did not
consider the impact of environmental factors, image jitter, and obstructions on overboard
incidents [11]. Chen Xinqiang et al. employed an asynchronous interactive aggregation
network to detect abnormal behavior of personnel in port operation areas, taking into
account complex port scenarios with low light and crew obstructions [12]. This network
can accurately identify typical abnormal behaviors in port working environments, but its
performance declines when crew members are significantly or completely obscured. Rizk
et al. developed an enhanced YOLOv4 model for the real-time detection of individuals
floating in the ocean after falling overboard [13]. This algorithm achieved good results by
integrating a dedicated AI application onto a low-power hardware platform for personnel
detection, which is applicable to the field of maritime search and rescue and provides
valuable insights for detecting abnormal personnel onboard. Park et al. introduced a
passenger ship safety management system that combines face recognition and gesture
recognition to identify passengers and crew, facilitating efficient management of passenger
and vessel safety [16]. Luan et al. employed face recognition technology for crew identi-
fication, effectively addressing the issue of counterfeit registration documents. However,
this method is not applicable to ship monitoring videos [41]. Jayavadivel et al. proposed
a facial recognition method based on low-resolution images for face and iris biometric
identification [17]. This method is used for the automatic recognition and verification of
individuals with frontal faces and irises captured by the camera, under certain constraints.

In summary, there are still several limitations in the research on theories and meth-
ods for detecting abnormal crew behavior and facial recognition. (1) The algorithms for
detecting abnormal behavior and identifying crew members do not adequately account
for lighting conditions and image shake. The performance of abnormal behavior detection
diminishes in complex monitoring environments where crew members are significantly
obscured. Crew facial recognition is conducted in highly constrained scenarios, making it
unsuitable for unrestrained maritime monitoring environments. (2) Limited equipment
performance on ships makes it difficult to deploy large detection models for real-time
crew behavior monitoring and face recognition, while smaller detection models generally
produce suboptimal results on ships. To address these issues, we propose a combined ab-
normal crew detection network that can identify both abnormal behaviors and the identities
of the affected crew members simultaneously.
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3. Methodology
3.1. Crew Anomaly Behavior Detection
3.1.1. Comparison of Related Detection Models

Accuracy and speed are key performance indicators for evaluating algorithms in the
field of object detection. We have selected several algorithms with good performance, such
as YOLOv5, Faster R-CNN, SSD, RetinaNet, and YOLOv4. The performance evaluation
results of these algorithms on different datasets are shown in Table 1. The dataset includes
multiple datasets, such as COCO, Pascal VOC, and ImageNet, covering a wide range of
target categories and scenarios. From Table 1, it can be seen that YOLOv5 has the highest
accuracy on the ImageNet dataset, while Faster R-CNN slightly leads on the COCO dataset,
and YOLOv4 performs better on the Pascal VOC dataset. YOLOv5 is similar to other
algorithms in terms of accuracy, and even has a slight advantage.

Table 1. Performance evaluation on different datasets.

Dataset YOLOv5 Faster
R-CNN SSD RetinaNet YOLOv4

COCO 56.8% 57.5% 51.5% 54.2% 43.5%
Pascal VOC 82.1% 80.9% 77.6% 80.5% 85.1%
ImageNet 74.2% 73.9% 71.8% 72.5% 69.2%

Real-time inference speed is essential for the practical application of object detection
algorithms. Table 2 presents the inference speed results of YOLOv5 and other algorithms
on GPU. It is evident that YOLOv5 achieves the fastest inference speed on the NVIDIA
GeForce GTX 1080 Ti. A comprehensive analysis of Tables 1 and 2 indicates that YOLOv5
achieves a good balance between speed and accuracy, making it suitable for the application
scenario of shipborne abnormal behavior detection.

Table 2. Real-time inference speed comparison.

Model YOLOv5 Faster
R-CNN SSD RetinaNet YOLOv4

Model input 640 × 640 1000 × 600 300 × 300 800 × 800 608 × 608

NVIDIA GeForce
GTX 1080 Ti 60 FPS 3 FPS 25 FPS 7 FPS 43 FPS

3.1.2. Analysis of Crew Abnormal Behaviors Detection Issues Based on YOLOv5

We analyzed the operating procedures and on-site operations of the crew and de-
termined the abnormal behaviors that need to be identified in this article based on the
frequency and degree of harm of the behavior, including not wearing work clothes, not
wearing life jackets, exposing upper bodies, smoking, etc. YOLOv5s was selected to detect
abnormal crew behavior in images, taking into account the computing power and real-time
requirements of onboard equipment. It is a single-stage object detection algorithm that
maintains high accuracy while providing real-time performance, consisting of four parts:
the input, backbone, neck, and head.

We selected four types of images with distinct features based on the previously an-
alyzed shipboard image characteristics and employed YOLOv5s for recognition. Perfor-
mance analysis was conducted on the prediction results and Grad-CAM feature visualiza-
tion. Figure 2a shows an image with uneven lighting and significant brightness variations.
Figure 2b depicts an image with local overexposure, underexposure, or blurring. Figure 2c
represents an image with a cluttered background and a small proportion of crew images.
Figure 2d illustrates an image with severe occlusions and overlaps between crew and equip-
ment. The recognition accuracies of the YOLOv5s model for these images (Figure 2a–d)
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were 66.7%, 54.5%, 66.7%, and 39.3%, respectively. The accuracy of detecting crew abnormal
behavior was 56.8%, which is low, and which struggles to meet practical needs.
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There are a total of 6 recognition targets (Figure 3). YOLOv5s identified 4 of these
targets with an accuracy of 66.7%. The crew members at the farthest distance and those
obscured were not detected, as shown in Figure 3g. Analysis of the original image in
Figure 3a reveals that the overall lighting distribution in the image is uneven. The left
side of the image is brightly lit, while the crew member images have low contrast and
are relatively dark. This similarity in color characteristics between the crew members and
other black objects on the deck increases the difficulty of feature extraction and recognition.
The proportion of the farthest squatting crew member and the obstructed crew member
in the entire image is relatively small, making it challenging to extract and distinguish
crew behavior features. Figure 3b–f shows the feature visualization results of Figure 3a.
Figure 3c is a feature visualization of the last layer of the backbone network (SPPF). It can
be analyzed from the figure that SPFF focuses on the sky and deck areas and pays less
attention to the crew working on board during the feature extraction process. This will
result in insufficient feature extraction capabilities for the targets. Comparing the feature
visualization results of SPPF and the C3 model before SPPF (Figure 3b,c) shows that the
regions of interest remain largely unchanged. This indicates that the features extracted by
the C3 model before SPPF influence the final output features of SPPF. In the feature fusion
process, input 1 of the neck (PAN) (Figure 3d) shows little attention to the crew member
areas. At this point, there were very few crew features left, only background features.
Input 2 of the neck (PAN) (Figure 3e) focuses on 3 crew members, and input 3 of the neck
(PAN) (Figure 3f) focuses on 2 crew members, but neither input identifies the crew member
crouched at a distance. This indicates that the crew member’s features disappeared during
the feature fusion stage, resulting in their failure to be recognized.

There are a total of 11 recognition targets in Figure 4, and YOLOv5s identified 6 of these
targets with an accuracy of 54.5%. Crew members in overexposed areas and those obscured
by containers were not detected (Figure 4g). Figure 4a was taken during the evening,
and insufficient lighting caused local underexposure in some shadowed areas on the ship,
leading to the loss of crew detail features. Some areas of the image are overexposed, making
it difficult to extract crew features. Certain crew members are obscured by containers, with
only their heads visible. This makes feature extraction extremely challenging due to their
small portion of the image. The feature visualization results in Figure 4b–f illustrate
the issues with feature extraction and fusion. During the feature extraction process, the
feature visualization of the SPPF focuses primarily on the six central crew members and
parts of the environment on the left (Figure 4c), without capturing features of all crew
members. Comparing the feature visualization results of SPPF and the C3 model before
SPPF (Figure 4b,c) shows that the areas of interest for the C3 model before SPPF are largely
consistent with those of SPPF. In the process of feature fusion, input 1 of the neck (PAN)
(Figure 4d) does not emphasize any particular regions of the image. It indicates that the
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crew member features are not prominent during feature fusion. Input 2 of the neck (PAN)
(Figure 4e) identifies 6 crew members, and input 3 of the neck (PAN) (Figure 4f) identifies
4 crew members. However, none of the inputs addresses the crew members obscured
by containers or those in overexposed areas, leading to lower attention to these targets
during recognition.
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3 of the neck (PAN); (g) YOLOv5s detection diagram.

YOLOv5s detected 4 out of 6 targets in Figure 5, with an accuracy of 66.7%. The two
overlapping crew members in the center shown in Figure 5g were not detected. We can
see from Figure 5a that the background on the ship is cluttered. The crew member on
the right is partially obscured by equipment, which makes it difficult to extract complete
features of this crew member. The clothing of the obscured crew member is similar in color
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to the deck, making it challenging to extract the crew member’s color features. The overlap
between crew members makes it hard to distinguish behavioral features. Figure 5b–f
shows the feature visualization results of Figure 5a during the feature extraction and fusion
stages. The feature visualization of the SPPF (Figure 5c) focuses mainly on the background
area rather than the working crew members on the ship during feature extraction. This
indicates that background features are overemphasized, weakening the extraction of target
features. Comparing the feature visualization results of SPPF and the C3 model before SPPF
(Figure 5b,c), it is observed that the specific areas of focus are roughly the same. During the
feature fusion process, input 1 of the neck (PAN) (Figure 5d) identifies 4 crew members,
but only the frontmost crew member is noted among the 3 overlapping ones. Input 2 of the
neck (PAN) (Figure 5e) identifies 2 crew members, with the obscured crew member and the
3 overlapping crew members in the middle not being addressed. Input 3 of the neck (PAN)
(Figure 5f) does not focus on the crew member areas, introducing excessive background
feature interference. This results in reduced attention to targets in subsequent recognition.
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3 of the Neck (PAN); (g) YOLOv5s detection diagram.

YOLOv5s achieved the lowest recognition accuracy of 39.3% in Figure 6, identifying 11
out of 28 recognition targets. Most crew members obscured by equipment and those with
severe overlapping are not detected in the recognition image (Figure 6g). Analysis of the
original image (Figure 6a) shows that the complex background onboard and the obscured
crew members make feature extraction difficult. The crew members are densely concen-
trated in a small area of the image, with overlapping members being predominant, making
it challenging to extract all crew member features. From the feature visualization effects of
Figure 6b–f, it can be seen that there are issues in the processes of feature extraction and
fusion. During the feature extraction process, the SPPF focuses on the shore environment
and some container areas rather than the working crew on the ship (Figure 6c). This results
in significant interference from background features. Comparing the feature visualization
effects of SPPF and the C3 model before SPPF (Figure 6b,c), the regions of focus are roughly
similar. It indicates that the features extracted by the C3 model before SPPF influence the
final output features of SPPF. During the feature fusion process, input 1 of the neck (PAN)
(Figure 6d) identifies 11 crew members, but the attention to the concentrated crew area is
low. Furthermore, most overlapping crew members in this region are not addressed. Input
2 of the neck (PAN) (Figure 6e) identifies 5 crew members, and input 3 of the neck (PAN)
(Figure 6f) identifies 3 crew members. The crew concentration areas are not attended to,
with excessive attention given to the background. This leads to severe interference from
background features, resulting in a significantly lower recognition rate for the targets in the
crew concentration area.
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We comprehensively analyzed the four types of images with significant features
mentioned above and found that applying YOLOv5s to crew abnormal behavior detection
has the following common defects. (1) The SPPF focuses more on the environment rather
than the crew area, and the final output features of SPPF are mainly influenced by the
features extracted by the C3 model before SPPF. The C3 model before SPPF has insufficient
capability for extracting crew features in the complex noise environment on the ship. (2) The
attention to the crew area is relatively low during feature fusion, with excessive focus on
the background area. Background features cause severe interference with crew features.
The above analysis indicates that the original YOLOv5s fails to accurately extract and
distinguish crew behavior features. This is the direct cause of its low detection accuracy for
crew abnormal behavior.

3.1.3. Feature Extraction Network Based on C3-TransformerBlock

The onboard environment is complex, with high variability in lighting conditions
leading to local overexposure and underexposure in images. Global contextual information
can help the model understand changes in lighting during feature extraction. For example,
when a certain part of the image is overexposed, the model can rely on features from the
surrounding areas to determine the true color and shape of crew members, thereby reducing
the impact of lighting variations on feature extraction. Additionally, blurriness caused by
image jitter makes local features unstable. Integrating global contextual information can
provide extra spatial data, enabling the model to recognize important crew features even
when local information is unclear. YOLOv5 employs the CSPDarknet53 network for feature
extraction, focusing on extracting local features, with a limited ability to integrate global
contextual information. CSPDarknet53 lacks the ability to extract key features of crew
members in complex environments with certain issues, such as the high variability of light
on the ship. The nonlinear transformation capability of the C3 module in CSPDarknet53 is
insufficient. As illustrated in Figure 7, the BottleNeck in the C3 module before SPPF is a
residual structure containing only two CBS, and its limited nonlinear transformation ability
restricts the crew anomaly behavior detection model’s adaptability to complex scenarios.
The C3 model before SPPF in the YOLOv5 backbone network is being considered for
improvement to enhance its feature extraction capability for crew members in complex noise
environments, such as those involving light variability and image blurring on board ships.
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We combine the C3 model before SPPF in the feature extraction network with the
TransformerBlock module to form the C3-TransformerBlock module. It can utilize the ability
of the transformer to efficiently integrate global contextual information, without being
limited by local perception range, to compensate for the insufficient crew feature extraction
ability of CSPDarknet53 in complex scenes. The multi-head attention processes multiple
different feature subspaces, which helps enhance non-linear transformation capabilities
and improves the crew anomaly behavior detection model’s adaptability in complex ship
scenes. The C3-TransformerBlock module (Figure 7) replaces the BottleNeck structure
in the C3 module with the TransformerBlock module. The input feature map of size
512 × 10 × 10 is fed into two branches. The convolution kernel size of the CBS is 1 × 1
with 256 channels in the main branch. The output of the CBS is a feature map of size
256 × 10 × 10, which is concatenated with the input from the TransformerBlock module.
The TransformerBlock within the C3-TransformerBlock module can be divided into three
sublayers. The first sublayer is a linear layer that maps the input features to enhance
crew features representation capability. The second sublayer applies LayerNorm for layer
normalization to accelerate training and improve crew anomaly behavior detection model
stability. It then passes through three linear layers for Q, K, and V, with their outputs fed
into the multi-head attention to capture relationships among the crew and background
features. The third sublayer also begins with LayerNorm, followed by two linear layers f1
and f2. The f1 expands the channel from 256 to 1024 dimensions, and the f2 reduces it back
to 256 dimensions. The nonlinear transformation ability of the crew abnormal behavior
detection model is improved by first expanding and then compressing the channel. A
dropout with a probability of p = 0.1 is applied to randomly drop some neurons to prevent
overfitting. Both the second and third sublayers are connected via a residual structure.
The output feature map from the TransformerBlock is of size 256 × 10 × 10, which is
concatenated with the feature map from the other branch, resulting in an output feature
map of size 512 × 10 × 10. Finally, a CBS with a convolution kernel size of 1 × 1 is applied
to obtain a feature map of size 512 × 10 × 10. This feature map contains rich contextual
information and crew features in complex environments.
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3.1.4. Feature Fusion Network Based on a CBAM Attention Mechanism

The monitoring background on board is cluttered, the proportion of crew images is
small, and there is similarity between crew behavior characteristics. These issues lead to
background feature interference or confusion of different crew behavior features during the
multi-scale feature fusion stage (neck) of the original YOLOv5s. In the feature multi-scale
fusion stage (neck) of the YOLOv5s model, a path aggregation network (PAN) is used to
enhance multi-scale feature fusion capability. During this process, background information
from high-level feature maps is fused into low-level feature maps. This fusion causes crew
features and background features to mix, affecting detection accuracy.

We have considered adding CBAM (Figure 8) in the input stage of PAN to improve
the detection accuracy of abnormal crew members. The input of CBAM1 is the fourth
layer of the backbone network, which belongs to shallow features and pays more attention
to crew details. The inputs of CBAM2 and CBAM3 are high-level features fused with
background information. Properly setting the spatial convolution kernel size can prevent
the invalidation of small-scale crew behavior features and reduce computational complex-
ity, while enhancing spatial attention to these features in multi-scale fusion. The spatial
convolution kernel size is set to 7 × 7 after experimental comparison. Additionally, the
size of the dimensionality reduction coefficient can effectively allocate channel attention
and reduce channel computation. The channel dimension reduction coefficient is set to
16 after experimental comparison (Table A1). The CBAM mechanism serially generates
attention feature information of crew members in both the channel and spatial dimensions,
effectively extracting and preserving critical local features of the image during feature
fusion. Channel attention allocates greater weight to differentiate crew features, while
spatial attention extracts appearance and behavioral characteristics of the crew at different
scales. The combination of these attentions focuses feature on the key information of crew
members and suppresses irrelevant feature of background interference. This directs subse-
quent predictors to concentrate on effective crew regions within both channels and spatial
dimensions, thereby enhancing crew anomaly behavior detection model performance.
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3.1.5. Loss Function

Occlusion by equipment and overlap between crew members are severe due to the
unique monitoring environment on the ship. The original YOLOv5 uses the intersection
over union (IoU) loss function to select candidate boxes of different crew members by
calculating the IoU between boxes. However, it does not consider the distance between
the centers of different crew members. This can suppress overlapping candidate boxes for
different crew, making it difficult to identify crew members in occluded and overlapping
states. The three overlapping crew members should have three close bounding boxes,
as shown in Figure 9b. After applying IoU, the bounding box with lower confidence is
discarded due to excessive overlap with the higher confidence box, resulting in a detection
failure for that crew member.
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We consider replacing the IoU loss function with the CIoU loss function, which can
effectively reduce the impact of crew occlusion by equipment and overlap between crew
members on recognition accuracy. The advantage of using the CIoU loss function is that
it not only considers the overlapping area of different detection boxes, but also takes into
account the center point distance and aspect ratio of different crew members. This allows
candidate boxes with high overlapping areas to be identified as different crew members
(Figure 9c).

si =

{
si, IoU − RCIoU(M, Bi) < ε
0, IoU − RCIoU(M, Bi) ≥ ε

(1)

In Equation (1), si represents the predicted confidence score of the ith detection box, ε
is the NMS threshold, M is the detection box with the highest confidence score, and Bi is
the ith detection box. Taking into account the center distance, ε will be set to 0.45.

3.1.6. Improved Overall Network Structure

We propose a real-time detection model called YOLO-TRCA for abnormal crew be-
havior onboard based on the above analysis. This model improves the original YOLOv5s
by incorporating TransformerBlock self-attention, CBAM attention mechanisms, and the
CIoU loss function, thereby improving the accuracy of crew behavior recognition. The
YOLO-TRCA structure is illustrated in Figure 10, consisting of the input, backbone, neck,
and head. The input images consist of various data featuring different scenarios, including
lighting variations, motion blur caused by image jitter, overlapping or occluded crew
members, and complex backgrounds.

(1) The C3 module before SPPF in the backbone is replaced by the C3-TransformerBlock
module. The input of backbone consists of images with a resolution of 640 × 640, includ-
ing three RGB channels. The output features are four different scales: 128 × 80 × 80,
256 × 40 × 40, 384 × 20 × 20, and 512 × 10 × 10, which are fed into the neck.

(2) Three CBAMs are introduced at the input stage of the PAN in the neck. The input to
CBAM1 is the 128 × 80 × 80 feature map output from the fourth layer C3 of the backbone,
the input to CBAM2 is the 128 × 40 × 40 feature map output from the Conv module, and
the input to CBAM3 is the 256 × 20 × 20 feature map output from the Conv module. The
output feature maps from the three CBAM maintain the original scale.
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(3) The inputs to the head are the four feature maps of sizes 128 × 80 × 80, 256 × 40 × 40,
384 × 20 × 20, and 512 × 10 × 10. The Detect output consists of tensors with dimensions
4 × 80 × 80 × 10, 4 × 40 × 40 × 10, 4 × 20 × 20 × 10, and 4 × 10 × 10 × 10. Here,
4 represents the number of anchors, and 10 indicates the values for 5 classes, confidence,
and the xywh coordinates of the predicted boxes.
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3.2. Video Sequence-Based Crew Identity Recognition

We need to determine the specific identity of the crew members through facial recog-
nition once any abnormal behavior is detected. The environmental conditions on ships
are intricate, and shipboard surveillance cameras are typically mounted in upper compart-
ments and on monitoring poles. The distance between the camera deployment height and
the personnel is more than 2.5 m, presenting a top-down shooting state. It is challenging
to capture complete facial images of personnel in the videos, and the resolution of facial
images is low. Common face recognition algorithms are not suitable for on-ship scenarios.
We propose an identity recognition method (CFA) based on face quality assessment to
improve the accuracy of crew identity recognition (Figure 11). The CenterFace model is
utilized to detect faces in the video sequence, generating a sequence of facial images. A fast
face quality assessment algorithm called Filter is designed to screen out high-quality facial
images of personnel. Finally, Arcface is employed to achieve crew identity recognition.
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3.2.1. Filter: Fast Face Quality Assessment Algorithm

We design a fast face quality assessment algorithm called Filter in this paper, which
performs real-time face quality assessment during video tracking. Filter calculates the
face pose based on the relative positions of facial feature points of crew members in each
frame of the video. It then selects face images with pose angles below a certain threshold.
Subsequently, it computes the image blurriness and contrast to further filter out low-quality
face images. As a result, high-quality image data are obtained for use in face recognition.

1. Fast Face Pose Estimation;

Face pose estimation uses the 2D image of crew members captured by a monocular
camera to estimate the yaw and pitch angles of the face, which are two types of 3D
information. As depicted in Figure 12, the 3D facial coordinate system P (x, y, z) has its
origin centered at the head, with the Y-Z plane parallel to the camera imaging plane Π (y, z).
The X-axis direction corresponds to the shooting direction. The yaw angle represents the
rotation angle β of the face around the Z-axis. The pitch angle represents the rotation angle
γ of the face around the Y-axis. The facial detection box is represented by the coordinates
of two feature points: the top-left corner f1(x, y, z) and the bottom-right corner f2(x, y, z).
The coordinates of the five facial feature points are the left eye e1(x, y, z), the right eye
e2(x, y, z), the nasal tip n1(x, y, z), the left mouth corner m1(x, y, z), and the right mouth
corner m2(x, y, z).
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In the application of video surveillance on ships, the camera’s focal length typically
ranges from 6 to 12 mm. Crew members are often situated at a considerable distance
from the camera, typically exceeding 5 m. This results in a relatively small proportion
of their faces being visible in the captured images. Based on imaging principles and the
characteristics of crew members’ work behavior, the impact of varying imaging distances
between frames on the proportion of facial images can generally be ignored. However,
facial rotation can cause significant changes in the proportion of the face within the video
images. Therefore, this algorithm focuses on considering the changes in the rotation angle
of the face, while ignoring the changes in facial displacement.

The imaging process of a camera when a face rotates at a yaw angle is illustrated
in Figure 13. During this process, the three-dimensional coordinates of various points
are orthogonally projected onto the X–Y plane. Specifically, when the face is facing the
camera directly, the facial spatial coordinates are orthogonally projected onto the X–Y
plane, resulting in the coordinates F1, F2, E1, E2, N1. After the face rotates at a yaw angle,
the orthogonal projection coordinates become F′

1, F2′, E′
1, E′

2, N1′, respectively, with the
rotation angle being ∠β. Subsequently, after the camera imaging process, the Y-axis
coordinates of these orthogonal projection points on the plane Π (y, z) are denoted as
f1, f2, e1, e2, n1, respectively.

As shown in Figure 13, let O2 be the midpoint of f1 f2. Draw a parallel line to F1′F2′
through e1, intersecting the line O1O2 at point H. Then, cos β = e1O2/e1H. Through a
face detection algorithm, the coordinates of five feature points on the imaging plane can
be obtained. However, the length of e1H cannot be calculated when the angle β, the focal
length f , and the image distance Z1 are unknown. The length of e1H varies with the change
in β. Among the five facial points, max ( f1n1, f2n1) and max (e1n1, e2n1) exhibit the same
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trend of variation, where max represents taking the maximum value. According to the
literature [42], there is a relatively large error when using a convolutional neural network to
locate the feature points f1 f2. Therefore, the relationship between max (e1n1, e2n1) and e1H
is analyzed as a priority. From Figure 13, it can be observed that e1O2 ≤ max (e1n1, e2n1).
Let the error ε =|max (e1n1, e2n1)−e1H| , so lim

β→0
ε → 0 .
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After simulating through a Python program, we obtained the following equation:∣∣∣∣ ε

e1H

∣∣∣∣≤ 0.2, β ∈ (0,
π

3
) (2)

where e1H represents the distance between points e1 and H.
Therefore, when β is small, it is reasonable to approximate e1H using max (e1n1, e2n1).

When β > π/3, the accuracy of face recognition is extremely low, and calculating the exact
angle in this state is not significant. Based on the above analysis, the calculation formula
for the β angle is given by the following Equation (3):

β = arccos (
0.5×|e1(y)− e2(y)|

max (|e1(y)− n1(y)|, |e2(y)− n1(y)|)
)× 180

π
, β ∈ (0,

π

3
) (3)

where e1(y), e2(y), and n1(y) represent the Y-axis coordinates of the left eye center, right
eye center, and nose tip center in the two-dimensional image, respectively.

Referring to the pitch angle calculation process in reference [43], Equation (4) is
as follows:

γ = arccos (
|E1E2|

|d (E1E2, M)| )×
180
π

(4)

where |E1E2| is the length of the line connecting the two eyes, M is the midpoint of the
lips, and d is the distance from the point M to the line |E1E2|. Considering that the
crew is far away from the camera in the application scenario, there are differences in the
positions of the corresponding feature points extracted by the face detector compared with
reference [43]. Moreover, the calculation accuracy of the pitch angle has a small impact
on the accuracy of face recognition. To improve the calculation speed, we simplify the
distance calculation process by replacing |E1E2| with |e2(y)− e1(y)| and d (E1E2, M) with
|e1(z)− m1(z)|, as follows:

γ = arccos (
|e2(y)− e1(y)|
|e1(z)− m1(z)|

)× 180
π

(5)

where e1(z), e2(z), and n1(z) represent the Z-axis coordinates of the left eye center, right
eye center, and nose tip center in the two-dimensional image.
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Following experimentation, we established the threshold ranges for the yaw and pitch
angles of the face as follows: {

|β| < 22.5◦

|γ| < 30.5◦
(6)

2. Image Blur and Contrast Calculation;

We selected the Tenengrad function and contrast function to compute image quality
for low-quality image filtering. The gradient function uses the Sobel operator to extract the
gradient values in the horizontal and vertical directions, respectively.

Kx = [
0 −1 0
0 2 0
0 −1 0

], Ky = [
0 0 0
−1 2 −1
0 0 0

] (7)

Apply the Sobel operator for two convolutions on the image to obtain the blur index s.

s =
√

f 2(x, y) ∗ Kx + f 2(x, y) ∗ Ky (8)

In Equation (8), f (x, y) represents the grayscale value of the image at coordinates
(x, y). Subsequently, the contrast of crew members’ facial images is calculated using the
following contrast formula:

c = ∑
δ

δ(i, j)2Pδ(i, j) (9)

where δ (i, j)=|i − j| represents the grayscale difference between adjacent pixels. And
Pδ(i, j) denotes the probability distribution of pixels with a grayscale difference of δ between
adjacent pixels.

The thresholds for blur measure s and contrast range c are determined through experi-
ments as follows:

{s < 32.5∗∑(x,y)
15444

40 < c < 60
(10)

where s represents the threshold for motion blur, c represents the threshold for contrast,
and ∑(x, y) denotes the number of pixels in the input image. Here, 32.5 is a scaling factor
used to adjust the calculation of the blur threshold. Furthermore, 15,444 is a normalized
constant at 1080P resolution, used to convert the number of pixels into a scale suitable for
clarity assessment.

3.2.2. Crew Identity Recognition Method

The Filter algorithm is used to screen the video, obtaining high-quality face image
data for crew face recognition. The overall identification process is illustrated in Figure 14.
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The pseudocode description of the crew identity recognition algorithm is shown in
Algorithm 1.

Algorithm 1 Crew Identity Recognition Algorithm for Video Sequences

Input: Imagei ∈ Videot1,t2,t3,...,tn

Output: Abnormal behavior category of crew members C, crew number S, time T, image I,
name N

1. Initialize the crew facial feature database matrix M, its size is n × 512
2. Initialize crew tracking mapping hash table H, including face image queue and crew ID
3. while Imagei has next do
4. list = CrewActionDetect(Imagei);//Detection for abnormal behavior of crew
5. for each listi in list do
6. isnew,id = DeepSORT(Imagei, listi);//Deepsort for multi-target tracking
7. if isnew then
8. crewimage = CropImage(Imagei, listi);//Crop crew image
9. Upload(crewimage,T,id);//Upload crew image
10. end if
11. if H[id].new then//No crew identity image has been uploaded
12. crewimage = CropImage(Imagei, listi);
13. faceinfo = Centerface(crewimage);//Centerface model for face detection
14. if faceinfo is not Empty then
15. validangle = AngleFilter(crewimage, faceinfo);//Determine facial pose angle
16. if validangle then
17. faceimage = CropImage(crewimage,faceinfo.loc);//Crop facial image
18. H[id].add(faceimage);//Add to the facial image queue
19. if H[id].size > 5 then//Queue greater than 5 images
20. bestimage = QualityFilter(H[id]);//Select images based on a contrast
21. //close to 50 and in ascending order of blurriness
22. bestface = FaceAlignment(bestimage,faceinfo)//Face alignment
23. f = Arcface(bestface);//Arcface model extracts facial features
24. ans = Max(f×M);//Calculate the confusion matrix,
25. //select the maximum value
26. if ans > 0.65 then
27. Upload(bestface,T,id);//Upload crew identity image
28. H[id].new = False;
29. end if
30. end if
31. end if
32. end if
33. end if
34. end for
35. end while

return None

4. Experimental Results and Analysis
4.1. Crew Abnormal Behavior Detection Experiment
4.1.1. Experimental Dataset

The dataset was collected from real onboard surveillance images and some land-based
scene images, covering complex scenarios on the ship, various camera angles, and different
personnel postures. The dataset includes various scenes, such as those with significant
lighting changes, scenes blurred due to image jitter, and overlapping and occluded crew
scenarios, among others. It also includes behavioral data, such as wearing life jackets
and smoking, extracted from the life jacket detection dataset [44] and smoking detection
dataset [45] in PaddlePaddle AI Studio, respectively, enriching the custom dataset. The
dataset is divided into training, testing, and validation sets with ratios of 60%, 20%, and
20%, respectively. Some images from the dataset are shown in Figure 15, with the targets
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categorized into five classes: not wearing a life jacket, smoking, not wearing work clothes,
not wearing a shirt, and normal. Each image was annotated using the Labelimg tool. The
training set consists of 3487 images from different scenarios, with specific proportions
shown in Table 3, and over 8700 labeled targets (see Table 4).
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Figure 15. Partial images of the dataset: (a) not wearing a life jacket: nolifevast; (b) smoke; (c) not
wearing work clothes: notrainlifevast; (d) not wearing a shirt: nocoat; (e) normal: lifevast.

Table 3. The proportion of different scenarios in the training set.

Different
Scenarios

Brightness
Variation Scene

Blurred Scenes
with Image

Jitter

Obstructive and
Overlapping

Scenes
Other Scenes

Number 1011 209 1186 1081

Proportion 29% 6% 34% 31%

Table 4. Number of classes in the training set.

Class
Abnormal Normal

Nolifevast Notrainlifevast Smoke Nocoat Lifevast

Target number 4200 1400 1000 600 1500

4.1.2. Comparative Experiments

The environmental parameters used in the experiment conducted in this paper are
shown in Table 5.

Table 5. Experimental machine configuration and compilation environment.

Experimental Hardware Configuration Experimental Software Configuration

CPU: Intel(R) Core(TM) i7-10750H CPU @ 2.60
GHz

GPU: Nvidia RTX 2060 6 G Laptop
Memory: 16 GB DDR4 2933 MHz

Hard Disk: 1 TB SSD

Python 3.6.12
CUDA 11.5

CUDNN 8.6.5
Pytorch 1.11.0

Tensorflow 1.13.0

The Mosaic data augmentation strategy was used to randomly alter training samples
to improve model generalization. The batch size was set to 4. The training momentum
was set to 0.937. The learning rate was set to 0.0001 with cosine annealing adjustment.
The weight decay parameter was 0.005, and the number of training epochs was set to 150.
Model performance was evaluated using mean average precision (mAP) and inference time
to quantify accuracy and speed. The highest values during the training epochs were used.
mAP@0.5:0.95 represents the average precision over the IoU threshold range [0.5, 0.95] with
a step size of 0.5. mAP@0.5 represents the average precision when the IoU threshold is set
to 0.5.

We conducted comparative experiments on different algorithm models to verify the
performance of the crew abnormal behavior detection algorithm. The experimental re-
sults are shown in Table 6. The YOLO-TRCA algorithm achieved the highest accuracy,
with mAP@0.5:0.95 and mAP@0.5 reaching 76.9% and 93.2%, respectively. It also had
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an inference time of 16.9 ms. YOLOv5s, AIA, CenterNet, and YOLOv4 did not exceed
YOLO-TRCA in terms of accuracy. Only YOLOv5s had a lower inference time compared
to YOLO-TRCA, while AIA, CenterNet, and YOLOv4 had longer inference times. This
indicates that YOLO-TRCA achieves a good balance between high accuracy and a low
inference time.

Table 6. Comparison of detection methods for abnormal behavior of crew members.

Model mAP@0.5:0.95/% mAP@0.5/% Inference Time/ms

YOLO-TRCA 76.9 93.2 16.90
YOLOv5s 72.7 91.8 16.20

AIA 74.4 92.8 129.03
CenterNet 71.2 92.5 42.00
YOLOv4 70.3 88.7 26.31

A comprehensive analysis of Figure 16 and Table 7 shows that, under conditions
of varying onboard lighting interference, image jitter, complex backgrounds, and crew
occlusions with small proportions, the proposed method improves detection accuracy by
an average of 35.0% compared to YOLOv5s. In the detection comparison experiment shown
in Figure 16a, the proposed method successfully identified the furthest crew member not
wearing a life jacket, but the occluded crew member was not accurately distinguished.
When considering Figure 16b, the method detected all 11 crew members without life jackets,
even under conditions of local overexposure, underexposure, or blur. The complex scene
presented in Figure 16c saw the proposed method effectively detecting two crew members
in the upper right corner who were not wearing work clothes. In the scenario depicted
in Figure 16d, where crew members were significantly overlapping, the method detected
three more normal crew members compared to YOLOv5s. However, one crew member
without a life jacket was misidentified as normal, while another normal crew member was
incorrectly labeled as not wearing a life jacket. Figure 16e illustrates that the proposed
method successfully detected two crew members who were shirtless and smoking. In
conclusion, the method proposed in this paper shows enhancements over previous methods
in detecting abnormal behavior of crew members. However, it still faces challenges,
including missed detections of obstructed crew members and false positives in determining
whether crew members are wearing life jackets. To enhance the differentiation ability
between overlapping crew members and those with similar features, further improvements
in the network’s feature extraction capability can be implemented. This could involve
optimizing the architecture, incorporating advanced techniques, like attention mechanisms,
or leveraging additional training data to capture more nuanced characteristics of the
crew members.

Table 7. Statistics of abnormal behavior detection results for crew members.

Class
Image Figure 16a Figure 16b Figure 16c Figure 16d Figure 16e

nolifevast
YOLOv5s (error) 4 (0) 6 (0) — 2 (1) —

YOLO-TRCA (error) 5 (0) 11 (0) — 2 (1) —
Targets 6 11 — 2 —

notrainlifevast
YOLOv5s (error) — — 1 (0) — —

YOLO-TRCA (error) — — 2 (0) — —
Targets — — 2 — —

smoke
YOLOv5s (error) — — — — 0 (0)

YOLO-TRCA (error) — — — — 2 (0)
Targets — — — — 2
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Table 7. Cont.

Class
Image Figure 16a Figure 16b Figure 16c Figure 16d Figure 16e

nocoat
YOLOv5s (error) — — — — 2 (0)

YOLO-TRCA (error) — — — — 2 (0)
Targets — — — — 2

lifevast
YOLOv5s (error) — — 2 (0) 5 (1) —

YOLO-TRCA (error) — — 3 (0) 8 (1) —
Targets — — 3 11 —

Precision improvement 16.7% 45.5% 40.0% 23.0% 50.0%
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4.1.3. Ablation Experiment

Ablation experiments were conducted to validate the effectiveness of the improved
model structure, using mAP@0.5:0.95 as the accuracy metric and inference time as the speed
metric. As shown in Table 8, the model with C3-TransformerBlock + 3 CBAM + CIoU-NMS
achieved the best accuracy, with a 4.2% increase in precision and an additional 0.7 ms in
inference time. With only CIoU-NMS, the model achieved a 0.5% increase in accuracy and
an additional 0.4 ms in inference time, suggesting improved performance in occlusion
scenarios. The model with the C3-TransformerBlock had a 2.4% increase in accuracy
and an additional 0.1 ms in inference time, demonstrating that the C3-TransformerBlock
enhances feature extraction capability in the backbone network. Adding 3 CBAM led to a
1.3% accuracy improvement and an extra 0.2 ms in inference time, indicating that CBAM
enhances focus on crew regions. Overall, within the acceptable range of increased model
inference time, the model’s accuracy significantly improved, proving the effectiveness of
the YOLO-TRCA structural modifications.
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Table 8. Ablation experiments.

C3-TransformerBlock CBAM-1 CBAM-2 CBAM-3 CIoU-NMS mAP@0.5:0.95/% Inference
Time/ms

× × × × × 72.7— 16.2—
× × × ×

√
73.2↑ 16.6↑√

× × ×
√

75.6↑ 16.7↑√ √ √ √ √
76.9↑ 16.9↑

The difference in feature visualization between the original C3 module and the
improved C3-TransformerBlock module is significant. Figure 17b,l shows that the self-
attention generated by the C3 module is entirely focused on environmental factors. In
contrast, the C3-TransformerBlock in Figure 17g,q distributes attention to both environ-
mental factors and the entire crew area. Therefore, the addition of the C3-TransformerBlock
enhances the feature extraction capability of the YOLOv5 backbone network and provides
a clear attention guidance for target features. Figure 17 shows the visualization results
before and after the addition of CBAM. Prior to adding CBAM, the attention towards the
crew members was low, and background features severely interfered with the target fea-
tures. The attention towards the crew members significantly increased after incorporating
CBAM. The above phenomenon indicates that introducing three CBAM modules into the
PAN input of the feature fusion network effectively suppresses environmental noise and
enhances crew feature representation, thereby improving the model’s detection accuracy.
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4.2. Comparative Experiment on Crew Identity Recognition

The data for the identity recognition experiment were collected from real crew face
videos on the ship, with a recognition threshold set at 0.65. This section conducts com-
parative experiments on crew face recognition using the face detectors Centerface and
MTCNN, the face feature extraction models Arcface and VGG-Face, the pose estimation
algorithm POSIT, and the face quality evaluation algorithm (Filter) designed in this paper.
In the experiment, the input face images to the face detector were all scaled to 112 × 112.
After detecting the faces, facial landmarks were used for alignment, and the aligned faces
were then fed into the recognition model for feature extraction and identification. The
evaluation metrics for the algorithm include true match rate (TMR), false match rate (FMR),
and false rejection rate (FRR). These metrics quantify the accuracy of the algorithm, while
the inference speed measures its processing speed.

Table 9 shows that the algorithm with the highest accuracy is TL-GAN + VGG-Face,
achieving a TMR of 74%, but with an FMR and FRR of 12% and 14%, respectively. The
algorithm with the lowest accuracy is MTCNN + FaceRecognition, with TMR, FMR, and
FRR values of 19%, 8%, and 73%, respectively. The fastest algorithm is CenterFace + Arcface,
with a processing time of 15.82 ms, while the slowest is TL-GAN + VGG-Face, taking 15,100
ms. The method used in this paper is CenterFace + Filter + Arcface, achieving a TMR of
68%, an FMR of 24%, and an FRR of 8%. Compared to CenterFace + Arcface, accuracy is
significantly improved with an additional processing time of 0.54 ms. While the accuracy
shows a slight decrease relative to TL-GAN + VGG-Face, there is an improvement in speed
by 15,083.65 ms, or 923.54 times. Both accuracy and speed see significant enhancements
compared to MTCNN + FaceRecognition and MTCNN + POSIT + FaceRecognition. The
above analysis demonstrates the effectiveness of the Filter algorithm.

Table 9. Identity recognition performance.

Method TMR FMR FRR Inference
Time/ms

CenterFace + Filter + Arcface 0.68 0.24 0.08 16.35
CenterFace+ Arcface 0.40 0.56 0.04 15.82

MTCNN + FaceRecognition 0.19 0.08 0.73 432.18
MTCNN + POSIT + FaceRecognition 0.65 0.23 0.12 438.59

TL-GAN + VGG-Face 0.74 0.12 0.14 15,100

The results indicate that the method proposed in this paper achieves a good balance
between real-time performance and algorithm accuracy, making it suitable for real-time
video crew face recognition scenarios.

4.3. Actual Testing on Board

An abnormal crew monitoring and analysis system was designed to meet the needs of
onboard managers in practical applications. This system enables the monitoring, capturing,
statistical analysis, and visualization of a crew’s abnormal behaviors. After the system
design and development were completed, both the software and hardware of the system
were deployed and installed on test vessels, connected to the vessel’s wired local area
network. To effectively monitor the crew on the fore and aft decks of the test vessels,
the deployment scheme included one onboard camera for the foredeck and two onboard
cameras for the aft deck, with the web server placed in the upper bridge. The specific
deployment layout is shown in Figure 18.

The resolution of the onboard monitoring video was set to 1920 × 1080. The experi-
mental period was from 17:00 on February 4th to 08:00 on February 13th, with a duration of
183 h. Table 10 shows that during the testing period, a total of 483 images of abnormal crew
behavior and 336 images with correct identity recognition were captured, resulting in an
identity recognition accuracy of 69.6% for abnormal crew members. The accuracy of crew
abnormal behavior recognition is presented in Table 11, with an average accuracy of 92.3%.
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The system takes an average of 39.5 ms to process one frame, and the website response
delay is controlled within a range from 0.68 ms to 3.11 ms. Figure 19a,b demonstrates the
effectiveness of detecting abnormal behavior among crew members. Figure 19c,d shows the
software interface for identifying abnormal crew members, and the identification results
are presented in Figure 19e,f. Based on the test results, the abnormal crew monitoring and
analysis system is fully capable of real-time detection of a crew’s abnormal behaviors and
recognition of crew identity.
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Table 10. Marine application experiment.

Test Project Test Result

Number of abnormal crew image captures 483 times
Abnormal crew identity recognition frequency 336 times

Average frame time for video processing 39.5 ms
Website response delay 0.68 ms~3.11 ms

Table 11. Accuracy of detecting abnormal behavior of crew members.

Class
Abnormal Normal

Nolifevast Notrainlifevast Smoke Nocoat Lifevast

Accuracy/% 0.987 0.988 0.661 0.995 0.985
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recognition results; (f) abnormal crew identity recognition results.
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5. Conclusions

This paper proposes an abnormal crew detection network (ACD-Net) for real-time
detection and recognition of abnormal crew members in realistic complex ship scenes. The
ACD-Net is tested for identifying abnormal crew members on actual ships to verify its
effectiveness. The experimental results demonstrate that ACD-Net achieves an abnormal
behavior detection accuracy of 92.3% and an identity recognition correct matching rate
of 69.6%. At a 1080P resolution, the per-frame processing time is no more than 39.5 ms,
providing high accuracy and lower processing time compared to other methods.

The ACD-Net proposed in this paper also has certain limitations. The application
ratio in real ship environments needs further improvement to validate the algorithm’s
generalization ability in various scenarios, such as fog and low light. The types of abnormal
behavior recognized are still relatively few, and further collection of additional abnormal
behaviors is necessary to assess recognition performance. Additionally, the accuracy of
detecting abnormal behavior and identity recognition for obstructed crew members still
requires enhancement.
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Appendix A

Table A1. CBAM parameter selection experiment.

(r,k) P R mAP@0.5 mAP@0.5:0.95

(32,7) 94.6% 92.0% 92.5% 76.6%
(16,7) 95.6% 91.7% 93.2% 76.9%
(8,7) 94.2% 91.5% 92.2% 76.7%

(32,3) 94.5% 91.2% 92.4% 76.6%
(16,3) 95.3% 91.5% 92.6% 76.6%
(8,3) 95.2% 91.8% 92.9% 76.2%

The size of the spatial convolution kernel is k, and the channel dimension reduction coefficient is r.
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