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Abstract: The semiconductor industry increasingly relies on high aspect ratio etching facilitated
by Amorphous Carbon Layer (ACL) masks for advanced 3D-NAND and DRAM technologies.
However, carbon contamination in ACL deposition chambers necessitates effective fluorine-based
plasma cleaning. This study employs a high-temperature inductively coupled plasma (ICP) system
and Time-of-Flight Mass Spectrometry (ToF-MS) to analyze gas species variations under different
process conditions. We applied Principal Component Analysis (PCA) and Non-negative Matrix
Factorization (NMF) to identify key gas species, and used the First-Order Plus Dead Time (FOPDT)
model to quantify dynamic changes in gas signals. Our analysis revealed the formation of COF3

at high gas temperatures and plasma power levels, indicating the presence of additional reaction
pathways under these conditions. This study provides a comprehensive understanding of high-
temperature plasma interactions and suggests new strategies for optimizing ACL processes in
semiconductor manufacturing.

Keywords: fluorine-based plasma; amorphous carbon layer; gas temperature; time-of-flight mass
spectrometry (ToF-MS); principal component analysis (PCA); non-negative matrix factorization
(NMF); first-order plus dead time (FOPDT) model; process optimization

1. Introduction

The rapid advancement of the semiconductor industry has necessitated increasingly
complex and delicate manufacturing processes, particularly in the etching processes of
3D-NAND and DRAM technologies. High aspect ratio etching technology has become
crucial, with the Amorphous Carbon Layer (ACL) widely utilized as a hard mask due to its
excellent etch resistance [1,2]. This enables fine patterning of high aspect ratio structures,
with ACL typically deposited using Plasma Enhanced Chemical Vapor Deposition (PECVD)
at temperatures exceeding 400 °C [3–6]. The deposition process adjusts the sp2 and sp3 bond
ratios by changing the temperature to control material properties, such as etch resistance,
and can be conducted at temperatures up to 650 °C [7,8].

However, ACL deposition chambers are prone to carbon particle contamination, requir-
ing periodic cleaning with fluorine-based plasmas to maintain uniform process conditions.
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During high-temperature plasma deposition and cleaning processes, the equipment com-
ponents face extreme thermal and chemical stresses, demanding high performance and
durability from the materials used for the inner walls of ACL deposition chambers and high-
temperature ceramic heaters [9]. Despite the significance of high-temperature conditions in
ACL deposition and chamber cleaning processes, a comprehensive evaluation of plasma
environment changes under high temperatures has not been conducted. Existing research
on high-temperature gas plasmas has primarily focused on the study of magnetogasdy-
namics at ultra-high temperatures [10,11] or the condensation and growth of materials [12],
with little emphasis on semiconductor processing applications. Only a limited number
of simulation studies have addressed the behavior of semiconductor process gases under
such conditions [13]. Although techniques such as electron density measurements using
resonant probes in high-temperature gases have been explored [14–16], these methods
have limitations when applied to complex plasma chemistries involving etching gases.
Specifically, in environments where reactive radicals are present, conventional diagnostics
struggle to accurately capture the density and distribution of these species due to the high
reactivity and short-lived nature of radicals. Our research addresses this gap by providing
experimental data that directly measure the changes occurring in real semiconductor pro-
cess environments, offering insights that can be applied to optimize plasma processes for
high-temperature applications.

The absence of experimental data on high-temperature plasma behavior, particularly
in ACL deposition and cleaning processes, presents a challenge for process development.
The complex interactions between plasma characteristics and process variables cannot
be fully understood, making process optimization reliant on statistical approaches that
treat the plasma chamber as a black box. This limitation hinders the ability to effectively
optimize and control ACL processes in different equipment or operating environments.
Therefore, obtaining precise measurements of internal plasma variables, such as radicals
and gas species densities, in response to changes in process conditions is crucial. Such
data are necessary for achieving more effective and adaptable process development in
ACL applications.

Among these parameters, monitoring fluorine (F) is particularly important due to
its role as a highly reactive etching agent widely used in the semiconductor industry [17].
However, understanding the generation and behavior of F radicals in the etching plasma
chamber remains challenging. The quantitative analysis of fluorine is particularly difficult
due to its high reactivity, elevated ionization potential (17.4 eV), and the lack of prominent
spectral lines in the visible spectrum [18]. Furthermore, its low ionization efficiency in mass
spectrometric systems results in weak signal intensities, making accurate detection even
more complex [19,20].

The transient nature of F radicals presents additional obstacles for precise quantifica-
tion and real-time monitoring. Due to their high reactivity, F radicals rapidly recombine,
interact with other plasma species, or collide with the chamber walls, resulting in a substan-
tial reduction in their concentration within tens of milliseconds [21,22]. This rapid decay
continues as the gas flows through the interface between the processing chamber and the
measurement equipment, continuously depleting the F-radical concentration. As a result,
accurately measuring and detecting F radicals in real-time remains a significant challenge
for process control and optimization.

To overcome these limitations, we leveraged the advantage of Time-of-Flight Mass
Spectrometry (ToF-MS), which allows for the parallel collection of signals from all gas
species. To effectively analyze the collected signals, we applied Principal Component Anal-
ysis (PCA) to distinguish key elements, focusing on the variations in fluorine-containing
species to estimate the F-radical concentration. By employing this methodology, we ob-
tained a comprehensive profile of the plasma environment and accurately described the
interactions and dynamics of fluorine–carbon species under various temperature condi-
tions. For this purpose, we developed a high-temperature inductively coupled plasma (ICP)
system integrated with ToF-MS. This analytical approach not only reveals the complex
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dynamics of F radicals but also provides insights that can significantly enhance process
optimization and control strategies.

Through additional PCA and clustering of the selected key gas species, we visualized
the complex multidimensional data and identified key variables and their interactions. This
method provided a clearer understanding of the plasma process environment and enabled
the effective interpretation of fluorine-containing species’ behavior.

2. Experimental Setup and Data Collection

Figure 1 illustrates a schematic diagram of the entire system used for collecting and
analyzing gas species data based on process variables. A gas mixture of CF4/O2/Ar
at a 2:2:1 ratio was introduced into a vacuum chamber to create a fluorocarbon mixed
gas environment, with the process pressure maintained at 2 mTorr. To generate plasma,
a 13.56 MHz power source was supplied to an ICP coil, and a hot-wall heater was employed
to heat the chamber for a high-temperature gas environment. To ensure the formation of
plasma at the appropriate position within the chamber, an electrically grounded chuck was
installed inside the heater via vacuum feedthroughs. Downstream of the chamber, a gas
collection line was branched off from the main pump line and connected to the ToF-MS
system. This gas sampling line was maintained at 100 °C using heating tape to prevent
condensation or deposition of gas species. Inside the ToF-MS, dry pumps were utilized to
draw in the process gas from the chamber. Gas species quantities were measured using
ToF-MS while the ICP plasma power varied from 100 W to 900 W at different temperature
conditions (20 °C, 200 °C, 400 °C, and 600 °C). Each experiment was conducted after the
chamber temperature had sufficiently stabilized to match the set experimental conditions.
ToF-MS ionizes gases through electron impact and then accelerates the ionized gases using
an electric field, allowing for the parallel measurement of each gas species based on their
mass-to-charge ratio.

Figure 1. Schematic illustration of the experimental setup and data analysis workflow.

This principle allows ToF-MS to accurately measure the relative amounts of different
gas species during the process. Changes in ToF-MS signals over time, following the
application of plasma power, were analyzed using a First-Order Plus Dead Time (FOPDT)
model and regression analysis to calculate the variations in each gas species. This method
provides precise insights into the dynamic behavior of gas species in response to changes
in process conditions.

3. Data Analysis Methodology
3.1. First-Order Plus Dead Time (FOPDT) Model

The FOPDT model is widely used in process control and systems analysis to represent
the dynamic behavior of systems [23,24]. This model is particularly useful for understand-
ing the time-dependent changes in process variables, such as gas species signal intensities,
in response to changes in input variables such as power or temperature.

The FOPDT model captures the essential dynamics of a system using three main
parameters: gain (K), time constant (τ), and dead time (θ). Gain (K) represents the system’s
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steady-state response to a unit change in input. The time constant (τ) indicates how quickly
the system responds to changes, defining the speed of the system’s response. Dead time (θ)
is the delay between an input change and the start of the system’s response. The standard
form of the FOPDT model is given by the following transfer function:

G(s) =
Y(s)
X(s)

=
Ke−θs

τs + 1
(1)

where G(s) is the transfer function of the system, Y(s) is the Laplace transform of the
output, X(s) is the Laplace transform of the input, and s is the complex frequency variable.
In our study, we maintained a constant temperature and gas flow while applying a set
ICP plasma power, thus using a unit step function to represent the changes in the gas
species. Given that the system’s input X(s) is a unit step function, by applying the inverse
Laplace transform to the transfer function, we obtain the time-domain equation for the
FOPDT model:

y(t) = K
(

1− e−
t−θ

τ

)
u(t− θ) (2)

where y(t) is the system output (ToF-MS signal intensity), u(t− θ) is the step input function
delayed by the dead time θ, and t is time. The model simplifies complex dynamics into key
parameters, making it easier to interpret the system’s behavior without the need for overly
complex models.

The FOPDT model is particularly suitable for analyzing changes in ICP plasma power
before and after application due to its ability to account for gain (K), which quantifies the
sensitivity of ToF-MS signals to power changes, simplifying complex dynamics into key
parameters for easier analysis. Additionally, the model accounts for dead time (θ), which
represents the delay between power application and the observable ToF-MS response,
and the time constant (τ), which indicates how quickly the ToF-MS signal stabilizes. How-
ever, in our experiment, the gain (K) was of primary importance for quantitative analysis.
Dead time (θ) and time constant (τ) were considered in the regression fitting process due
to potential errors from unavoidable dead volumes in the interface between the plasma
chamber and the ToF-MS system.

To apply the FOPDT model, follow these steps: Record the ToF-MS signals of gas
species intensities over time while maintaining a set ICP power, constant temperature,
and stable gas flow. Identify the initial response time and the steady-state change in gas
species signal intensities. Utilize regression analysis with the time-domain equation for the
FOPDT model to estimate the parameters (K, τ, and θ). Validate the model by comparing
its predicted response to the actual ToF-MS data. This method allowed for a precise under-
standing of the dynamic behavior of gas species signal intensities in response to changes in
ICP plasma power, demonstrating robustness even in the presence of dead volume.

3.2. Principal Component Analysis (PCA)

PCA is a statistical method used for reducing the dimensionality of large datasets
while preserving the variability present in the data. This technique transforms original
variables into a new set of uncorrelated variables called principal components, ordered
by the amount of variance they capture from the data [25]. PCA is particularly useful in
simplifying complex datasets and highlighting their underlying structure.

In our experiment, PCA was applied for two main purposes using data collected
from ToF-MS. Firstly, we used the absolute values of the principal component loadings to
select the key gas species. This method is effective in identifying the primary gas species
that contribute the most to the overall variability of the data, significantly reducing the
data volume and consequently lowering monitoring costs [26]. Moreover, this approach
offers flexibility for application to other processes as well. Secondly, PCA was employed
to visualize the multidimensional process gain variable, which includes information on
different gases, in a 2D plane. This visualization aids in understanding the relationships and
variations between different gas species under various temperature and ICP plasma power
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conditions. By reducing the dataset’s complexity and focusing on the most influential
variables, PCA enables a more efficient and insightful analysis of the chemical reactions
occurring in the plasma.

We utilized ToF-MS data collected in parallel to identify key signals using the absolute
value of the principal component loadings. The dataset is structured such that the columns
represent different gas signals collected based on their molecular weights (m) and the rows
represent time points. This forms a data matrix X:

X =


x11 x12 · · · x1M
x21 x22 · · · x2M

...
...

. . .
...

xT1 xT2 · · · xTM

 (3)

where T is the number of time points and M is the total number of gas signals. We
performed PCA without standardization because each column represents signal strength for
different gases, with consistent units and ranges. The absolute magnitude of signal strength
reflects the amount of chemical reaction, and standardizing would obscure important
differences between gases and exaggerate differences for those that did not participate
in the chemical reactions. Thus, not standardizing preserves these significant inherent
differences. The covariance matrix C is calculated as follows:

C =
1

T − 1
XTX (4)

The covariance matrix C captures the linear relationships between the gas species.
The eigenvalues and eigenvectors of C are then calculated. The eigenvectors (vi) repre-
sent the principal components, while the eigenvalues (λi) indicate the amount of variance
explained by each principal component. These are obtained by solving the characteris-
tic equation:

Cvi = λivi (5)

where
vi =

[
v1i v2i · · · vmi · · · vMi

]T (6)

The principal components are ranked based on their eigenvalues, and the top com-
ponents that explain the majority of the variance are selected. The absolute values of the
principal component loadings are used to identify the most significant variables. The con-
tribution of the m-th gas species signal to the i-th principal component was given by
the absolute value of the loading |lmi|. The loadings are related to the eigenvectors by
the equation

|lmi| = |vmi|
√

λi (7)

where vmi is the m-th species of the i-th eigenvector and λi is the i-th eigenvalue. To define
the overall importance Im of each gas species, we sum the contributions of that signal across
all principal components. This is given by

IPCA
m =

k

∑
i=1
|lmi| =

k

∑
i=1
|vmi|

√
λi (8)

where IPCA
m is the importance of the m-th gas species, i is the index of the principal com-

ponents, k is the total number of principal components considered, and λi is the i-th
eigenvalue. The relative PCA importance RPCA

m of each gas species is then defined as the
importance of the gas species divided by the sum of the importances of all gas species:

RPCA
m =

IPCA
m

∑M
m=1 IPCA

m
(9)
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This analysis provides insights into the key gas species that contribute the most to the
overall variance in the data, enabling a more focused and effective analysis of the plasma
process. In the previous section, we calculated the gain (K) for each gas using the FOPDT
model to effectively analyze variations in key process gases under different temperature
and ICP power conditions. To visualize and analyze these gain values in a 2D plane, we
again performed PCA, where each column represents a key gas and each row corresponds
to a process variable. Following the above steps, we calculated the covariance matrix,
eigenvalues, and eigenvectors.

The principal component loadings are examined to identify significant factors affecting
the process. The results help optimize the plasma process by focusing on the key parame-
ters identified by PCA. The two principal components that explained the most variance
were selected for 2D visualization and analyzed to interpret the underlying patterns and
relationships among the process parameters. Applying PCA to the plasma process data
effectively reduced the dimensionality of the dataset while preserving the most important
information. This analysis provides insight into the critical parameters that influence
process results, enabling better control and optimization of plasma processing.

3.3. Non-Negative Matrix Factorization (NMF)

NMF is another dimensionality reduction technique, particularly useful for inter-
preting complex datasets with non-negative constraints [27]. Unlike PCA, which uses
eigenvectors and eigenvalues to reduce dimensionality, NMF decomposes the original
matrix into two lower-dimensional matrices with non-negative elements.

Given the data matrix X, NMF seeks to approximate it by the product of two matrices,
W and H:

X ≈ WH (10)

Here, W is a t × k matrix representing the basis vectors and H is a k × m matrix
representing the coefficients. The factorization aims to minimize the reconstruction error,
often measured by the Frobenius norm:

min
W,H
∥X−WH∥F (11)

where

∥X−WH∥F =

√√√√ T

∑
i=1

M

∑
j=1

(xij − (WH)ij)2 (12)

The NMF process begins with the initialization of W and H with non-negative values.
Iteratively, W and H are updated to reduce the reconstruction error using the following
multiplicative update rules:

H← H ◦ WTX
WTWH

(13)

W← W ◦ XHT

WHHT (14)

Here, ◦ denotes element-wise multiplication, and the divisions are also element-wise.
These updates are repeated until convergence, typically when the change in reconstruction
error falls below a threshold.

The basis vectors in W correspond to the key signals (similar to principal components
in PCA), and the coefficients in H represent the contributions of these key signals to the
original data. The matrix H captures how much each basis vector (key signal) contributes
to each original gas signal, reflecting the relative importance of the gas species.

In the fluorocarbon plasma process, the gases entering the chamber were maintained
at a constant level. When ICP plasma power is applied to the chamber, the gases interact
and undergo chemical reactions, resulting in changes in the amounts of existing gas species
or the creation of new ones. These changes are monitored by ToF-MS, and the data obtained
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are inherently non-negative, making them particularly suitable for NMF without the need
of additional preprocessing.

In the NMF framework, gas species whose abundances change significantly due
to plasma interactions have larger coefficients in the matrix H. The basis vectors in W
represent underlying gas behavior patterns, and the coefficients in H indicate the strength
of each gas signal’s contribution to these patterns. Consequently, gas species exhibiting
greater alterations are identified by larger coefficients in H, thereby emphasizing their
significance. To ascertain the importance of each gas species in NMF INMF

m , the contribution
of each gas signal is summed across all basis vectors:

INMF
m =

k

∑
i=1

him (15)

where him is the element of matrix H corresponding to the contribution of the i-th basis
vector to the m-th gas signal. The relative NMF importance RNMF

m of each gas species is
then defined as the importance of the gas species divided by the sum of the importances of
all gas species:

RNMF
m =

INMF
m

∑M
m=1 INMF

m
(16)

This is analogous to the relative PCA importance RPCA
m . By analyzing these contri-

butions, we can identify the most significant gas species and their relative importance,
providing insights into which gas species are most affected by plasma reactions and are
key to understanding and optimizing the plasma process.

4. Results and Discussion
4.1. ToF-MS and Multivariate Methods for Key Gas Species Selection in CF4 Mixed Plasma

Figure 2 shows an example of data collected over time using ToF-MS. To collect the
data, a CF4 mixed gas was injected into the chamber, and a pressure of 2 mTorr and a
target temperature were maintained throughout the entire process. At the same time,
the gas species in the chamber were monitored by ToF-MS. After a sufficient amount of
steady-state ToF-MS data had been obtained, an ICP plasma power of 500 W was applied
for 600 s. Some molecular weight data as a function of time are shown in Figure 2a. The raw
data contain considerable noise and insignificant signals, so it is necessary to distinguish
significant signals.

Figure 2. An analysis of the plasma environment was conducted using ToF-MS. The ICP plasma
power was applied for 600 s at a process time of 800 s. (a) The number of ions detected by ToF-MS as a
function of time is illustrated for molecular weights (m/z) ranging from 20 to 120. (b) The significance
of the data is demonstrated through the use of PCA (blue), NMF (orange), and the cumulative signal
over the entire time range (green). Ten major gas molecules were identified and labeled in the figure.
(c) Only selected gas species are shown.
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To accomplish this, PCA and NMF were applied to analyze the importance of each gas
species by molecular weight, as shown in Figure 2b. Gases involved in the plasma reaction
show considerable variation in quantity as the plasma is turned on and off, resulting in
increased variance. PCA and NMF can be used to emphasize these significant gas species
while suppressing irrelevant noise signals with less variance. Some gas species that were
difficult to detect in the cumulative time data (green) were identified using PCA importance
(blue) and NMF importance (orange).

In ToF-MS, various factors can influence signal accuracy, such as the dependence
of flight time on the starting position of ions, spatial gradients in the accelerating field,
and potential timing errors caused by rapid changes in the accelerating pulse [28,29]. These
factors can introduce inaccuracies that propagate through subsequent analyses, leading to
erroneous interpretations. To mitigate these inaccuracies and focus on the most relevant
gas species, we selected only the species corresponding to molecular weights that exhibit
local maxima in importance.

Table 1 presents the relative importance values obtained from PCA and NMF for
various molecular weights (m/z). This table lists gas species with local maximum impor-
tance values—those having higher importance compared to their neighboring species—and
orders them by descending relative importance. Although the relative importance values
obtained from PCA and NMF are generally similar, some differences in the rankings and
magnitudes are observed due to the distinct characteristics of the two methods.

Table 1. Comparison of relative importance values derived from PCA and NMF for different
molecular weights. The table lists values for gas species with higher signals than their neighboring
gas species, ordered by decreasing relative importance.

Molecular Weight Relative PCA Molecular Weight Relative NMF
(m/z) Importance RPCA

m (%) (m/z) Importance RN MF
m (%)

47 17.622963 40 22.174847
40 17.595561 69 19.153740
69 17.174095 47 9.838269
66 10.276480 44 8.105747
28 8.017336 28 6.678383
44 7.707956 32 6.303442
32 4.820177 66 5.680802
50 1.590005 50 1.970766
85 0.437264 36 0.542563
119 0.213417 85 0.276671
78 0.152130 78 0.212098
97 0.112599 20 0.133319
100 0.107691 81 0.117157
131 0.095920 119 0.106920
87 0.093103 87 0.075410

PCA captures the global variance structure of the data and allows for both positive and
negative loading values, enabling the representation of opposing relationships between
variables. This characteristic is particularly valuable in plasma chemistry, as it allows
PCA to capture conflicting relationships between variables, such as the production and
consumption of chemical species due to secondary reactions within the plasma chamber.
In contrast, NMF emphasizes non-negative, additive parts-based representations, focusing
on capturing dominant features present in the data [30], which can be especially effective
for the non-negative ToF-MS measurements. However, because the components in NMF
are not orthogonal, there can be redundancy or overlap among variables, potentially
leading to certain chemical species being unnecessarily emphasized multiple times across
different components. Despite these methodological differences, the top eight chemical
species identified by both methods were identical, and the ninth and tenth most important
species in PCA were ranked tenth and fourteenth in NMF, respectively. This similarity
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indicates that both methods consistently identify the key gas species involved in the
plasma processes.

In selecting the most significant gas species, those with relative importance values
exceeding 0.1% in both PCA and NMF analyses were considered. Specifically, the mass-to-
charge ratio (m/z) of 85 corresponds to COF3, a fluorinated compound containing fluorine,
which is crucial in plasma chemistry. Notably, COF3 showed a high correlation with COF2
and COF at elevated temperatures, indicating that COF3 participates in reactions at high
temperatures. Similarly, the m/z of 119 likely represents C2F5. This species exhibited a
weak negative correlation with the input gases (CFx, O2) and a positive correlation with
other reaction products, suggesting that C2F5 is formed within the plasma chamber through
reactions of the input gases, indicating active plasma chemistry generating new fluorinated
species. On the other hand, m/z 78 (estimated as C2F2O) showed relative importance
values above 0.1% in both PCA and NMF, but did not show a clear correlation with the
other species, so we excluded it from the analysis. By combining the relative importance
values from both methods with chemical relevance and correlation analysis, the ten gas
species discussed in the manuscript were selected as the most significant for the study.

Based on these findings, Figure 2c illustrates the ion count over time for the ten most
significant gas species, as identified by PCA. In CF4 mixed plasma, fluorocarbons and
fluorinated compounds, such as CF3, CF2, and C2F5 (molecular weights 69, 50, and 119,
respectively), arise from CF4 dissociation. Along with this dissociation, CF4 is not detected
because it breaks down into CF3 during the electron impact ionization process in mass
spectrometry [31,32]. The oxidation of carbon results in the formation of carbon oxides,
including CO2 and CO (molecular weights 44 and 28, respectively), result from oxidation
processes. Carbonyl fluorides, such as COF, COF2, and COF3 (molecular weights 47,
66, and 85, respectively), are intermediates formed through interactions between carbon,
oxygen, and fluorine species in the plasma. Ar (molecular weight 40) serves as an inert
carrier gas. Conversely, most signals that remained consistent upon ICP plasma power
application were diminished.

4.2. Calculation of F-Radical Production and FOPDT Model Analysis

In semiconductor etching processes, particularly those involving silicon-based materi-
als, fluorine radicals (F radicals) are crucial due to their high reactivity. F radicals efficiently
break silicon bonds and form volatile silicon fluoride compounds, enabling precise etching.
In the context of advanced 3D-NAND and DRAM technologies, maintaining the integrity of
the ACL masks and managing carbon particle contamination in ACL deposition chambers
are critical [7,33]. This necessitates the use of high-temperature gas plasma processes and
fluorine-based plasma cleaning.

To optimize these processes, it is essential to understand the production and behavior
of F radicals under high-temperature conditions. However, F radicals have a limited lifetime
in the gaseous molecular state due to their high reactivity, high electronegativity, and high
ionization potential, making them difficult to collect and analyze. To address this issue,
we propose a method that utilizes the signals of other species participating in reactions
involving F to perform calculations. This is feasible due to the fact that ToF-MS gathers
all gaseous species in parallel. The resulting data matrix, denoted as Xr, is structured
based on the species selected using RPCA

m . This matrix captures the time evolution of the
aforementioned species and serves as the foundation for calculating the total F radicals
produced during the process. The selected species are CF3, CF2, C2F5, Ar, O2, CO2, CO,
COF, COF2, and COF3. The reduced data matrix Xr is as follows:

Xr =


x1 CF3 x1 CF2 x1 C2F5 x1 Ar x1 O2 x1 CO2 x1 CO x1 COF x1 COF2 x1 COF3

x2 CF3 x2 CF2 x2 C2F5 x2 Ar x2 O2 x2 CO2 x2 CO x2 COF x2 COF2 x2 COF3
...

...
...

...
...

...
...

...
...

...
xT CF3 xT CF2 xT C2F5 xT Ar xT O2 xT CO2 xT CO xT COF xT COF2 xT COF3

 (17)
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The contribution of each species to the production of F radicals is represented by the
vector Fc, which quantifies the number of F radicals produced per molecule of each species.
The vector Fc is defined as

Fc =
[
−3 −2 −5 0 0 0 0 −1 −2 −3

]T (18)

In this CF4 mixed plasma, a reduction in the concentration of CF3 results in the
generation of three times the quantity of F radicals. Therefore, CF3 contributes −3 F
radicals, CF2 contributes −2 F radicals, and C2F5 contributes −5 F radicals. Ar, O2, CO2,
and CO do not contribute any F radicals, as they are either inert or do not contain fluorine.
COF, COF2, and COF3 contribute −1, −2, and −3 F radicals, respectively.

The total F radicals produced (Fp) can be calculated by multiplying the matrices Xr
and Fc:

Fp = XrFc (19)

Species that were not selected for Xr either did not participate significantly in the reactions or
had negligible detectable concentrations; thus, they were excluded from the calculations.

4.3. Dynamic Analysis of Gas Species Transitions Using FOPDT Modeling

Figure 3 illustrates the time-dependent changes in the signals of selected gas species
(CF3, O2, and CO2) measured using ToF-MS during the plasma process. Due to the
presence of a dead volume in the connection interface between the process chamber and
the monitoring equipment, delays may occur, potentially leading to signal distortion.
The FOPDT model corrects these delays, thereby ensuring that the observed concentration
changes reflect the plasma process itself and not artifacts caused by the physical structure
of the chamber.

Figure 3. The time-dependent signal intensities of representative gas species were measured by
ToF-MS during the process. The measured values of the input gases (a) CF3 and (b) O2, and (c) CO2

produced by the plasma reaction, are illustrated as gray dots. For each signal, the process gain K for
each gas species was obtained by applying an FOPDT model fitting, taking into account the dead
time when the plasma is switched off, and is plotted on each graph. The red lines represent the
FOPDT model fitting to the experimental data.

The FOPDT model divides the dynamic behavior of the system into two components:
dead time and first-order response. The dead time is used to describe delays that are due
to external factors, such as the physical configuration of the system and the measurement
equipment being used. The first-order response, defined by the process gain and time
constant, uses differential equations to model the intrinsic kinetics of the process. Despite
the rapidity of plasma chemical reactions, the migration delay of gas between the main
chamber and the monitoring equipment can result in concentration discrepancies. Given
that gas concentrations fluctuate due to diffusion and drift, which are represented by
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differential equations, it is appropriate to utilize a model based on differential equations.
By applying an FOPDT model, this complex gas transfer process can be simplified, and the
process gain reflects the dynamics of the plasma process in the main chamber, independent
of various delays [24]. This approach ensures that the observed concentration changes are
representative of the plasma process without distortions due to the physical configuration
of the system.

The regression analysis results obtained using the FOPDT model, as shown in Figure 3,
provide specific values of the process gain for each gas species. For CF3 and O2, the process
gains (KCF3 and KO2 ) are determined to be −27,060.9 and −7188.5, respectively, indicating
that their concentrations decrease rapidly as the plasma voltage is applied. Conversely,
the process gain (KCO2) for CO2 is 4785.6, indicating an increase in its concentration with
the application of plasma voltage. These results suggest that fluorocarbons are rapidly
oxidized in plasma environments.

The ToF-MS data were collected by controlling the process environment using the
system described in Figure 1. To simulate reactions at both room temperature and the con-
ditions under which ACL deposition and etching occur, eight repeated experiments were
conducted at four temperature conditions: 20 °C, 200 °C, 400 °C, and 650 °C. During these
experiments, the ICP plasma power was varied from 100 W to 900 W. A total of 288 datasets
were obtained, which were used to calculate the process gain for F radicals, as well as for
each gas species selected based on PCA importance. This calculation was performed using
the FOPDT model. Figure 4a–k present these process gains as two-dimensional color maps,
illustrating their dependence on process conditions. Additionally, the correlation between
different gas species is visualized in Figure 4l.

A detailed analysis of the CF4 mixed plasma was conducted, covering the following
elements: O2, introduced into the process; CF3 and CF2, produced from the decompo-
sition of CF4 [31]; the inert gas Ar; and the species F radicals—CO, CO2, COF, COF2,
and COF3—formed by the plasma reactions. The concentration of F radicals, which play a
crucial role in the etching process, generally increased with rising plasma power and gas
temperature within the chamber. However, at a high temperature of 650 °C, the F-radical
concentration peaked around 300 W and slightly decreased as plasma power increased
further (Figure 4a). This decrease in F-radical concentration at higher power levels is
likely due to the increased formation of carbonyl fluoride compounds (Figure 4i–k), which
consume F radicals as they are generated.

At temperatures around 400 °C, with high plasma power applied, the formation of
C2F5 (Figure 4d) can be explained by the decomposition of CF4 into lower fluorocarbon ions
such as CF2, followed by their recombination to form larger fluorocarbon species [34,35].
This is consistent with our observation that the decrease in CF2 concentration is relatively
small in the regions where C2F5 concentration increases, suggesting that C2F5 is formed
when sufficient CF2 ions are available in the high-power plasma environment.

Additionally, Figure 4e shows that the concentration of Ar remained relatively un-
changed under various plasma conditions, indicating that Ar does not participate in the
plasma reactions. As the temperature rises, the concentration of O2 decreases steadily
(Figure 4f), while the concentrations of CO2 and CO show an upward trend (Figure 4g,h).
This increase in CO concentration can be attributed to the behavior of COF intermediates
within the CF4/O2 plasma. CF2 radicals react with O2 to form COF intermediates [36,37],
which can either dissociate into CO or react further with O2 to produce CO2. With increas-
ing plasma power, the dissociation of COF into CO becomes more dominant compared to
the formation of CO2, leading to a higher production of CO. This shift in reaction pathways,
driven by elevated plasma power, results in a preferential generation of CO over CO2 as
power increases, thereby explaining the observed rise in CO concentration [38].

However, at 650 °C and plasma power levels exceeding approximately 400 W, the con-
centrations of CO2 and CO begin to decrease again. This behavior suggests that at higher
power levels, these species may be recombining to form other carbonyl fluoride compounds.
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The data revealed that as the energy input increased at higher temperatures and plasma
power levels, the production of COF2 became more thermodynamically favorable [39].

Figure 4. The process gains are plotted as two-dimensional color maps as a function of process
gas temperature and plasma power using regression analysis. (a) The process gain for F radicals
(F*) was calculated as the amount of gas participating in the reaction involving fluorine. (b–k) The
process gains for other gas species selected according to their PCA importance are shown. Red
areas indicate an increase in gas species when the plasma is turned on, while blue areas indicate
a decrease. The color map is consistent across all figures. (l) The correlation matrix of gas species
under all process conditions is shown, with higher correlation coefficients depicted in purple and
lower coefficients in orange. On the right, a network map visualizes the interrelationships between
the different gas species in the plasma environment, where increased species are shown in red and
decreased species in blue, with font size representing the magnitude of the change.

Moreover, under high-temperature conditions (at 650 °C) and with plasma powers
above 600 W, the concentration of COF3 increased significantly. This finding implies
that the elevated energy levels facilitate the further fluorination of COF2, resulting in the
generation of COF3. The additional energy supplied by the increased plasma power likely
provides the necessary activation energy for these fluorination reactions, suggesting that
COF3 is a secondary product formed when excess F radicals react with COF2 under these
high-energy conditions.

Figure 4i visually represents the complex interactions within the entire process to
illustrate the interdependencies between chemical species in the plasma. The left side
shows the correlation matrix, where each cell represents the correlation coefficient between
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two chemical species. The color gradient indicates the correlation strength, with blue
representing negative correlations and orange representing positive correlations.

The right side of Figure 4i displays a network map constructed from the correlation
matrix. In this map, gas species that increase in concentration when the plasma is turned
on (K > 0) are labeled in red, while those that decrease (K < 0) are labeled in blue. The font
size of each label corresponds to the magnitude of concentration change. Connections
between the species are depicted as lines, with the color and thickness of the lines indicating
the strength and type of correlation: purple lines represent positive correlations, while
orange lines denote negative correlations. In the network, the input gases CF3 and O2
are fixed at the top-left corner, while the main product F is positioned at the bottom-
right corner, providing a clear overview of the dominant interactions throughout the
entire set of experimental conditions. This network visualization not only highlights the
interdependencies and reaction pathways between the various chemical species in the
plasma environment but also allows for a straightforward comparison of which species
are predominantly involved in reactions under different conditions. In particular, the next
section will provide insights into process control by clustering similar processes and
analyzing each cluster comparatively.

4.4. Dimensionality Reduction and Clustering Analysis of Plasma Process Data

PCA is a powerful tool for reducing the dimensionality of complex datasets, enabling
the identification of key patterns and relationships between variables that may not be
immediately apparent. By transforming a large set of variables into a smaller set of
principal components, PCA allows for the visualization of high-dimensional data in a
lower-dimensional space, facilitating the interpretation of intricate interactions between
process parameters and chemical species. In this study, PCA was employed to effectively
visualize the complex interactions between process conditions and the resulting gas-phase
species. The analysis was conducted using the process gain (K) values for each chemical
species under various process conditions, and the resulting principal components were
mapped onto a two-dimensional plane, as shown in Figure 5.

Figure 5. (a) Visualization of process gains (K) of gas species in a reduced-dimensional space
defined by principal component 1 (PC1) and principal component 2 (PC2) using PCA. Each data
point represents process conditions, colored according to temperature and plasma power values.
The arrows in the lower left indicate the loading vectors of each gas species, showing their contribution
to the principal components. (b,c) illustrate the loadings of each gas species on PC1 and PC2,
respectively, indicating the direction and magnitude of their influence on the principal components.
Red bars represent positive loadings, while blue bars indicate negative loadings, showing how each
gas species contributes to variations along these key axes.
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In Figure 5a, the process gains of gas species collected under varying temperature
and plasma power conditions are visualized in a reduced-dimensional space defined by
principal component 1 (PC1) and principal component 2 (PC2) through PCA. The color of
each data point corresponds to the specific process condition, while its coordinates indicate
the position within this reduced-dimensional space.

To better interpret this reduced-dimensional space, the original process gains (K) of
each chemical species are represented as arrows in the lower-right corner of Figure 5a.
These arrows are loading vectors representing the contribution of each chemical species to
the principal component axes within the two-dimensional space. Because the scales of the x-
and y-axes differ, dashed lines were used to represent vectors of equal length. The direction
and length of each arrow show how the process gain for each gas species influences the
position of data points in the reduced-dimensional space. Specifically, the direction of each
arrow signifies the axis along which variations in a particular chemical species are most
pronounced, while the length of the arrow reflects the extent of the species’ contribution
to variations in the corresponding principal component. This enables a straightforward
interpretation of the relationship between high-dimensional process variables and the
low-dimensional representation highlighting how variations in the chemical species shape
the distribution of experimental data.

By leveraging these loading vectors, Figure 5a effectively conveys the relationship
between process conditions and the behavior of individual chemical species, providing a
comprehensive overview of their interdependencies. This visualization underscores the
dominant species influencing variance in the principal component space, thereby offering
valuable insights into interaction pathways and reaction dynamics within the plasma
process under different experimental conditions.

Figure 5b,c illustrate the loadings of each chemical species on the first and second
principal components (PC1 and PC2), respectively. Positive or negative values indicate
the direction and magnitude of the influence of each species on the principal components,
thereby providing insight into which species drive variations along these key axes. The PC1
is defined as the linear combination of K that captures the maximum variance in the data.
The PC2 is the linear combination that captures the second highest variance in the data,
subject to being orthogonal to PC1. This orthogonality constraint ensures that PC2 captures
a new, independent direction of variance that was not accounted for by PC1. As a result,
this approach preserves as much information as possible while reducing its dimensionality,
allowing for a clear visualization of complex relationships between variables in a simplified
two-dimensional space.

Building on these PCA results, clustering was applied to the process data to further
analyze patterns and relationships. PCA effectively reduces the dimensionality of high-
dimensional data while preserving the most critical variance, thereby revealing inherent
patterns and relationships among the variables. The k-means algorithm was used to cluster
experimental conditions with similar process gains in the reduced-dimensional space, iden-
tifying four distinct groups based on the Elbow Method. As shown in Figure 6a, the PCA
scatter plot displays these clusters, indicating underlying groupings in the chemical species’
behavior or process conditions. These groupings suggest different operational regimes or
reaction pathways that are not easily observable in the original high-dimensional space.

Figure 6b–e provide a detailed analysis of each cluster, displaying the correlations
among process variables. For each subfigure (b, c, d, and e), the left panel shows the
correlation matrix for the gas species within the cluster, while the right panel presents a
network map based on these correlations. The network map highlights strong correlations,
making it easier to identify which species interact closely in each cluster.
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Figure 6. (a) Clustering of process conditions in the PCA-defined reduced-dimensional space,
showing four clusters identified through k-means clustering. Each cluster represents similar behavior
of gas species under different process conditions. The loading vectors of each gas species are shown
as arrows to illustrate their contributions to principal component axes. (b–e) Correlation matrices and
network maps for each cluster, visualizing the relationships between gas species. Positive correlations
are shown in purple, while negative correlations are in orange. Increased species are marked in red,
while decreased species are shown in blue, with the font size indicating the magnitude of the change.

In Cluster 1 (Figure 6b), the production of carbonyl fluoride compounds (e.g., COF,
COF2) is lower compared to other clusters, with limited CF3 breakdown and reduced F-
radical generation, suggesting fewer reactions leading to F radicals. In Cluster 2 (Figure 6c),
COF, COF2, CF3, and O2 show high correlations, with an increased CF3 breakdown and F-
radical generation relative to Cluster 1, indicating that O2 is promoting F-radical formation
through its interaction with CF4, resulting in higher production of fluorinated compounds.
In Cluster 3 (Figure 6d), the correlations between gas species become stronger, suggesting
that the reactions observed in Cluster 2 are more pronounced here, with CO playing a
more active role in forming COF and COF2 [36,37,39], leading to an increased production
of carbonyl fluoride compounds. In Cluster 4 (Figure 6e), the correlation between carbonyl
fluoride compounds and other species decreases relative to Cluster 3, with a significant
drop in CF3 concentration accompanied by a notable increase in F-radical generation,
indicating extensive CF3 decomposition and a corresponding rise in F radicals.

The methodology presented in this study effectively captures the complex interactions
of plasma processes by combining PCA and clustering techniques. Through dimensionality
reduction, we were able to highlight key patterns and visualize relationships between
chemical species more clearly. Clustering in this reduced space allowed for the identi-
fication of distinct process behaviors, revealing variations in chemical reactions under
different conditions. Additionally, there is the versatility to use different clustering meth-
ods to focus on specific aspects of the process, allowing for a more customized analysis of
plasma chemistry.

Furthermore, the clustering results provide valuable insights for process control and
optimization. By identifying how different process conditions influence reaction pathways
within the plasma, we can determine which gas species are produced or consumed under
specific conditions. This understanding enables us to adjust process parameters, such as
temperature and plasma power, to achieve the desired plasma behaviors associated with
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specific clusters. For example, if the goal is to enhance the formation of beneficial chemical
species like F radicals or to suppress the production of undesirable byproducts, we can
modify the temperature and plasma power to operate within the conditions corresponding
to the cluster that exhibits these characteristics. This approach offers concrete guidance on
controlling process variables to achieve specific plasma behaviors, thereby improving the
efficiency and outcomes of the plasma process.

5. Conclusions

In this study, we investigated high-temperature gas plasma environments used for
ACL deposition and chamber cleaning processes. By utilizing a high-temperature ICP
system coupled with ToF-MS, we analyzed variations in gas species under different plasma
power and temperature conditions. Through the application of PCA and NMF, we identi-
fied the key gas species involved in these processes, while the FOPDT model provided an
accurate quantification of dynamic changes in gas concentrations.

Our results show that the concentration of fluorine radicals and other gas species
depends strongly on process parameters. For instance, we observed the formation of
COF3 at high gas temperatures and plasma power levels, indicating the activation of new
reaction pathways that are not present at lower temperatures. This finding underscores
the importance of understanding how process parameters influence chemical reactions in
high-temperature plasma environments. Additionally, visualization techniques such as
dimensionality reduction and network maps helped illustrate these complex interactions
more clearly, providing a deeper understanding of how different variables shape overall
plasma behavior.

Our study provides the first in-depth experimental analysis of high-temperature gas
plasma processes specifically tailored for semiconductor applications. While fluorocarbon
plasmas are widely used in semiconductor manufacturing, their behavior at high gas
temperatures has not been investigated until now. Our findings offer key insights that can
be used to optimize plasma conditions and improve process control in high-temperature
gas plasma environments.
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