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Abstract: Simultaneous Localization And Mapping (SLAM) algorithms play a critical role in au-
tonomous exploration tasks requiring mobile robots to autonomously explore and gather information
in unknown or hazardous environments where human access may be difficult or dangerous. How-
ever, due to the resource-constrained nature of mobile robots, they are hindered from performing
long-term and large-scale tasks. In this paper, we propose an efficient multi-robot dense SLAM system
that utilizes a centralized structure to alleviate the computational and memory burdens on the agents
(i.e. mobile robots). To enable real-time dense mapping of the agent, we design a lightweight and
accurate dense mapping method. On the server, to find correct loop closure inliers, we design a novel
loop closure detection method based on both visual and dense geometric information. To correct the
drifted poses of the agents, we integrate the dense geometric information along with the trajectory
information into a multi-robot pose graph optimization problem. Experiments based on pre-recorded
datasets have demonstrated our system’s efficiency and accuracy. Real-world online deployment of
our system on the mobile vehicles achieved a dense mapping update rate of ∼14 frames per second
(fps), a onboard mapping RAM usage of ∼3.4%, and a bandwidth usage of ∼302 KB/s with a Jetson
Xavier NX.

Keywords: SLAM; lightweight system; centralized collaborative; TSDF; mobile robot; visual inertial
odometry

1. Introduction

Autonomous exploration enables robots to autonomously explore, discover, and gather
information in environments where direct human intervention may be impractical, un-
safe, or impossible. In an autonomous exploration task, Simultaneous Localization And
Mapping (SLAM) algorithms provide the necessary spatial awareness for the robot to
navigate and build a map of its surroundings in real-time, and they have been a focus
of robotics research over the past few decades [1–3]. Among them, visual-based SLAM
systems have become very popular due to their advantages of low weight, low power, low
cost, and the ability to provide rich information about the environment. These advantages
make visual-based systems highly suitable for resource-constrained platforms, such as
Automated Ground Vehicles (AGVs) and Unmanned Aerial Vehicles (UAVs), which are
ideal for autonomous exploration tasks due to their agility and small size.

Many successful visual-based SLAM systems represent the world by converting input
images into a set of feature points. This efficient process yields robust and real-time
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localization and mapping results [4,5]. Although feature-based SLAM systems demonstrate
centimeter-level localization accuracy, they map the world as a collection of 3D sparse
points. This insufficient representation limits their use for high-level tasks such as obstacle
avoidance and path planning. Truncated Signed Distance Function (TSDF) has recently
proven to be an effective visual-based implicit representation for constructing a more
geometrically complete environment [6], also demonstrating its great versatility in other
robotic applications [7,8].

Although TSDF-based dense SLAM systems for single robots have reached a cer-
tain level of maturity and robustness [1,9], they often encounter an unavoidable problem:
robots must operate on resource-constrained platforms. This limitation prevents robots
from operating for an extended period of time over larger areas, as the computational time,
memory footprint, and battery life are bounded by the resources of the robot. Aiming to
tackle this problem, multi-robot collaborative SLAM has become a solution. Multi-robot
collaborative SLAM systems deploy multiple robots in a large-scale environment, dividing
the scenario into smaller areas and allowing different robots to map distinct regions. This
not only alleviates the computation and memory pressure on a single robot but also en-
hances the efficiency and robustness of the mission through shared information. However,
the majority of existing multi-robot SLAM systems represent the world using 3D sparse
landmarks [10,11], with few addressing the challenge of collaborative dense SLAM. An-
other issue with existing works is their lack of practicality, as they often rely on pre-recorded
datasets for real-world simulations or employ heavyweight platforms to compensate for
computation time and memory storage. This hinders robots from effectively carrying out
real-world missions, such as search-and-rescue and cave exploration tasks, where resource-
constrained small-sized platforms are needed and factors like communication range and a
limited bandwidth must be taken into consideration.

To address the aforementioned problems, we propose an efficient and robust multi-
robot collaborative dense SLAM system. Inspired by CCM-SLAM [10], our system is
built under a centralized architecture, efficiently outsourcing computationally expensive
tasks from agents to a ground station (server) while ensuring that all tasks critical to the
autonomy of each agent are still run onboard. We extend the decentralized dense multi-
robot SLAM framework from Dubois et al. [12] to a centralized system by utilizing TSDF
submaps. Rather than directly aligning TSDF submaps to find loop closures as in [12], we
incorporate the visual-based place recognition method [13] along with TSDF submaps to
find correct loop closure inliers. For submap matching, different from the Iterative Closest
Point [14] (ICP)-based method proposed in [12], we adopt the lightweight correspondence-
free submap matching method proposed in the work of Voxgraph [9] to maintain global
consistency in real-time. In addition, to further ease the computation pressure on the agent,
we have designed a lightweight and accurate TSDF-based dense mapping method based
on the lightweight TSDF integration method proposed in the work of [15] and the non-
projective TSDF integraion method proposed in the work of [16]. Experiments with both
datasets and real-world scenarios demonstrate the efficiency, lightweightness, accuracy,
and robustness of our proposed system.

The main contributions of this work are as follows:

• We present a centralized collaborative dense mapping system based on TSDF submaps,
alleviating computation and memory pressure on mobile vehicles. Real-world experi-
ments show the applicability and robustness of our system.

• We provide a lightweight and accurate TSDF mapping method to enable real-time and
precise 3D reconstruction on resource-constrained mobile vehicles.

• We descriibe a robust and accurate loop closure detection method that rejects loop
closure outliers through a combination of keyframe-based and TSDF-based methods.

• We integrate a lightweight submap matching method [9] into a centralized multi-robot
pose graph optimization problem to enable real-time global consistency.
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2. Related Work
2.1. Dense Single-Robot SLAM

Dense SLAM systems have employed various map representations to construct a
more geometrically complete map compared to feature-based SLAM systems [4,5]. New-
combe et al. [17] proposed DTAM, a fully direct system that works with all the raw pixel
information and estimate depth values based on photometric errors. Engel et al. [18]
preformed a direct semidense reconstruction utilizing pixels with strong gradients (i.e.,
edges) along with keyframes. Whelan et al. [19] represented the world as a collection of
surfels through non-rigid surface deformations. Most recently, a neural network-based
3D reconstruction method, neural radiance field (NeRF) [20], has attracted significant at-
tention. NeRF-based SLAM systems [21,22] use pretrained or online-trained approaches
to enable detailed mapping results. While these systems observe the world with denser
representations, they lack the obstacle and free space information in the maps, which is
crucial for autonomous exploration tasks. In contrast, volumetric maps represent the world
as a collection of voxels, storing information about the occupied or free status within them.

TSDF-based implicit dense mapping is a volumetric mapping approach [23] that has
demonstrated compelling results recently [6]. Such representation has the ability to in-
crementally fuse noisy sensor data from a consumer-grade depth camera and provides
subvoxel resolutions to reconstruct a more accurate surface. Furthermore, to enable real-
time operations on low-grade robotic platforms, Oleynikova et al. [1] proposed Voxblox,
a systematic approach providing accurate real-time TSDF integration on CPU for relatively
large voxels. Based on Voxblox, Voxfield [16] uses a novel non-projective TSDF formula-
tion method to correct the projective signed distance error for each voxel from Voxblox.
However, both Voxblox [1] and Voxfield [16] update all the free-space voxels along every
ray in each frame, leading to redundant voxel updates, as different rays may intersect each
other. This redundant calculation made it challenging to deploy TSDF-based algorithms on
resource-constrained micro vehicles to achieve real-time performance.

2.2. Dense Multi-Robot SLAM

Existing dense multi-robot SLAM systems can be divided into two major categories:
decentralized or centralized. For decentralized systems, Schuster et al. [24] proposed a
multi-robot stereo-visual dense SLAM system based on pointcloud submaps. The sys-
tem’s global consistency is maintained by ICP alignment of each submap and pose graph
optimization. Similar to [24], Dubois et al. [12] used TSDF submaps to generate surface
polygonal meshes and extract point clouds from the meshes to perform ICP matching
to find loop closures. Based on the submap matching results, they also formulated a
pose graph optimization problem to maintain global consistency. Kimera-Multi [25] pro-
posed another decentralized system for metric semantic dense SLAM, extending Kimera’s
method [26] to a multi-robot version. Although the aforementioned decentralized systems
yielded great results, they inevitably added more computation and memory pressure to the
robots (e.g. loop closure detection, pose graph optimization).

Centralized systems seek to alleviate the aforementioned limitations by transferring
non-time-critical, memory-heavy, and computationally expensive processes to a central
server. Bartolomei et al. [27] proposed a centralized dense mapping system utilizing
external GPS information. The server collects keyframes and point clouds from each agent
and perform global pose graph optimization and global map fusion. However, it relies
on GPS information to coordinate each agent. CVIDS [28] is another centralized dense
mapping system. The agents send monocular images to the server, and the server performs
depth estimation and global TSDF fusion. However, it does not maintain a dense map on
the agent side, which prevents the agent from performing high-level tasks such as obstacle
avoidance. In this work, we extend the work of Dubois et al. [12] to a centralized system.
The agent performs lightweight TSDF map reconstruction and send the TSDF submaps
to the server. The server performs loop closure detection and lightweight pose graph
optimization based on keyframes, trajectories, and TSDF submaps.
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3. Methods
3.1. System Overview

The architecture of our proposed dense multi-robot SLAM system is shown in Figure 1.
We use a centralized multi-robot framework to ease the computation and memory pressure
of robotic agents by offloading non-time-critical, memory-heavy, and computationally
expensive tasks to the server while ensuring the basic autonomy of each agent. For basic
autonomy, each agent runs a real-time visual inertial odometry (VIO) module to estimate
its pose and simultaneously runs a TSDF mapping module to generate a dense map for
high-level tasks such as obstacle avoidance. Note that both the VIO module and TSDF
mapping module on board the agent only keep the memory of its vicinity. This not only
reduces the size of the bundle adjustment (BA) optimization in the VIO module but also
decreases the size of voxel updates in the TSDF mapping module. This process massively
reduce the memory and computational pressure on resource-constrained robotic agents.
Although the agent only keeps the memory of its vicinity, it continuously sends necessary
data (keyframes from the VIO module and TSDF submaps from the TSDF mapping module)
to the server to offload information, where the server acts as a bookkeeper to store all of the
information from each agent. Note that the agent’s autonomy is independent of the server,
because even in the case of a complete loss of connection to the server, the agent can still
run local VIO and the dense mapping module to ensure its autonomy.

Figure 1. Overview of the SLAM system architecture. Each robotic agent (e.g., a mobile robot) runs
real-time visual inertial odometry, maintaining a local TSDF map of limited size and a communication
module to send data to the server. The server performs non-time-critical, memory-heavy, and
computationally expensive tasks: map management, place recognition, pose graph optimization, and
map fusion.

In addition to bookkeeping in the server map stack, the server also runs place recog-
nition, global Pose Graph Optimization (PGO), and global map fusion modules. When
performing coordination, the server does not acknowledge any prior information of the
initial locations of agents. Each agent’s map in the server maintains a local coordinate frame
and is independent of each other. By continuously detecting overlapping areas (i.e., loop
closure detection) between agents in the place recognition module, the server identifies
correlations among agents and sends that constraint information to the global PGO module.
The global PGO module will then correct the drifted pose of each agent based on the
relative poses and TSDF submaps. After the global PGO, the local coordinate frames of the
agents will be fused into one global coordinate frame, and the maps corresponding to each
agent will be merged into one global map.

3.2. System Modules

The key modules of the proposed system shown in Figure 1 are described in detail below.

3.2.1. Local TSDF Mapping

For dense mapping, the agent processes incoming raw pointcloud measurements with
the associated poses provided by the VIO module [29] and incrementally builds a local
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voxel map of its vicinity. In order to compensate for the projective signed distance error
from raycasting [1], we use the non-projective signed distance [16] to improve the mapping
accuracy. The TSDF map is constructed using a set of spatially hashed voxels Vi with
predefined voxel size ν ∈ R+. Each voxel Vi has a global index vi ∈ Z3, and the center
position of each voxel Vi is represented by xi = νvi ∈ R3. In addition, each voxel Vi stores
the signed distance Di, the weight value Wi, and the normalized gradient gi ∈ R3.

To update the TSDF map, at each local frame k, we first need to cast a ray from the
sensor origin sk ∈ R3 to the measured surface point pj to compute the projective signed
distance at every voxel along this ray:

dp = sign
((

pj − sk
)
·
(
pj − xi

))∥∥pj − xi
∥∥ (1)

A key process to further compute the non-projective signed distance dnp based on
the projective signed distance dp is the computation of the normalized gradient of each
voxel gi.The gradient gi of each voxel is approximated by the surfacepoints normal vectors
{n}k ∈ R3. Utilizing the gradient gi information, the non-projective signed distance dnp
is computed using the geometric relationship between the ray, surface normal, and the
gradient. For more details, please refer to [16]. Finally, the voxels can be updated as follows:

Di ←
WiDi + wijkdnp

Wi + wijk
(2)

Wi ← min
(

Wi + wijk, Wmax

)
(3)

where we adopt the weight wijk definition as in [16], and the non-projective signed distance
dnp is truncated at a distance of 3ν.

Such incremental refinement ensures the local consistency of the TSDF submap,
and the grouped raycasting method, first proposed in [1] and adopted in [16], enables
real-time updating on CPU for relatively large voxels. However, the inherent process of
explicitly updating all the free-space voxels both in [1] and ref. [16] leads to a increased
TSDF computation time. This prevents the resource-constrained platforms from performing
real-time TSDF mapping. To update the free-space voxels more effectively, we terminate
the raycasting process early based on subvoxel-based points. This process is summarized
in Algorithm 1. There are two cases in which we terminate the raycasting process early.
In the first case, to reduce the density of the points in the voxel, we divide the voxel into
8 subvoxels. For each subvoxel, we only insert one point. Once the point is inserted,
we mark the subvoxel as occupied. The other point that has the same location with the
occupied subvoxel will be discarded. This subsampling process reduces the number of
points that need to be raycast, resulting in increased efficiency. In the second case, we
performed a ray collision check. For the non-occupied subvoxels, we cast a ray from the
point to the sensor origin. Before updating the voxels along this ray, we count how many
rays have passed through each voxel. If the voxel has been passed through more than three
times, we terminate the ray and discard the other voxels along this ray. Note that because
we performed the raycasting from the point to the sensor origin, the rays will draw together
near the sensor origin, and before executing the ray collision check, the vast majority of the
free-space voxels will be updated at least once. By combining these two checking processes,
the computation time of TSDF is greatly reduced, enabling real-time dense TSDF mapping
on resource-constrained platforms.
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Algorithm 1 Lightweight TSDF Integration

Require: Sensor origin sk, pointcloud of current scan p, voxel indexes v
Ensure: Updated voxel state

1: for each point pj in p do
2: SEARCHFORVOXELINDEX(pj, vj)
3: if ISSUBVOXELOCCUPIED(vj) then
4: continue
5: end if
6: SETSUBVOXELASOCCUPIED(vj)
7: CASTRAYFROMPOINTTOORIGIN(sk, pj, v)
8: for each voxel index vi along the ray in v do
9: if VOXELGOTRAYCOLLISION(vi) then

10: break
11: end if
12: SETVOXELRAYCOLLISIONSTATUS(vi)
13: UPDATETSDFVOXEL(vi)
14: end for
15: end for

3.2.2. Loop Closure Detection

The inter-robot localization method is different from [12], which only used the SDF
submaps to perform a time-consuming ICP-based loop detection. We first perform fast
loop detection by utilizing the visual information from the keyframes in the VIO module
to compute an initial transformation Tij between agent i and agent j. Then, based on the
initial transformation, we utilize the dense geometric information of SDF submaps to reject
loop closure outliers.

(1) Keyframe-based detection: By offloading the keyframe information from the agent
to the server with a relatively low bandwidth (see Section 4.3), the server is able to receive
the visual information from each agent in real time with a low information loss rate. Once
the keyframes are received, we perform visual-based loop closure detection, similar to [4],
using the bag-of-words place recognition approach DBoW2 [13]. A single database is shared
among all agents to enable cross-robot loop closure detection. Loop closure candidates Q
are first detected by querying the database, and we find the best N candidates in Q via
descriptor-based 2D–2D brute force matching. For matched candidates, we check their
associated 3D landmarks, which are reprojected from the candidate frame to the query
frame, and vice versa. If sufficient inliers are found via the 3D–2D RANSAC process,
we perform an optimization for the corresponding relative pose Tij by minimizing the
reprojection error.

(2) Signed Distance Function (SDF)-based check: After the keyframe-based loop
closure detection, we obtain an initial transformation Tij between agent i and agent j.
By querying the timestamps of the loop closure, we can find the corresponding TSDF
submaps Si and Sj. Before performing the SDF-based outlier rejection, we need to compute
the submap’s isosurface points PS by using the marching cubes algorithm [30] and com-
puting the submap’s Euclidean Signed Distance Function (ESDF) ϕs by propagating the
Euclidian distances outside the TSDF, as described in [1].

In each TSDF submap Si and Sj, the marching cubes algorithm is used to extract points
PSi and PSj on the isosurface (i.e., zero level set). The isosurface is defined as follows:

ϕ(x, y, z) = 0 (4)

where ϕ(x, y, z) represents the TSDF value at a given voxel position (x, y, z). The marching
cubes algorithm traverses the voxel grid, checking whether the TSDF values of neighboring
voxels cross the isosurface ϕ = 0, then it generates corresponding triangle fragments at the
isosurface to form the point sets PSi and PSj .
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During loop detection, we align the isosurfaces of the two submaps and evaluate the
alignment error. Suppose we have an initial transformation matrix Tij that transforms the
isosurface point set PSi to the coordinate frame of Sj, resulting in a transformed point set:

P′Si
= TijPSi (5)

Then, we can calculate the TSDF value ϕSj(p) for each transformed point p ∈ P′Si
in Sj,

forming the SDF error metric:

dSDF =
1
|P′Si
| ∑

p∈P′Si

|ϕSj(p)| (6)

Ideally, if the loop detection is successful, the aligned point set P′Si
should coincide

with the geometry of PSj , making the SDF error dSDF close to zero. To increase robustness,
we further introduce a weighted SDF error, taking into account the voxel weights w(p):

dweighted =
∑p∈P′Si

w(p)|ϕSj(p)|

∑p∈P′Si
w(p)

(7)

If the weighted SDF error exceeds a preset threshold, this loop detection is deemed
invalid and is discarded. Otherwise, the loop detection is considered valid.

These two pieces of information are calculated once the server receives the submaps.
For a perfect loop closure Tij, the isosuface points of Si should always lie on the zero-level
set of Sj, and vice versa. Based on this assumption, we formulate the SDF-based outlier
rejection problem as follows:

d̄iso =
1
N

(
diso,Si

(
PSj , Tij

)
+ diso,Sj

(
PSi , T−1

ij

))
(8)

where diso, Si is the sum of weighted SDF values, and N is the sum of all weights.

diso,Si

(
PSj , Tij

)
= ∑

piso∈PSj

wsi

(
Tij piso

)
ΦSi

(
Tij piso

)
(9)

N = ∑
piso∈PSj

wsi

(
Tij piso

)
+ ∑

piso∈PSi

wsj

(
T−1

ij piso

)
(10)

We calculate the average distance d̄iso based on the weighted SDF value ΦS of the
transformed isosurface points PS. For a minimum fraction of points both in PSi and PSj,
the average distance d̄iso should be close to 0. Otherwise, we reject the loop closure Tij and
consider it an outlier.

3.2.3. Global Pose Graph Optimization

In order to maintain global consistency across different agents, we perform global
pose graph optimization to correct for the drifted poses of the agents. Different from [12],
which only performs pose graph optimization based on the relative pose information,
we incorporate the dense geometric information of SDF submaps by performing submap
matching to further improve the system’s global consistency. Although [12] utilized the SDF
submap matching method, it only used it to find loop closures, and the submap matching
method is based the time-consuming ICP-based method. Contrary to this [12], we adopt
the lightweight correspondence-free submap matching method, as proposed in [9].

On the agent, based on the assumption that the pose estimation errors from the VIO
module accumulate slowly over time, we build a series of submaps {Si}N

i=1 at a fixed
frequency, and each submap stores the sensor trajectory. Once a submap is sent to the
server, we delete it in the agent’s memory and begin to generate the next new submap. We
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define the pose in the middle trajectory of the submap as the submap pose TWSi , and we
optimize the submap poses {TWSi}N

i=1 in the PGO module on the server. We solve the
nonlinear least squares minimization problem as follows:

arg min
χ

∑
∥∥∥ei,j

rel(TWSi , TWSj)
∥∥∥2

Σrel
+ ∑

∥∥∥ei,j
reg(TWSi , TWSj)

∥∥∥2

σreg
(11)

where
χ = {TWS1 , TWS2 , . . . , TWSN} (12)

are the submap poses. ∥erel∥2
Σrel

and
∥∥ereg

∥∥2
σreg

stand for the relative constraints and the
correspondence-free registration constraints. Based on the relative pose information, the rel-
ative pose constraints can be categorized as odometry constraints and loop closure con-
straints. The structure of the pose graph across different agents is depicted in Figure 2.

Figure 2. Structure of the global pose graph: the red circles indicate submap nodes (poses), the black
lines indicate odometry constraints, the green lines indicate registration constraints, and the red lines
indicate loop closure constraints.

(1) Relative pose constraints: The odometry constraints are constructed for each agent’s
consecutive submaps, and the deviation is defined by their odometry-estimated relative
poses. Thus, for a consecutive submap pair Si and Si+1, the odometry residuals can be
formulated as follows:

ei,i+1
rel-odom (TWSi , TWSi+1) = log

(
T̂−1

SiSi+1 T−1
WSi TWSi+1

)
(13)

where
T̂SiSi+1 = TCkCk+1 TCk+1Ck+2 . . . TCk+N−1Ck+N (14)

is the estimated submap relative transformation, which is constructed through the concate-
nation of VIO poses joined by the sensor frames {Cl}k+N

l=k .
The construction of the loop closure constraints follows the same concept as the

odometry constraints. After receiving the loop closure inliers, we obtain an estimated
transformation T̂CmCn from the sensor frame Cn to the sensor frame Cm. By querying the
sensor timestamps at Cm and Cn, we can find the corresponding submaps Si and Sj that
contain the sensor frames Cm and Cn. Thus, we have:

ei,j
rel_loop

(
TWSi , TWSj

)
= log

(
T̂CmCn

(
TWSj TSjCn

)−1
(TWSi TSiCm)

)
(15)

where TSiCm and TSjCn are the poses of the sensor frames Cm and Cn in their corresponding
submap frames.

(2) Registration constraints: Utilizing the dense geometric information of the SDF
submaps can further enhance the system’s consistency. To perform correspondence-free
submap matching, we first need to detect overlapping pairs of submaps using the Axis-
Aligned Bounding Box (AABB) (see [31]). Based on the overlapping pair Si and Sj, we
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transform the isosurface points of Si to the submap frame of Sj. For a perfect alignment,
the isosurface points pk

Si
of Si should always lie on the isosurface of Sj. The distance

between pk
Si

to the isosurface of Sj can be read by the ESDF ΦS of submap Sj. Thus, we can
formulate the registration constraints as follows:

ei,j
reg(TWSi , TWSj) =

NSi

∑
k=0

rSiSj

(
pk

Si
, TSjSi

)2
(16)

where NSi is the total number of isosurface points in submap Si, and the registration
residuals are as follows:

rSiSj(pk
Si

, TSjSi ) = ΦSi (pk
Si
)−ΦSj(TSjSi pk

Si
)

= −ΦSj(TSjSi pk
Si
)

(17)

where ΦSi (pk
Si
) = 0 for all isosurface points pk

Si
on Si, since they lie on the isosurface of

themselves, and TSjSi can be represented by the submap poses:

TSjSi = T−1
WSj TWSi (18)

The computation time for optimization based on registration constraints is propor-
tional to the number of points on the isosurfaces. The pose graph optimization on the
server side will be computationally expensive with increases in the numbers of submaps.
To enable real-time performance, we adopt the lightweight optimization strategy based on
the subsampling of isosurface points, as proposed in [9]. The subsampling mechanism is
proportional to the weight of the isosurface points, which is computed by interpolating the
weights of the voxels near the point. As in [9], we set the subsampling rate to 5% to balance
accuracy and runtime.

4. Results

In this section, our aim is to validate the efficiency, accuracy, and applicability of the
proposed dense multi-robot SLAM system under the centralized architecture.

4.1. Dense TSDF Mapping

For the evaluation of the dense mapping performance, we utilize two visual-based
datasets: the Cow&Lady Dataset [1] and the EuRoC Dataset [2]. Note that since the [2] only
provides stereo images, we employ the semi-global matching method [32] to generate the
dense pointclouds. The evaluation results are illustrated in Figure 3, and the evaluations are
conducted on a PC with an Intel Core i9-12900K CPU. For evaluations on the TSDF mapping
performance, we measure the per-frame TSDF update time and the TSDF mapping accuracy.
As shown in the second column of Figure 3, our method’s TSDF update time outperforms
Voxblox [1] and Voxfield [16], especially for the small voxel sizes. The significant reduction
in the TSDF update time is attributed to the early termination of raycasting, as discussed in
Section 3.2.1. In terms of the TSDF mapping accuracy, we adopt the non-projective distance
proposed in Voxfield to compensate for the projective distance error in Voxblox. As shown
in the third column of Figure 3, our method achieves the highest accuracy. While we adopt
the same method as Voxfield to increase the mapping accuracy, the grouped raycasting
method utilized by Voxfield merges all points in a voxel to a single point, resulting in the
loss of more information compared to our subvoxel-based division process, where each
voxel contains eight points.

Furthermore, we assess the ESDF error generated by the TSDF map, given that the
ESDF map is used in loop closure detection and global pose graph optimization modules
on the server side. Note that we adopt the TSDF propagation method to generate the ESDF
map, as proposed in Voxblox. This method directly generates ESDF values outside the
truncated voxels. As shown in the last column of Figure 3, our ESDF map achieves better
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accuracy. This is due to the fact that the ESDF map is generated based on the TSDF value.
If the TSDF value has a higher error, this error will accumulate through the propagation
process, resulting in a higher ESDF error. As a result, this will affect the accuracy of selecting
the correct loop closures (see Section 3.2.2) and the accuracy of registration constraints in
the PGO module (see Section 3.2.3).

Figure 3. Comparisons of the TSDF mapping performance in terms of TSDF update time, TSDF error,
and ESDF error utilizing the Cow&Lady Dataset [1] and the EuRoC Dataset [2]. We compare each
method under different voxel sizes.

4.2. Multi-Robot Dense SLAM

After the evaluation of the single agent’s TSDF mapping performance, we evaluate
the multi-robot dense SLAM performance of our system. As each pointcloud is attached
to each camera frame, the pose of each frame reflects the quality of dense mapping per-
formance. Thus, we evaluate our system’s estimated trajectory accuracy. For comparison,
we compare our system against the state-of-the-art VIO frameworks, VINS-Mono [4] and
VINS-Fusion [29], as shown in Table 1. Note that those VIO frameworks do not have the
support of the server. In each experiment, we use two sequences of the EuRoC dataset [2]
to run on agent 1 and agent 2. The VIO module of our system is VINS-Fusion, and the
pointclouds are generated via stereo matching [32]. The voxel size is set to 10 cm. As shown
in Table 2, our system exhibits better performance in terms of Absolute Trajectory Error
(ATE) compared to VINS-Mono and VINS-Fusion in most cases, and this results in a quali-
tative reconstruction, as shown in Figure 4. These results demonstrate that our system can
efficiently correct the trajectory drift of the agents through the shared information, thus
resulting in a better reconstruction of the observed environment.

Table 1. Trajectory ATE comparison.

Seq. ATE (m) VINS-Mono VINS-Fusion Ours

MH_01 & MH_02

RMSE 0.221 0.247 0.135
Median 0.181 0.260 0.125
RMSE 0.178 0.185 0.117

Median 0.102 0.154 0.106

MH_01 & MH_03

RMSE 0.221 0.247 0.104
Median 0.181 0.260 0.094
RMSE 0.228 0.298 0.132

Median 0.176 0.231 0.095

MH_02 & MH_03

RMSE 0.178 0.185 0.097
Median 0.102 0.154 0.063
RMSE 0.227 0.298 0.121

Median 0.176 0.239 0.081
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Table 1. Cont.

Seq. ATE (m) VINS-Mono VINS-Fusion Ours

V1_01 & V1_02

RMSE 0.077 0.117 0.073
Median 0.058 0.109 0.069
RMSE 0.090 0.102 0.079

Median 0.087 0.087 0.073

V2_01 & V2_02

RMSE 0.094 0.117 0.084
Median 0.070 0.069 0.079
RMSE 0.118 0.119 0.089

Median 0.077 0.092 0.072

Table 2. Hardware setup for real-world online deployment.

Platform Type Characteristics Sensors

Agent 1 Jetson Xavier NX 1.4 GHz × 6 and 8 GB RAM

ZED 2 Camera (Stereolabs, San
Francisco, CA, USA) and
WitMotion HWT605 IMU
(WitMotion Shenzhen Co.,

Ltd., Shenzhen, China)

Agent 2 Jetson Xavier NX 1.4 GHz × 6 and 8 GB RAM

ZED 2 Camera (Stereolabs, San
Francisco, CA, USA) and
WitMotion HWT605 IMU
(WitMotion Shenzhen Co.,

Ltd., Shenzhen, China)

Server HP Omen 9 5.8 GHz × 24 and 32 GB RAM -

Router Mi AX6000 - -

Figure 4. Collaborative dense mapping results of two agents utilizing the EuRoC Dataset [2]. (a) Dense
mapping result of agent 1 in MH_01 sequence, (b) dense mapping result of agent 2 in MH_03 sequence,
(c) merged global map of MH_01 and MH_03.
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4.3. Real-World Experiments

To evaluate the proposed system’s applicability, we conducted real-world deployment.
The real-world system is depicted in Figure 5, comprising two resource-constrained robots
and one central server. The hardware setup of our system is shown in Table 2. The VIO
module of our system is the GPU version of VINS-Fusion [4,29,33,34], which alleviates the
computation pressure on the CPU [35]. The voxel size is set to 5 cm, real environments
have many more details, and our voxel size of 5 cm provides much higher accuracy. The
communication between the agent and server is through a wireless network. The submap
generation and sending frequency is 5 s. In our system design, we adopted a segmented
buffering mechanism to alleviate the bandwidth pressure caused by instantaneous trans-
mission peaks. Specifically, we divided the submap data into multiple small chunks of fixed
size and transmitted them sequentially, ensuring that the data volume for each transmission
remained stable. This approach smooths out data flow, even when a large data volume
needs to be sent within each 5-s transmission cycle, thereby avoiding bandwidth peaks.
Additionally, the system’s UDP transmission protocol was optimized to ensure that submap
data are not lost or delayed during transmission, enhancing the stability and efficiency of
data transfer.

Figure 5. Real-world centralized collaborative multi-robot dense SLAM system. (a) The agent, which
is a resource-constrained mobile robot. (b) The whole system with two agents and one server.

We performed the evaluations in the same room of an office building, and the col-
laborative dense SLAM results are shown in Figures 6 and 7, respectively. The real-time
onboard experimental results for the mobile robot are shown in Tables 3 and 4, respectively.
Thanks to the lightweight TSDF mapping method and the submap generation and deletion
method on the agent side, the resource-constrained mobile robot was able to perform
real-time dense SLAM in a large scenario with relatively low memory storage and a low
bandwidth. Our system leverages the decentralized communication capabilities of ROS
2, which uses the Data Distribution Service (DDS) protocol for peer-to-peer communica-
tion and distributed node discovery. This enhances the robustness and flexibility of our
multi-robot system in dynamic environments.

Table 3. Real-world online mobile robot experimental results in the office building.

TSDF Mapping
Mean Update Time

TSDF Map Onboard
RAM Usage

Mean Keyframe
Bandwidth

TSDF Submaps
Mean Bandwidth

73.95 ms 3.40% 49.25 KB/s 253.14 KB/s

Table 4. Real-world online mobile robot experimental results in the indoor room.

TSDF Mapping
Mean Update Time

TSDF Map Onboard
RAM Usage

Mean Keyframe
Bandwidth

TSDF Submaps
Mean Bandwidth

73.86 ms 3.37% 49.23 KB/s 253.09 KB/s
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Figure 6. Online collaborative SLAM with two agents (mobile robots) utilizing a centralized archi-
tecture in a large office building. The above two pictures depict the SLAM results of a single agent.
The right picture illustrates the collaborative SLAM result; the yellow line and the green line represent
the trajectories of Agent 1 and Agent 2.

Figure 7. Online collaborative SLAM with two agents (mobile robots) in the same indoor room
with obstacles. The yellow line and the green line represent the trajectories of Agent 1 and Agent 2.

5. Conclusions

In this paper, we propose an efficient centralized collaborative multi-robot dense
SLAM system to reduce the computation and memory pressure on resource-constrained
mobile robots. To enable real-time dense mapping performance for the agent, we propose a
lightweight and accurate TSDF mapping method. On the server, we correlate and optimize
the drifted poses of the agents based on both the visual and dense geometric information
of the environment. Experiments conducted on pre-recorded datasets demonstrate the
efficiency and accuracy of our SLAM system. Finally, the real-world deployment on the
mobile robots shows the robustness and applicability of our proposed system.

For future work, we plan to add the path planning module to the agents to enable
their navigation capabilities. Furthermore, we plan to develop a centralized multi-robot
global planner on the server side to improve the system’s navigation efficiency. Moreover,
we intend to expand the system by incorporating more agents to enhance overall efficiency.
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