
Citation: Hu, M.; Zhang, Y.; Jiao, T.;

Xue, H.; Wu, X.; Luo, J.; Han, S.; Lv, H.

An Enhanced Feature-Fusion

Network for Small-Scale Pedestrian

Detection on Edge Devices. Sensors

2024, 24, 7308. https://doi.org/

10.3390/s24227308

Academic Editor: Kaihua Zhang

Received: 30 September 2024

Revised: 7 November 2024

Accepted: 12 November 2024

Published: 15 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

An Enhanced Feature-Fusion Network for Small-Scale Pedestrian
Detection on Edge Devices
Min Hu 1,†, Yaorong Zhang 1,2,†, Teng Jiao 1,†, Huijun Xue 1 , Xue Wu 2, Jianguo Luo 2, Shipeng Han 1,*
and Hao Lv 1,*

1 Department of Medical Electronics, School of Biomedical Engineering, Air Force Medical University,
Xi’an 710032, China; hummmin@163.com (M.H.); zhangyaorong181@xauat.edu.cn (Y.Z.);
jiaoteng@fmmu.edu.cn (T.J.); xinyin20130419@163.com (H.X.)

2 School of Information and Control Engineering, Xi’an University of Architecture and Technology,
Xi’an 710055, China; wuxue@xauat.edu.cn (X.W.); jianguo@xauat.edu.cn (J.L.)

* Correspondence: sp.han2022@outlook.com (S.H.); fmmulvhao@fmmu.edu.cn (H.L.)
† These authors contributed equally to this work.

Abstract: Small-scale pedestrian detection is one of the challenges in general object detection. Factors
such as complex backgrounds, long distances, and low-light conditions make the image features
of small-scale pedestrians less distinct, further increasing the difficulty of detection. To address
these challenges, an Enhanced Feature-Fusion YOLO network (EFF-YOLO) for small-scale pedestrian
detection is proposed. Specifically, this method employs a backbone based on the FasterNet block
within YOLOv8n, which is designed to enhance the extraction of spatial features while reducing
redundant operation. Furthermore, the gather-and-distribute (GD) mechanism is integrated into the
neck of the network to realize the aggregation and distribution of global information and multi-level
features. This not only strengthens the faint features of small-scale pedestrians but also effectively
suppresses complex background information, thereby improving the accuracy of small-scale pedes-
trians. Experimental results indicate that EFF-YOLO achieves detection accuracies of 72.5%, 72.3%,
and 91% on the three public datasets COCO-person, CityPersons, and LLVIP, respectively. Moreover,
the proposed method reaches a detection speed of 50.7 fps for 1920 × 1080-pixel video streams on the
edge device Jetson Orin NX, marking a 15.2% improvement over the baseline network. Thus, the
proposed EFF-YOLO method not only boasts high detection accuracy but also demonstrates excellent
real-time performance on edge devices.

Keywords: small-scale pedestrian detection; feature enhancement; gather-and-distribute mechanism;
edge device

1. Introduction

Pedestrian detection is a focal area of research in computer vision [1], with broad
applications in intelligent surveillance [2], autonomous driving [3,4], smart robotics [5],
and other fields. However, the characteristics of complex backgrounds, long distances, and
low-light conditions make small-scale pedestrian detection relatively challenging, often
leading to issues of missed or false detections. To better detect small-scale pedestrians
against complex backgrounds, deep learning (DL)-based methods have gradually become
the mainstream algorithms for pedestrian detection. However, because of the limitations
of computational resources on edge devices, the deployment of current large DL models
is difficult in practical applications. While some lightweight algorithm models can be
deployed on edge devices, they often also suffer from problems such as delays and de-
creased detection frame rates. Therefore, achieving precise small-scale pedestrian detection
in complex environments while accelerating model inference speed remains a significant
challenge for the deployment of algorithm models on edge devices.

Sensors 2024, 24, 7308. https://doi.org/10.3390/s24227308 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24227308
https://doi.org/10.3390/s24227308
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5598-2000
https://doi.org/10.3390/s24227308
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24227308?type=check_update&version=1

Sensors 2024, 24, 7308 2 of 19

In recent years, numerous studies have been devoted to DL-based pedestrian-detection
techniques, which can be primarily classified into two-stage pedestrian detection [6] and
one-stage pedestrian detection [7]. Two-stage detection algorithms first generate region
recommendations and then perform classification and regression [6], typically represented
by R-CNN networks. As the first DL algorithm successfully applied to object detection,
R-CNN [8] utilizes the powerful feature-learning capability of CNN to improve object-
detection accuracy. However, with its slow inference speed, it is difficult to meet the
demand of real-time detection. Aiming to improve the detection speed, He et al. [9]
proposed SPPNet by adding spatial pyramid pooling between the final convolutional
and the fully connected layer of R-CNN. SPPNet can accept input images of arbitrary
size, which significantly improves detection speed. Subsequently, Girshick [10] proposed
Fast R-CNN on the basis of R-CNN. The method further optimizes the feature-extraction
process for each candidate region by introducing the ROI pooling operation. Subsequently,
a multi-classification operation is performed using softmax, and finally the position of the
bounding box is adjusted using a regression model to improve the detection speed and
accuracy. Ren et al. [11] proposed Faster R-CNN, which is an important milestone for two-
stage detection algorithms. Faster R-CNN introduces a region proposal network, which
integrates candidate region generation, feature extraction, bounding-box regression, and
classification into a single unified network. This enables end-to-end training and inference
and significantly improves detection speed and overall performance. In addition, Mask R-
CNN [12] extends Faster R-CNN by adding a mask branch for generating object masks. The
ROI pooling operation is replaced with ROI align to address the alignment issue between
the mask and the object in the original image. Oriented Mask R-CNN [13] enhances the
efficiency and accuracy of detecting rotating or directionally oriented objects by simplifying
the region proposal-generation process through the introduction of a midpoint offset
representation, based on the Mask R-CNN. Although the two-stage detection algorithm
excels in detection accuracy, it is still difficult to achieve real-time detection due to its large
computational volume.

The one-stage algorithm simplifies the object-detection process by omitting the step of
generating candidate regions and directly predicting the location and class of the object [7].
Typical representatives of this class of methods are mainly SSD [14–18] and YOLO [19–26].
SSD [14] extracts features on multiple feature layers of the pyramid structure and applies
softmax and positional regression to determine the location and class of the object. However,
SSD relies on lower-level feature information, leading to its poor performance in dealing
with objects at different scales, especially for the detection of small objects. To solve this
problem, Fu et al. [15] proposed DSSD, utilizing ResNet101 [27] as the base network and
incorporating image feature fusion to improve the capability of extracting features. In
addition, Jeong et al. [17] introduced R-SSD, which improves the recognition ability of small
objects by enhancing the interaction of feature information between different convolutional
layers. The feature-fusion SSD proposed by Cao et al. [19] adopts an integrated strategy to
combine features from both high-level and low-level convolutional layers. This strategy
not only improves the detection accuracy of small objects, but also enhances the overall
perception of the network. In order to integrate features from different convolutional
layers more efficiently, Li et al. [18] proposed FSSD. Different from the complex feature
pyramid-construction method of the feature pyramid network (FPN) [28], FSSD adopts a
more concise method to fuse the features of each layer after adjusting them to the same size
by bilinear interpolation. This method improves the speed of fusion while achieving good
detection results.

YOLO, as the first one-stage detection method, is one of the most successfully applied
algorithms for pedestrian detection. Redmon et al. [19] first introduced YOLO in 2015,
which is capable of predicting multiple bounding box (BBox) locations and categories
simultaneously, marking the beginning of general-purpose object detection. YOLO can
complete the object detection by a single forward propagation, which greatly simplifies
the detection process and improves the detection speed. In 2017, Redmon [20] introduced

Sensors 2024, 24, 7308 3 of 19

YOLOv2, utilizing K-means clustering to derive more effective anchor templates from a
training set. Nevertheless, YOLOv2 used features from the last convolutional layer, leading
to the loss of a significant amount of information. Subsequently, YOLOv3 [21] was proposed
with improvements on YOLOv2 by adopting the darknet-53 network architecture in place
of the darknet-19 and employing a FPN for multi-scale detection. Although YOLOv3
adopted logistic regression instead of softmax, ensuring real-time performance while
maintaining the accuracy of object detection, its performance was not effectively integrated
with BBox. To further improve detection performance, YOLOv4 [22] and YOLOv5 [23]
built upon YOLOv3 by integrating CSP and SPP structures, adaptive anchor calculations,
and focus operations to enhance object-detection accuracy. YOLOv6 [24] and YOLOv7 [25]
further improved detection performance by introducing the RepVGG [29] and efficient
layer aggregation network (ELAN) modules, respectively. Inspired by the ELAN design of
YOLOv7 [25], YOLOv8 [26] adopts a more gradient-rich C2f structure in place of the C3
structure and adjusts the channel numbers for models of varying scales, thus enhancing
the detection performance of YOLOv8.

Despite significant progress in pedestrian detection by DL techniques in recent years,
there are still obvious challenges in small-scale pedestrian detection. Existing methods
perform poorly when dealing with complex backgrounds and low-light conditions, often
resulting in missed or false detections. In addition, DL-based pedestrian-detection methods
are usually accompanied by a large number of parameters and computations, leading to
a relatively limited deployment of models for applications. Therefore, how to accurately
detect the object without obvious visualization features and at the same time speed up
the model inference is a major challenge at present. Through a review and analysis of
commonly used object-detection algorithms, we propose an Enhanced Feature-Fusion
YOLO network (EFF-YOLO) based on YOLOv8, aimed at improving the accuracy of small-
scale pedestrian detection and deploying it on edge devices for real-time testing. The main
contributions are as follows:

• A novel feature-enhanced fusion YOLO network is introduced. Utilizing a backbone
based on the FasterNet block, this method enhances the extraction of spatial features
from images while minimizing redundant operations. Meanwhile, the model size is
optimized to facilitate deployment on edge devices for real-time detection.

• The gather-and-distribute (GD) mechanism is integrated into the neck to enhance faint
features. By effectively aggregating and distributing information between global and
multi-level features, this promotes efficient interaction of small-scale object features
without introducing additional latency.

• Experiments demonstrate that EFF-YOLO outperforms baseline models in terms of
detection accuracy on three public datasets, and achieves higher real-time detection
frame rates on the edge device. This further validates the practical application potential
of EFF-YOLO on edge devices.

The structure of this paper is organized as follows. Section 2 introduces the design
of EFF-YOLO. In Section 3, the experiment details and results are presented to demon-
strate the practicability of EFF-YOLO. Section 4 provides conclusions and outlines future
research directions.

2. Methods
2.1. Overview of EFF-YOLO Architecture

Here, we propose EFF-YOLO based on YOLOv8 to improve the detection of small-scale
pedestrians in complex scenes. In these scenarios, traditional models often struggle with
accurately detecting and localizing small-scale pedestrians due to the high level of noise and
the reduced resolution of distant objects. Our proposed method addresses these challenges
through several key improvements. First, EFF-YOLO replaces the original C2f structure
of backbone with FasterNet block [30] which has lower latency and higher throughput.
The purpose is to reduce unnecessary computation and memory access while extracting
efficient spatial features, resulting in higher operating speeds and lower latency on resource-

Sensors 2024, 24, 7308 4 of 19

limited devices. Then, we use the gather-and-distribute (GD) mechanism [31] instead of
the original recursive method to capture finer-grained spatial information. This method
can extract more important features in the detection process to enhance the perception
of small-scale pedestrians. Finally, the anchor-free design in YOLOv8 is retained in the
network head to ensure small object-detection capability. This design reduces the number
of anchor frames by directly predicting the center and the ratio of width and height of the
objects, thus further improving the detection accuracy and speed of the model. The model
structure is shown in Figure 1.

Sensors 2024, 24, x FOR PEER REVIEW 4 of 19

extracting efficient spatial features, resulting in higher operating speeds and lower latency
on resource-limited devices. Then, we use the gather-and-distribute (GD) mechanism [31]
instead of the original recursive method to capture finer-grained spatial information. This
method can extract more important features in the detection process to enhance the per-
ception of small-scale pedestrians. Finally, the anchor-free design in YOLOv8 is retained
in the network head to ensure small object-detection capability. This design reduces the
number of anchor frames by directly predicting the center and the ratio of width and
height of the objects, thus further improving the detection accuracy and speed of the
model. The model structure is shown in Figure 1.

Figure 1. The architecture of EFF-YOLO.

2.2. Lightweight Backbone Network
The backbone is responsible for extracting features from the input and is the core of

the pedestrian-detection network. YOLOv8 employs a parameter-sharing design in the
backbone to improve the efficiency and generalization of the model. However, due to its
parameters and complex structure, it still causes delays in the object-inference process.
Given the limited performance of edge devices, this latency is particularly detrimental to
the deployment and application of the model, especially in scenarios that require high
real-time performance such as intelligent monitoring. Therefore, we have made the
YOLOv8 algorithm lightweight with the ultimate goal of final deployment performance
by deeply analyzing the hardware and software characteristics of the AI edge computing
platform.

In the network, we introduced a novel FasterNet [30] block to replace the YOLOv8
backbone. This block is based on partial convolution (PConv) and aims to solve the prob-
lems of redundant computation and frequent memory accesses. The structure is shown in
Figure 2. The design of FasterNet consists of four main stages, each preceded by an em-
bedding or merging layer for spatial down-sampling and extending the number of chan-
nels. Specifically, a 4 × 4 convolution with a stride of 4 is used for the embedding layer
and a 2 × 2 convolution with a stride of 2 is used for the merging layer. In addition, the
main components at each stage are stacked FasterNet blocks. The core component of each
FasterNet block consists of a PConv layer for reducing redundant computations and
memory accesses, and two 1 × 1 convolutional layers immediately following for further
processing of features. These components collectively form an inverse residual block. Its
middle layer expands the number of channels and adds skip connection to reuse input

Figure 1. The architecture of EFF-YOLO.

2.2. Lightweight Backbone Network

The backbone is responsible for extracting features from the input and is the core of
the pedestrian-detection network. YOLOv8 employs a parameter-sharing design in the
backbone to improve the efficiency and generalization of the model. However, due to its
parameters and complex structure, it still causes delays in the object-inference process.
Given the limited performance of edge devices, this latency is particularly detrimental to
the deployment and application of the model, especially in scenarios that require high real-
time performance such as intelligent monitoring. Therefore, we have made the YOLOv8
algorithm lightweight with the ultimate goal of final deployment performance by deeply
analyzing the hardware and software characteristics of the AI edge computing platform.

In the network, we introduced a novel FasterNet [30] block to replace the YOLOv8
backbone. This block is based on partial convolution (PConv) and aims to solve the
problems of redundant computation and frequent memory accesses. The structure is shown
in Figure 2. The design of FasterNet consists of four main stages, each preceded by an
embedding or merging layer for spatial down-sampling and extending the number of
channels. Specifically, a 4 × 4 convolution with a stride of 4 is used for the embedding
layer and a 2 × 2 convolution with a stride of 2 is used for the merging layer. In addition,
the main components at each stage are stacked FasterNet blocks. The core component of
each FasterNet block consists of a PConv layer for reducing redundant computations and
memory accesses, and two 1 × 1 convolutional layers immediately following for further
processing of features. These components collectively form an inverse residual block. Its
middle layer expands the number of channels and adds skip connection to reuse input
features. This design helps to retain important information in the deeper layers of the
network and minimizes information loss.

Sensors 2024, 24, 7308 5 of 19

Sensors 2024, 24, x FOR PEER REVIEW 5 of 19

features. This design helps to retain important information in the deeper layers of the net-
work and minimizes information loss.

The working principle of PConv, which is the core component, is shown in the right
of Figure 2. PConv performs spatial feature extraction by applying a standard convolution
on the input channel and leaving the remaining channels unchanged. For consecutive or
regular memory accesses, the first or last continuous channel pc is computed as a repre-
sentation of the entire feature. The FLOPs of PConv are calculated as follows:

2
PConv pFLOPs h w k c= × × × (1)

where h and w represent the height and width, and k represents the convolutional

kernel size. At the typical compression ratio pc 1r
c 4

= = , PConv has only one-sixteenth of

the FLOPs of a regular Conv. Moreover, PConv’s memory accesses are calculated as fol-
lows:

2 2
PConv p p pMemoryAccess h w 2c k c h w 2c= × × + × ≈ × × (2)

For pc 1r
c 4

= = , PConv’s memory access is only one-fourth that of a regular convolution.

In addition, batch normalization (BN) [32] is chosen for FasterNet because BN can be
merged with the adjacent convolution layer to achieve faster inference while preserving
the effect. GELU [33] is chosen for the activation layer.

Figure 2. The structure of FasterNet.

2.3. Enhanced Feature-Fusion Module
The neck structure in YOLO is designed to integrate the multi-scale features extracted

by the backbone. Traditional FPN and its variants are the most commonly used fusion
methods. However, these methods have a significant drawback: when information needs
to be fused across layers, the traditional FPN structure cannot ensure the complete trans-
mission of information, which affects the overall effectiveness of information fusion to a
certain extent. To address this issue, EFF-YOLO abandons the original recursive approach
and incorporates an advanced GD mechanism [31] in the neck, as shown in Figure 3. This
mechanism enhances feature fusion by collecting and integrating information from all

Figure 2. The structure of FasterNet.

The working principle of PConv, which is the core component, is shown in the right of
Figure 2. PConv performs spatial feature extraction by applying a standard convolution
on the input channel and leaving the remaining channels unchanged. For consecutive
or regular memory accesses, the first or last continuous channel cp is computed as a
representation of the entire feature. The FLOPs of PConv are calculated as follows:

FLOPsPConv = h × w × k2 × cp (1)

where h and w represent the height and width, and k represents the convolutional kernel
size. At the typical compression ratio r =

cp
c = 1

4 , PConv has only one-sixteenth of the
FLOPs of a regular Conv. Moreover, PConv’s memory accesses are calculated as follows:

MemoryAccessPConv = h × w × 2cp + k2 × c2
p ≈ h × w × 2cp (2)

For r = cp
c = 1

4 , PConv’s memory access is only one-fourth that of a regular convolution. In
addition, batch normalization (BN) [32] is chosen for FasterNet because BN can be merged
with the adjacent convolution layer to achieve faster inference while preserving the effect.
GELU [33] is chosen for the activation layer.

2.3. Enhanced Feature-Fusion Module

The neck structure in YOLO is designed to integrate the multi-scale features extracted
by the backbone. Traditional FPN and its variants are the most commonly used fusion
methods. However, these methods have a significant drawback: when information needs
to be fused across layers, the traditional FPN structure cannot ensure the complete trans-
mission of information, which affects the overall effectiveness of information fusion to a
certain extent. To address this issue, EFF-YOLO abandons the original recursive approach
and incorporates an advanced GD mechanism [31] in the neck, as shown in Figure 3. This
mechanism enhances feature fusion by collecting and integrating information from all
levels and distributing it to different levels, thereby improving the information integration
ability of the neck and avoiding the problem of information loss in traditional approaches.

Sensors 2024, 24, 7308 6 of 19

Sensors 2024, 24, x FOR PEER REVIEW 6 of 19

levels and distributing it to different levels, thereby improving the information integration
ability of the neck and avoiding the problem of information loss in traditional approaches.

The GD module consists of three key components: feature alignment module (FAM),
information-fusion module (IFM), and information injection module (IIM). FAM is
responsible for collecting and aligning features from different levels to ensure that feature
maps at different levels are properly grouped together in subsequent processing. IFM
further incorporates these features to produce global context information. This step helps
capture multi-scale features. IIM distributes the global information generated by IFM to
each level and injects it into the corresponding branches with simple attention operations
to enhance detection capabilities. Meanwhile, low-stage GD (Low-GD) branch and high-
stage GD (High-GD) branch are introduced to detect pedestrians at different scales. The
improved structure of the neck is shown in Figure 3.

Figure 3. The neck network based on the GD mechanism.

2.3.1. Low-GD
The output features P2 , P3 , P4 , P5 from backbone are fused in the Low-GD

module to obtain high-resolution spatial information that retain small-scale pedestrian
features. As shown in Figure 4, average pooling (Avgpool) is used in low-stage FAM (Low-
FAM) to adjust the size of all feature maps to the same as the feature P4 , so as to promote
information aggregation and reduce the amount of computation. We choose P4 as the
object size for feature alignment while balancing speed and accuracy to ensure efficient
processing of information. The features alignF processed by Low-FAM are represented as
follows:

[]()_ , , ,alignF Low FAM P2 P3 P4 P5= (3)

Figure 4. The structure of low-stage GD branch.

The alignment feature alignF then generates global information through low-stage
IFM (Low-IFM). Low-IFM includes multi-layer reparameterized convolution blocks (Rep-
Block), convolution operation at input and output, and finally split operation. The global
features are generated by using alignF as an input through RepBlock and then they are

Figure 3. The neck network based on the GD mechanism.

The GD module consists of three key components: feature alignment module (FAM),
information-fusion module (IFM), and information injection module (IIM). FAM is respon-
sible for collecting and aligning features from different levels to ensure that feature maps
at different levels are properly grouped together in subsequent processing. IFM further
incorporates these features to produce global context information. This step helps capture
multi-scale features. IIM distributes the global information generated by IFM to each level
and injects it into the corresponding branches with simple attention operations to enhance
detection capabilities. Meanwhile, low-stage GD (Low-GD) branch and high-stage GD
(High-GD) branch are introduced to detect pedestrians at different scales. The improved
structure of the neck is shown in Figure 3.

2.3.1. Low-GD

The output features P2, P3, P4, P5 from backbone are fused in the Low-GD module to
obtain high-resolution spatial information that retain small-scale pedestrian features. As
shown in Figure 4, average pooling (Avgpool) is used in low-stage FAM (Low-FAM) to
adjust the size of all feature maps to the same as the feature P4, so as to promote information
aggregation and reduce the amount of computation. We choose P4 as the object size for
feature alignment while balancing speed and accuracy to ensure efficient processing of
information. The features Falign processed by Low-FAM are represented as follows:

Falign = Low_FAM([P2, P3, P4, P5]) (3)

Sensors 2024, 24, x FOR PEER REVIEW 6 of 19

levels and distributing it to different levels, thereby improving the information integration
ability of the neck and avoiding the problem of information loss in traditional approaches.

The GD module consists of three key components: feature alignment module (FAM),
information-fusion module (IFM), and information injection module (IIM). FAM is
responsible for collecting and aligning features from different levels to ensure that feature
maps at different levels are properly grouped together in subsequent processing. IFM
further incorporates these features to produce global context information. This step helps
capture multi-scale features. IIM distributes the global information generated by IFM to
each level and injects it into the corresponding branches with simple attention operations
to enhance detection capabilities. Meanwhile, low-stage GD (Low-GD) branch and high-
stage GD (High-GD) branch are introduced to detect pedestrians at different scales. The
improved structure of the neck is shown in Figure 3.

Figure 3. The neck network based on the GD mechanism.

2.3.1. Low-GD
The output features P2 , P3 , P4 , P5 from backbone are fused in the Low-GD

module to obtain high-resolution spatial information that retain small-scale pedestrian
features. As shown in Figure 4, average pooling (Avgpool) is used in low-stage FAM (Low-
FAM) to adjust the size of all feature maps to the same as the feature P4 , so as to promote
information aggregation and reduce the amount of computation. We choose P4 as the
object size for feature alignment while balancing speed and accuracy to ensure efficient
processing of information. The features alignF processed by Low-FAM are represented as
follows:

[]()_ , , ,alignF Low FAM P2 P3 P4 P5= (3)

Figure 4. The structure of low-stage GD branch.

The alignment feature alignF then generates global information through low-stage
IFM (Low-IFM). Low-IFM includes multi-layer reparameterized convolution blocks (Rep-
Block), convolution operation at input and output, and finally split operation. The global
features are generated by using alignF as an input through RepBlock and then they are

Figure 4. The structure of low-stage GD branch.

The alignment feature Falign then generates global information through low-stage IFM
(Low-IFM). Low-IFM includes multi-layer reparameterized convolution blocks (RepBlock),
convolution operation at input and output, and finally split operation. The global features
are generated by using Falign as an input through RepBlock and then they are divided into
Finj_L3 and Finj_L4 in the channel dimension for fusion with features at different levels. The
expression is as follows:

Finj_L3, Finj_L4 = Split
(

RepBlock
(

Falign

))
(4)

Sensors 2024, 24, 7308 7 of 19

The global information is gathered through FAM and IFM and then the obtained global
information is injected into different levels through IIM, as illustrated in Figure 5. IIM
combined with lightweight adjacent layer fusion (LAF) increases the number of information
flow paths between different levels by simplifying operations, thus improving performance
without significantly increasing latency. The LAF module contains Low-LAF and High-LAF,
which are used for low-level injection and high-level injection, respectively. Specifically,
local information Flocal input into the module is processed by LAF and 1 × 1 convolutional
layer. The global injection information Finj is processed by two different convolutional
layers to obtain Fglobal_embed and Fglobal_act. The expression for the operation is as follows:

Fglobal_act_Li = Resize
(
Sigmoid

(
Convact

(
Finj_Li

)))
(5)

Fglobal_embed_Li = Resize
(

Convglobal_embed_Li
(

Finj_Li
))

(6)

Sensors 2024, 24, x FOR PEER REVIEW 7 of 19

divided into _inj L3F and _inj L4F in the channel dimension for fusion with features at dif-
ferent levels. The expression is as follows:

()()_ _,inj L3 inj L4 alignF F Split RepBlock F= (4)

The global information is gathered through FAM and IFM and then the obtained
global information is injected into different levels through IIM, as illustrated in Figure 5.
IIM combined with lightweight adjacent layer fusion (LAF) increases the number of infor-
mation flow paths between different levels by simplifying operations, thus improving per-
formance without significantly increasing latency. The LAF module contains Low-LAF
and High-LAF, which are used for low-level injection and high-level injection, respec-
tively. Specifically, local information localF input into the module is processed by LAF
and 1 × 1 convolutional layer. The global injection information injF is processed by two
different convolutional layers to obtain _global embedF and _global actF . The expression for the
operation is as follows:

()()()_ _ _global act Li act inj LiF Resize Sigmoid Conv F= (5)

()()_ _ _ _ _global embed Li global embed Li inj LiF Resize Conv F= (6)

Subsequently, the global information and local information obtained by the attention
mechanism to generate the fused feature map _ _att fuse LiF . Ultimately, _ _att fuse LiF is further
processed by RepBlock to generate the final feature iL for the subsequent task. The ex-
pression is as follows:

()_ _ _ _ _ _ _ _att fuse Li local embed Li global act Li global embed LiF Conv Bi F F= ∗ + (7)

_ _()i att fuse LiL RepBlock F= (8)

Figure 5. The details of IIM with LAF.

2.3.2. High-GD

The features { }, ,3 4 5L L L generated by Low-GD are processed in High-GD, as shown
in Figure 6. In keeping with Low-GD, High-FAM is first used to align the size of features
{ }, ,3 4 5L L L with the smallest size 5L using Avgpool. The expression is as follows:

[]()_ , ,alignF High FAM L3 L4 L5= (9)

Figure 5. The details of IIM with LAF.

Subsequently, the global information and local information obtained by the atten-
tion mechanism to generate the fused feature map Fatt_ f use_Li. Ultimately, Fatt_ f use_Li is
further processed by RepBlock to generate the final feature Li for the subsequent task. The
expression is as follows:

Fatt_ f use_Li = Convlocal_embed_Li(Bi) ∗ Fglobal_act_Li + Fglobal_embed_Li (7)

Li = RepBlock(Fatt_ f use_Li) (8)

2.3.2. High-GD

The features {L3, L4, L5} generated by Low-GD are processed in High-GD, as shown
in Figure 6. In keeping with Low-GD, High-FAM is first used to align the size of features
{L3, L4, L5} with the smallest size L5 using Avgpool. The expression is as follows:

Falign = High_FAM([L3, L4, L5]) (9)

Then, Falign is fused and decomposed by High-IFM. Unlike Low-IFM, High-IFM uses
transformers to capture more complex dephasing and to understand contextual information
in the image. In addition, to avoid the computational burden of the transformer, High-IFM
uses Batch Normalization instead of Layer Normalization and ReLU instead of GELU to
reduce the inference time. The workflow for High-IFM consists of three steps. First, fusion
features are generated through the transformer block. Secondly, the number of channels for
the features is reduced by 1 × 1 convolution. Finally, the fusion features are decomposed
into Finj_H4 and Finj_H5 by a split operation. The expression is as follows:

Finj_H4, Finj_H5 = Split
(

Conv1 × 1
(

Trans f ormer
(

Falign

)))
(10)

Sensors 2024, 24, 7308 8 of 19Sensors 2024, 24, x FOR PEER REVIEW 8 of 19

Figure 6. The structure of high-stage GD branch.

Then, alignF is fused and decomposed by High-IFM. Unlike Low-IFM, High-IFM
uses transformers to capture more complex dephasing and to understand contextual in-
formation in the image. In addition, to avoid the computational burden of the transformer,
High-IFM uses Batch Normalization instead of Layer Normalization and ReLU instead of
GELU to reduce the inference time. The workflow for High-IFM consists of three steps.
First, fusion features are generated through the transformer block. Secondly, the number
of channels for the features is reduced by 1 × 1 convolution. Finally, the fusion features
are decomposed into _inj H 4F and _inj H 5F by a split operation. The expression is as fol-
lows:

()()()_ _,inj H 4 inj H 5 alignF F Split Conv1 1 Transformer F= × (10)

Lastly, the obtained local features and global information are fused by IIM which is
completely consistent with Low-GD. Therefore, the process of information injection can
be expressed by the formula:

()()()_ _ _global act Hi act inj HiF Resize Sigmoid Conv F= (11)

()()_ _ _ _ _global embed Hi global embed Hi inj HiF Resize Conv F= (12)

()_ _ _ _ _ _ _ _att fuse Hi local embed Hi global act Hi global embed HiF Conv Li F F= ∗ + (13)

_ _()i att fuse HiH RepBlock F= (14)

3. Experiments and Discussion
3.1. Datasets

In order to evaluate the ability of EFF-YOLO in small-scale pedestrian detection un-
der a complex background, three representative datasets are selected in this experiment.
The following are the details of the three datasets and Table 1 shows the specific division
of the datasets.

COCO-person [34]: A sub-dataset consisting of images containing small-scale pedes-
trians is selected from the COCO dataset. This dataset includes small objects such as shop-
pers and vendors on the plaza and pedestrians on the pedestrian street. The object scenar-
ios are rich and diverse and are suitable for small object pedestrian-detection tasks.

Citypersons [35]: The optimized diverse pedestrian dataset includes small-scale pe-
destrians from various cities, encompassing a wide range of contextual environments such
as streets and squares. This diverse design enhances the model’s generalization capability,
enabling it to perform more effectively across different environments.

LLVIP [36]: A dataset designed for pedestrian detection in low-light conditions. This
dataset includes images of pedestrians at various street locations between 6 and 10 PM.
Detecting pedestrians under these conditions poses greater challenges to the model, as
low-light environments typically introduce increased noise and reduced contrast.

Figure 6. The structure of high-stage GD branch.

Lastly, the obtained local features and global information are fused by IIM which is
completely consistent with Low-GD. Therefore, the process of information injection can be
expressed by the formula:

Fglobal_act_Hi = Resize
(
Sigmoid

(
Convact

(
Finj_Hi

)))
(11)

Fglobal_embed_Hi = Resize
(

Convglobal_embed_Hi
(

Finj_Hi
))

(12)

Fatt_ f use_Hi = Convlocal_embed_Hi(Li) ∗ Fglobal_act_Hi + Fglobal_embed_Hi (13)

Hi = RepBlock(Fatt_ f use_Hi) (14)

3. Experiments and Discussion
3.1. Datasets

In order to evaluate the ability of EFF-YOLO in small-scale pedestrian detection under
a complex background, three representative datasets are selected in this experiment. The
following are the details of the three datasets and Table 1 shows the specific division of
the datasets.

Table 1. Different subset divisions of the three datasets.

Dataset Train Validation Test Size

COCO-person 6192 774 774 640 × 480
Citypersons 2975 500 1575 2048 × 1024

LLVIP 12,025 2463 1000 1280 × 1024

COCO-person [34]: A sub-dataset consisting of images containing small-scale pedestri-
ans is selected from the COCO dataset. This dataset includes small objects such as shoppers
and vendors on the plaza and pedestrians on the pedestrian street. The object scenarios are
rich and diverse and are suitable for small object pedestrian-detection tasks.

Citypersons [35]: The optimized diverse pedestrian dataset includes small-scale pedes-
trians from various cities, encompassing a wide range of contextual environments such as
streets and squares. This diverse design enhances the model’s generalization capability,
enabling it to perform more effectively across different environments.

LLVIP [36]: A dataset designed for pedestrian detection in low-light conditions. This
dataset includes images of pedestrians at various street locations between 6 and 10 PM.
Detecting pedestrians under these conditions poses greater challenges to the model, as
low-light environments typically introduce increased noise and reduced contrast.

3.2. Experiment Settings

The training environment for this experimental model consists of Ubuntu 20.04 oper-
ating system with an RTX 3090 GPU. The deep learning framework used is Pytorch 1.13.1
and CUDA 11.7. For training, the batch size of input images is set to 16, and the input
size is 640 × 480. To expedite the convergence speed, the initial learning rate is set to 0.01,

Sensors 2024, 24, 7308 9 of 19

the weight decay coefficient to 0.0005, and the momentum factor to 0.937, with the SGD
employed for training. All models are trained for 120 epochs. Conversely, during testing,
the original image size of the dataset is used as input to examine the model’s adaptability
to different pixel inputs. The edge device used in the experiments is the NVIDIA Jetson
Orin NX, featuring a 6-core Carmel ARM CPU, 1024-core NVIDIA Ampere CUDA cores,
and 8 GB of RAM.

3.3. Evaluation Metrics

Commonly used evaluation metrics in pedestrian detection include mean average
precision (mAP), precision (P), recall (R), model size, giga floating-point operations per
second (GFLOPs), and frames per second (FPS).

mAP is a comprehensive metric that reflects both the precision and recall performance
of a detection algorithm. It is calculated by averaging the precision values at different recall
levels across multiple classes. The definition is as follows:

mAP =
1
N

N

∑
I=1

∫ 1

0
P(R)d(R) (15)

Precision measures the proportion of true positive detections among all positive
predictions. It is defined as:

P =
TP

TP + FP
(16)

Recall measures the proportion of true positive detections among all actual positive
instances. It is defined as:

R =
TP

TP + FN
(17)

where TP, FN, and FP indicate true positive, false negative, and false positive, respectively.
N indicates the total number of categories.

Model size refers to the storage space required to store the model, typically measured in
megabytes (MB). A smaller model size is beneficial for deployment in resource-constrained
environments.

GFLOPs measure the computational complexity of the model, representing the number
of billions of floating-point operations required per second. Lower GFLOPs indicate a more
computationally efficient model.

FPS is a critical indicator of processing speed, representing the number of frames the
model can process in one second. Higher FPS values indicate faster real-time performance.

These metrics collectively provide a comprehensive evaluation of the performance,
efficiency, and practicality of pedestrian-detection algorithms.

3.4. Results
3.4.1. Ablation Study

A series of ablation experiments are conducted to evaluate the effectiveness of each
improvement module in EFF-YOLO. Specifically, by employing a control-variable method,
we modify different components of the model across three datasets, enabling a systematic
analysis of performance variations under various scenarios. Using YOLOv8n as the baseline,
we progressively introduce the FasterNet block (FB) and the gather-and-distribute (GD)
mechanism. The final model that integrates all these enhancements is referred to as EFF-
YOLO. This approach allows us to assess the specific impact of individual modules on
overall model performance while maintaining consistency in other conditions.

Effect of FB: By adopting a lightweight design that reduces redundant computations
and memory accesses, the PConv-based FB enhances computational efficiency and makes
the model more suitable for environments with limited computational resources. As shown
in Table 2, the model size is reduced by 40.3% and the computational load is decreased

Sensors 2024, 24, 7308 10 of 19

by 39% after employing FB as the backbone. However, this reduction in model size and
computational requirements comes at the cost of a slight decrease in accuracy.

Table 2. Ablation results of different modules.

Dataset Yolov8n FB GD mAP0.5 mAP0.5:0.95 P R Model Size GFLOPs

COCO-person

√
0.706 0.460 0.746 0.635 6.2 M 8.2√ √
0.668 0.431 0.642 0.603 3.7 M 5.0√ √
0.718 0.468 0.777 0.662 6.2 M 17.6√ √ √
0.725 0.470 0.778 0.672 5.9 M 11.5

Citypersons

√
0.710 0.411 0.779 0.607 6.2 M 8.2√ √
0.625 0.364 0.709 0.520 3.7 M 5.0√ √
0.721 0.432 0.783 0.617 6.2 M 17.6√ √ √
0.725 0.432 0.802 0.605 5.9 M 11.5

LLVIP

√
0.904 0.524 0.919 0.825 6.2 M 8.2√ √
0.842 0.456 0.824 0.768 3.7 M 5.0√ √
0.907 0.526 0.908 0.836 6.2 M 17.6√ √ √
0.902 0.524 0.923 0.826 5.9 M 11.5

Bold represents the best results.

Effect of GD: Subsequently, the GD mechanism is added to YOLOv8n. This mechanism
aims to enhance the model’s detection capabilities through more efficient feature aggrega-
tion and information flow. The results, shown in Table 2, indicate that the introduction of
this mechanism achieves mAP0.5 increases of 1.2% (to 71.8%), 1.1% (to 72.1%), and 0.3% (to
90.7%) on the three public datasets, respectively. It is important to note that the introduction
of GD brings no increase in model size compared to the baseline.

Effect of Combining FB with GD: Ultimately, we integrate the GD mechanism with
FB technology to develop EFF-YOLO. This model seeks to combine the strengths of both
approaches, achieving a balance between peak performance and computational efficiency.
Experimental results show that EFF-YOLO achieves 72.5% (1.9%↑ and 1.5%↑) mAP0.5 on
both the COCO-person and Citypersons datasets. Meanwhile, EFF-YOLO maintains a
more reasonable computational complexity and model size.

To illustrate the difference in region of interest between EFF-YOLO and the baseline,
we visualize the gradient heatmap in Figure 7. The small-scale pedestrians in the original
image, combined with the lack of distinct pedestrian features in low-light conditions, make
it challenging to discern edge features. However, by comparing the heatmaps, we observe
that EFF-YOLO becomes more sensitive to the otherwise difficult-to-recognize pedestrian
features after fusion with low-level features. Additionally, EFF-YOLO effectively suppresses
interference from extraneous backgrounds, thereby achieving accurate localization of
pedestrian features in images. This demonstrates that the improved algorithm not only
enhances the recognition of subtle features but also improves detection performance in
complex environments, thoroughly validating the effectiveness and superiority of the
proposed method. Despite this, we observed that in dense small-scale pedestrian scenes on
the COCO-person dataset, EFF-YOLO is less susceptible to interference from background
information at the image edges and can more accurately localize human-related regions
compared to YOLOv8n. However, our method still exhibits localization errors when
dealing with heavily occluded pedestrians. This indicates that while EFF-YOLO excels at
reducing background interference and enhancing feature recognition, further optimization
is needed to improve detection accuracy and robustness in high-density and severely
occluded scenarios.

Sensors 2024, 24, 7308 11 of 19

Sensors 2024, 24, x FOR PEER REVIEW 11 of 19

performance in complex environments, thoroughly validating the effectiveness and supe-
riority of the proposed method. Despite this, we observed that in dense small-scale pedes-
trian scenes on the COCO-person dataset, EFF-YOLO is less susceptible to interference
from background information at the image edges and can more accurately localize hu-
man-related regions compared to YOLOv8n. However, our method still exhibits localiza-
tion errors when dealing with heavily occluded pedestrians. This indicates that while EFF-
YOLO excels at reducing background interference and enhancing feature recognition, fur-
ther optimization is needed to improve detection accuracy and robustness in high-density
and severely occluded scenarios.

Input image

YOLOv8n

EFF-YOLO (Ours)

 (a) (b) (c)

Figure 7. Comparison of visualized heatmaps from the EFF-YOLO and baseline on three datasets.
(a) COCO-person; (b) Citypersons; (c) LLVIP.

3.4.2. Comparison of Detection Accuracy Metrics
In order to validate the reliability and usefulness of EFF-YOLO for small-scale pedes-

trian detection, we conducted comparative experiments using five lightweight variants of
the YOLO family, including YOLOv5n [23], YOLOv5s [23], YOLOv7-tiny [25], YOLOv8s
[26], and YOLOv8n [26]. This evaluation aims to highlight the advantages of EFF-YOLO
over these lightweight models in resource-constrained environments and real-time appli-
cations. Here, n denotes the smallest model variant nano, tiny denotes the smaller model
variant, and s denotes the relatively larger but still lightweight model variant small. The
experimental results are shown in Table 3. EFF-YOLO achieved 72.5% (2%↑), 72.3%
(1.3%↑), and 91.0% (0.6%↑) mAP0.5 on the three benchmark datasets, respectively. Specifi-
cally, on the COCO-person dataset, YOLOv7-tiny achieved the highest mAP0.5, YOLOv8s
achieved the highest mAP0.5:0.95 and precision, and EFF-YOLO achieved the highest recall
value. On the Citypersons dataset, YOLOv8s reaches the highest mAP0.5 and mAP0.5:0.95,
while EFF-YOLO achieves the highest precision. Furthermore, on the pedestrian-detection
dataset LLVIP in low light, the mAP0.5, mAP0.5:0.95, and precision of EFF-YOLO are only
0.2%, 0.2%, and 1.4% lower than the highest metrics, which demonstrates a near-optimal
level of performance in low-light conditions.

Figure 7. Comparison of visualized heatmaps from the EFF-YOLO and baseline on three datasets.
(a) COCO-person; (b) Citypersons; (c) LLVIP.

3.4.2. Comparison of Detection Accuracy Metrics

In order to validate the reliability and usefulness of EFF-YOLO for small-scale pedes-
trian detection, we conducted comparative experiments using five lightweight variants of
the YOLO family, including YOLOv5n [23], YOLOv5s [23], YOLOv7-tiny [25], YOLOv8s [26],
and YOLOv8n [26]. This evaluation aims to highlight the advantages of EFF-YOLO over
these lightweight models in resource-constrained environments and real-time applications.
Here, n denotes the smallest model variant nano, tiny denotes the smaller model variant,
and s denotes the relatively larger but still lightweight model variant small. The exper-
imental results are shown in Table 3. EFF-YOLO achieved 72.5% (2%↑), 72.3% (1.3%↑),
and 91.0% (0.6%↑) mAP0.5 on the three benchmark datasets, respectively. Specifically, on
the COCO-person dataset, YOLOv7-tiny achieved the highest mAP0.5, YOLOv8s achieved
the highest mAP0.5:0.95 and precision, and EFF-YOLO achieved the highest recall value.
On the Citypersons dataset, YOLOv8s reaches the highest mAP0.5 and mAP0.5:0.95, while
EFF-YOLO achieves the highest precision. Furthermore, on the pedestrian-detection dataset
LLVIP in low light, the mAP0.5, mAP0.5:0.95, and precision of EFF-YOLO are only 0.2%,
0.2%, and 1.4% lower than the highest metrics, which demonstrates a near-optimal level of
performance in low-light conditions.

In summary, our model achieves a significant accuracy gain compared to the baseline,
but shows a slight drop in comparison to larger models such as YOLOv7-tiny and YOLOv8s.
This phenomenon can be attributed to the lightweight architecture and enhanced feature-
fusion module design we employ, resulting in a slight decrease in model performance
in the acceptable 0–3% range. Notably, the performance of the EFF-YOLO in low-light
environments is similar to that of the optimal model, indicating that our approach is well-
suited for small-scale pedestrian detection in dim conditions. Meanwhile, we show the
PR curves and mAP0.5:0.95 iteration curves of six algorithms on all datasets in Figure 8.
Local magnification of the PR curve intuitively shows that the EFF-YOLO model has the
lowest missing rate compared with YOLOv5n, YOLOv5s, YOLOv7-tiny, and YOLOv8n. In
addition, EFF-YOLO achieves a similar miss rate to YOLOv8s at a lower parameter count.
Among the mAP0.5:0.95 iteration curves of the three datasets, the mAP0.5:0.95 value of EFF

Sensors 2024, 24, 7308 12 of 19

YOLO is also higher than that of other models except YOLOv8s, indicating that EFF YOLO
has superior performance in detecting small-scale pedestrians.

Table 3. Comparison of detection accuracy on three datasets.

Method
COCO-Person Citypersons LLVIP

mAP0.5 mAP0.5:0.95 P R mAP0.5 mAP0.5:0.95 P R mAP0.5 mAP0.5:0.95 P R

YOLOv5n 0.550 0.379 0.526 0.401 0.679 0.389 0.768 0.581 0.907 0.504 0.905 0.849
YOLOv5s 0.668 0.452 0.768 0.637 0.674 0.398 0.782 0.582 0.912 0.507 0.909 0.862

YOLOv7-tiny 0.750 0.469 0.781 0.669 0.718 0.406 0.767 0.633 0.912 0.511 0.916 0.852
YOLOv8n 0.705 0.460 0.746 0.635 0.710 0.411 0.779 0.607 0.904 0.524 0.919 0.825
YOLOv8s 0.726 0.488 0.804 0.643 0.734 0.454 0.797 0.631 0.907 0.526 0.937 0.867

EFF-YOLO (ours) 0.725 0.470 0.778 0.672 0.723 0.432 0.802 0.605 0.910 0.524 0.923 0.826

Bold represents the best results.

Sensors 2024, 24, x FOR PEER REVIEW 12 of 19

Table 3. Comparison of detection accuracy on three datasets.

Method COCO-Person Citypersons LLVIP
mAP0.5 mAP0.5:0.95 P R mAP0.5 mAP0.5:0.95 P R mAP0.5 mAP0.5:0.95 P R

YOLOv5n 0.550 0.379 0.526 0.401 0.679 0.389 0.768 0.581 0.907 0.504 0.905 0.849
YOLOv5s 0.668 0.452 0.768 0.637 0.674 0.398 0.782 0.582 0.912 0.507 0.909 0.862

YOLOv7-tiny 0.750 0.469 0.781 0.669 0.718 0.406 0.767 0.633 0.912 0.511 0.916 0.852
YOLOv8n 0.705 0.460 0.746 0.635 0.710 0.411 0.779 0.607 0.904 0.524 0.919 0.825
YOLOv8s 0.726 0.488 0.804 0.643 0.734 0.454 0.797 0.631 0.907 0.526 0.937 0.867

EFF-YOLO (ours) 0.725 0.470 0.778 0.672 0.723 0.432 0.802 0.605 0.910 0.524 0.923 0.826
Bold represents the best results.

In summary, our model achieves a significant accuracy gain compared to the base-
line, but shows a slight drop in comparison to larger models such as YOLOv7-tiny and
YOLOv8s. This phenomenon can be attributed to the lightweight architecture and en-
hanced feature-fusion module design we employ, resulting in a slight decrease in model
performance in the acceptable 0–3% range. Notably, the performance of the EFF-YOLO in
low-light environments is similar to that of the optimal model, indicating that our ap-
proach is well-suited for small-scale pedestrian detection in dim conditions. Meanwhile,
we show the PR curves and mAP0.5:0.95 iteration curves of six algorithms on all datasets in
Figure 8. Local magnification of the PR curve intuitively shows that the EFF-YOLO model
has the lowest missing rate compared with YOLOv5n, YOLOv5s, YOLOv7-tiny, and
YOLOv8n. In addition, EFF-YOLO achieves a similar miss rate to YOLOv8s at a lower
parameter count. Among the mAP0.5:0.95 iteration curves of the three datasets, the mAP0.5:0.95
value of EFF YOLO is also higher than that of other models except YOLOv8s, indicating
that EFF YOLO has superior performance in detecting small-scale pedestrians.

(a) (b) (c)

(d) (e) (f)

Figure 8. PR curves and mAP0.5:0.95 iteration curves of different models. (a) PR curve on COCO-per-
son; (b) PR curve on Citypersons; (c) PR curve on LLVIP; (d) iterative curve of mAP0.5:0.95 on COCO-
person; (e) iterative curve of mAP0.5:0.95 on Citypersons; (f) iterative curve of mAP0.5:0.95 on LLVIP.

Figure 8. PR curves and mAP0.5:0.95 iteration curves of different models. (a) PR curve on COCO-
person; (b) PR curve on Citypersons; (c) PR curve on LLVIP; (d) iterative curve of mAP0.5:0.95 on
COCO-person; (e) iterative curve of mAP0.5:0.95 on Citypersons; (f) iterative curve of mAP0.5:0.95

on LLVIP.

Through visual detection effects, we can intuitively evaluate the performance of differ-
ent models in practical application scenarios, which helps to reveal the real performance of
models in complex environments. The visualization of the model detection results is shown
in Figure 9. Other algorithms generally suffer from missed detection or false detection
when facing pedestrian images with different object scales. Specifically, the detection effect
of the COCO-person dataset is shown in Figure 9a. EFF-YOLO can effectively identify and
accurately locate objects for both small-scale pedestrians located far away and multiple
human bodies on motorcycles. The visualization results of the Citypersons dataset are
shown in Figure 9b. For small-scale pedestrians at the end of the street, only YOLOv5s and
EFF-YOLO can accurately detect the pedestrians in the figure, while other algorithms can-
not. Visualization results of the LLVIP dataset are shown in Figure 9c. When pedestrian-like
features exist in images with weak light at night, only YOLOv8s and EFF-YOLO effectively

Sensors 2024, 24, 7308 13 of 19

suppressed interference information and accurately detected pedestrians. In summary, the
EFF-YOLO model shows better results in pedestrian detection in low-light environment
and small-scale pedestrian detection, and effectively completes the recognition task of
this study.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 19

Through visual detection effects, we can intuitively evaluate the performance of dif-
ferent models in practical application scenarios, which helps to reveal the real perfor-
mance of models in complex environments. The visualization of the model detection re-
sults is shown in Figure 9. Other algorithms generally suffer from missed detection or
false detection when facing pedestrian images with different object scales. Specifically, the
detection effect of the COCO-person dataset is shown in Figure 9a. EFF-YOLO can effec-
tively identify and accurately locate objects for both small-scale pedestrians located far
away and multiple human bodies on motorcycles. The visualization results of the
Citypersons dataset are shown in Figure 9b. For small-scale pedestrians at the end of the
street, only YOLOv5s and EFF-YOLO can accurately detect the pedestrians in the figure,
while other algorithms cannot. Visualization results of the LLVIP dataset are shown in
Figure 9c. When pedestrian-like features exist in images with weak light at night, only
YOLOv8s and EFF-YOLO effectively suppressed interference information and accurately
detected pedestrians. In summary, the EFF-YOLO model shows better results in pedes-
trian detection in low-light environment and small-scale pedestrian detection, and effec-
tively completes the recognition task of this study.

Input image

YOLOv5n

YOLOv5s

YOLOv7-Tiny

YOLOv8n

Sensors 2024, 24, x FOR PEER REVIEW 14 of 19

YOLOv8s

EFF-YOLO(Ours)

 (a) (b) (c)

Figure 9. Visualization results of different models on three datasets. (a) COCO-person; (b)
Citypersons; (c) LLVIP.

3.4.3. Comparison of Detection Inference Speed
In practical applications, it is very important to achieve a balance between the accu-

racy and speed of the model. This balance not only determines the usability of the model
in the real world, but also directly affects the user experience and the adoption of the
technology. The comparison of detection speeds of algorithms on all datasets is shown in
Table 4. Specifically, on the COCO-person dataset, we obtained a mAP0.5 gain of 2% com-
pared to YOLOv8n with an inference speed increase of only 0.3 ms. Meanwhile, compared
with the highest accuracy YOLOv7-tiny, the inference time of EFF-YOLO is decreased by
25.2% and the detection rate is increased by 25.7 fps. On the Citypersons dataset, EFF-
YOLO is superior in accuracy to other models except YOLOv8s and has a clear advantage
in inference speed. On the LLVIP dataset, the accuracy and inference time of EFF-YOLO
show clear advantages in all indicators. For example, EFF-YOLO shows only a 0.2% de-
crease compared to the highest-accuracy YOLOv5s and YOLOv7-tiny, but the inference
time is accelerated by 8.9% and 37.4%, and the detection speed is improved by 9.7 fps and
40.7 fps, respectively. Our accuracy and speed improved by 0.3% and 4.5 fps, respectively
compared to the lightest YOLOv5n. The experimental results show that EFF-YOLO main-
tains its light weight while still providing strong detection capabilities and superior per-
formance in specific scenarios.

Table 4. Comparison of inference speed on three datasets.

Method
COCO-Person @640 × 480 Citypersons @2048 × 1024 LLVIP @1280 × 1024

mAP0.5 FPS Speed (ms) mAP0.5 FPS Speed (ms) mAP0.5 FPS Speed (ms)
YOLOv5n 0.550 123.5 8.1 0.679 59.5 16.8 0.907 104.2 9.6
YOLOv5s 0.668 98.0 10.2 0.674 49.8 20.1 0.912 99.0 10.1

YOLOv7-tiny 0.750 76.3 13.1 0.718 38.3 26.1 0.912 68.0 14.7
YOLOv8n 0.705 105.3 9.5 0.710 54.1 18.5 0.904 112.4 8.9
YOLOv8s 0.726 83.3 12.0 0.734 41.3 24.4 0.907 78.1 12.8

EFF-YOLO (ours) 0.725 102.0 9.8 0.723 52.6 19 0.910 108.7 9.2
Bold represents the best results.

In addition, a comparative analysis of the memory required to load the model and
the number of FLOPs required during the computation is shown in Table 5 to validate the
advantages of the model for applications on resource-constrained devices. In this evalua-
tion, we use the same input size of 640 × 480 to calculate and compare the model size and
GFLOPs of each model. As can be seen from the data, EFF-YOLO performs particularly

Figure 9. Visualization results of different models on three datasets. (a) COCO-person; (b) Cityper-
sons; (c) LLVIP.

Sensors 2024, 24, 7308 14 of 19

3.4.3. Comparison of Detection Inference Speed

In practical applications, it is very important to achieve a balance between the accuracy
and speed of the model. This balance not only determines the usability of the model in the
real world, but also directly affects the user experience and the adoption of the technology.
The comparison of detection speeds of algorithms on all datasets is shown in Table 4.
Specifically, on the COCO-person dataset, we obtained a mAP0.5 gain of 2% compared to
YOLOv8n with an inference speed increase of only 0.3 ms. Meanwhile, compared with
the highest accuracy YOLOv7-tiny, the inference time of EFF-YOLO is decreased by 25.2%
and the detection rate is increased by 25.7 fps. On the Citypersons dataset, EFF-YOLO
is superior in accuracy to other models except YOLOv8s and has a clear advantage in
inference speed. On the LLVIP dataset, the accuracy and inference time of EFF-YOLO show
clear advantages in all indicators. For example, EFF-YOLO shows only a 0.2% decrease
compared to the highest-accuracy YOLOv5s and YOLOv7-tiny, but the inference time is
accelerated by 8.9% and 37.4%, and the detection speed is improved by 9.7 fps and 40.7 fps,
respectively. Our accuracy and speed improved by 0.3% and 4.5 fps, respectively compared
to the lightest YOLOv5n. The experimental results show that EFF-YOLO maintains its
light weight while still providing strong detection capabilities and superior performance in
specific scenarios.

Table 4. Comparison of inference speed on three datasets.

Method
COCO-Person @640 × 480 Citypersons @2048 × 1024 LLVIP @1280 × 1024

mAP0.5 FPS Speed (ms) mAP0.5 FPS Speed (ms) mAP0.5 FPS Speed (ms)

YOLOv5n 0.550 123.5 8.1 0.679 59.5 16.8 0.907 104.2 9.6
YOLOv5s 0.668 98.0 10.2 0.674 49.8 20.1 0.912 99.0 10.1

YOLOv7-tiny 0.750 76.3 13.1 0.718 38.3 26.1 0.912 68.0 14.7
YOLOv8n 0.705 105.3 9.5 0.710 54.1 18.5 0.904 112.4 8.9
YOLOv8s 0.726 83.3 12.0 0.734 41.3 24.4 0.907 78.1 12.8

EFF-YOLO (ours) 0.725 102.0 9.8 0.723 52.6 19 0.910 108.7 9.2

Bold represents the best results.

In addition, a comparative analysis of the memory required to load the model and
the number of FLOPs required during the computation is shown in Table 5 to validate
the advantages of the model for applications on resource-constrained devices. In this
evaluation, we use the same input size of 640 × 480 to calculate and compare the model size
and GFLOPs of each model. As can be seen from the data, EFF-YOLO performs particularly
well in terms of model size, which is only 5.9 MB. Compared to other lightweight models
there is a significant reduction; in particular, compared to YOLOv8s, the model size is
reduced by 73.8%. Meanwhile, the score of EFF-YOLO on mAP0.5 reaches 72.5%, which is
almost the same as YOLOv8s. This shows that EFF-YOLO achieves model miniaturization
while maintaining high detection accuracy.

Table 5. Comparison of different model complexity.

Method mAP0.5 Model Size GFLOPs

YOLOv5n 0.550 3.7 M 5.2
YOLOv5s 0.668 13.7 M 15.8

YOLOv7-tiny 0.750 12.3 M 13.2
YOLOv8n 0.705 6.2 M 8.2
YOLOv8s 0.726 22.5 M 28.2

EFF-YOLO (ours) 0.725 5.9 M 12.5
Bold represents the best results.

Figure 10 provides a comparative analysis of the speed–accuracy trade-off for six
models across three datasets. EFF-YOLO demonstrates high accuracy and fast inference
speed, indicating that the algorithm achieves faster detection while maintaining detection
accuracy. This advantage makes EFF-YOLO more valuable in practical applications, es-

Sensors 2024, 24, 7308 15 of 19

pecially for scenarios that require real-time processing of large amounts of data such as
intelligent transportation systems and surveillance systems.

Sensors 2024, 24, x FOR PEER REVIEW 15 of 19

well in terms of model size, which is only 5.9 MB. Compared to other lightweight models
there is a significant reduction; in particular, compared to YOLOv8s, the model size is
reduced by 73.8%. Meanwhile, the score of EFF-YOLO on mAP0.5 reaches 72.5%, which is
almost the same as YOLOv8s. This shows that EFF-YOLO achieves model miniaturization
while maintaining high detection accuracy.

Table 5. Comparison of different model complexity.

Method mAP0.5 Model Size GFLOPs
YOLOv5n 0.550 3.7 M 5.2
YOLOv5s 0.668 13.7 M 15.8

YOLOv7-tiny 0.750 12.3 M 13.2
YOLOv8n 0.705 6.2 M 8.2
YOLOv8s 0.726 22.5 M 28.2

EFF-YOLO (ours) 0.725 5.9 M 12.5
Bold represents the best results.

Figure 10 provides a comparative analysis of the speed–accuracy trade-off for six
models across three datasets. EFF-YOLO demonstrates high accuracy and fast inference
speed, indicating that the algorithm achieves faster detection while maintaining detection
accuracy. This advantage makes EFF-YOLO more valuable in practical applications, espe-
cially for scenarios that require real-time processing of large amounts of data such as in-
telligent transportation systems and surveillance systems.

(a) (b) (c)

Figure 10. Comparison of algorithm speed and accuracy on three datasets. (a) COCO-person; (b)
Citypersons; (c) LLVIP.

3.4.4. Edge Deployment
The optimized model is deployed on a Jetson Orin NX development board to test the

real-time detection capability of the model. The deployment process uses TensorRT [37]
to optimize the model in ONNX format and convert it to an engine file format specific to
the NVIDIA platform. We also used DeepStream to build a video-analysis pipeline to sim-
plify the complex video-processing logic. Finally, programs were written in C++ to call the
converted models for real-time inference. To facilitate outdoor testing, NoMachine is used
as a remote access solution to remotely control the Jetson development board over the
network. The test platform and scenario are shown in Figure 11. The platform connects to
a Sony IMX219 camera via a Camera Serial Interface (CSI) interface to obtain a live video
stream as input data. All configurations run at 16-bit floating-point precision. The real-
time detection scenarios include a school lawn and a main road, which mainly test the
model’s detection ability in open areas and dynamic environments. The testing time

Figure 10. Comparison of algorithm speed and accuracy on three datasets. (a) COCO-person;
(b) Citypersons; (c) LLVIP.

3.4.4. Edge Deployment

The optimized model is deployed on a Jetson Orin NX development board to test the
real-time detection capability of the model. The deployment process uses TensorRT [37]
to optimize the model in ONNX format and convert it to an engine file format specific
to the NVIDIA platform. We also used DeepStream to build a video-analysis pipeline to
simplify the complex video-processing logic. Finally, programs were written in C++ to call
the converted models for real-time inference. To facilitate outdoor testing, NoMachine is
used as a remote access solution to remotely control the Jetson development board over the
network. The test platform and scenario are shown in Figure 11. The platform connects
to a Sony IMX219 camera via a Camera Serial Interface (CSI) interface to obtain a live
video stream as input data. All configurations run at 16-bit floating-point precision. The
real-time detection scenarios include a school lawn and a main road, which mainly test the
model’s detection ability in open areas and dynamic environments. The testing time covers
both day and night to evaluate the robustness and accuracy of the model under different
lighting conditions.

Sensors 2024, 24, x FOR PEER REVIEW 16 of 19

covers both day and night to evaluate the robustness and accuracy of the model under
different lighting conditions.

Figure 11. The experimental platform based on edge devices.

EFF-YOLO and the baseline model are deployed on the NVIDIA Jetson Orin NX for
performance testing. To comprehensively evaluate the model performance, we test the
detection frame rates for both image and video stream processing. For image detection, a
series of standard image datasets are used to evaluate the model’s processing speed on
static images. In the real-time camera detection tests, we evaluate the model’s real-time
detection frame rates at both low resolution of 640 × 480 and high resolution of 1920 ×
1080. The comparison results between EFF-YOLO and the baseline are shown in Table 6.
The data indicate that the improved model outperforms the baseline in all aspects of per-
formance. Specifically, EFF-YOLO has a smaller model size compared to YOLOv8n,
providing an advantage on devices with limited storage space. When processing static
images, the proposed method achieves a speed of 58.8 fps, representing an improvement
of approximately 3.5% over the baseline model. In real-time video stream detection at a
low resolution of 640 × 480, our model achieves 83 fps, which is a 12.2% increase in pro-
cessing speed compared to the baseline. At high resolution of 1920 × 1080, the proposed
method increases the frame rate by 6.7 fps compared to YOLOv8n, reaching 50.7 fps. Over-
all, EFF-YOLO provides notable improvements in both model size and detection speed,
offering significant advantages in real-time detection applications. In particular, our
method far exceeds the industry standard requirement of 30 fps in terms of frame rate,
making it highly suitable for applications that demand high-performance real-time pro-
cessing.

Table 6. FPS comparison between EFF-YOLO and baseline on the Jetson Orin NX platform.

Method Model Size
Picture (FPS) Real-Time Video (FP16, FPS)

640 × 480 640 × 480 1920 × 1080
YOLOv8n 6.2 56.8 74.0 44.0

EFF-YOLO (ours) 5.9 58.8 83.0 50.7
Bold represents the best results.

To validate EFF-YOLO in real-world application scenarios applied to the edge of
equipment performance, we present the visualization results of pedestrian detection in
various complex campus scenes in Figure 12. During the day, both EFF-YOLO and
YOLOv8n demonstrate comparable detection performance in a variety of campus settings.
Whether in open areas with clear visibility or in more cluttered environments with nu-
merous obstacles, both models maintain high detection accuracy. However, EFF-YOLO
shows a notable advantage in detecting small-scale pedestrians. For instance, in the first
image, EFF-YOLO accurately detects a person riding a bicycle behind a flower bed, a sce-
nario where YOLOv8n struggles. At night, the challenges increase due to reduced lighting
and potential occlusions. Despite these conditions, EFF-YOLO continues to perform well,

Figure 11. The experimental platform based on edge devices.

EFF-YOLO and the baseline model are deployed on the NVIDIA Jetson Orin NX for
performance testing. To comprehensively evaluate the model performance, we test the
detection frame rates for both image and video stream processing. For image detection,
a series of standard image datasets are used to evaluate the model’s processing speed
on static images. In the real-time camera detection tests, we evaluate the model’s real-
time detection frame rates at both low resolution of 640 × 480 and high resolution of

Sensors 2024, 24, 7308 16 of 19

1920 × 1080. The comparison results between EFF-YOLO and the baseline are shown in
Table 6. The data indicate that the improved model outperforms the baseline in all aspects
of performance. Specifically, EFF-YOLO has a smaller model size compared to YOLOv8n,
providing an advantage on devices with limited storage space. When processing static
images, the proposed method achieves a speed of 58.8 fps, representing an improvement of
approximately 3.5% over the baseline model. In real-time video stream detection at a low
resolution of 640 × 480, our model achieves 83 fps, which is a 12.2% increase in processing
speed compared to the baseline. At high resolution of 1920 × 1080, the proposed method
increases the frame rate by 6.7 fps compared to YOLOv8n, reaching 50.7 fps. Overall, EFF-
YOLO provides notable improvements in both model size and detection speed, offering
significant advantages in real-time detection applications. In particular, our method far
exceeds the industry standard requirement of 30 fps in terms of frame rate, making it highly
suitable for applications that demand high-performance real-time processing.

Table 6. FPS comparison between EFF-YOLO and baseline on the Jetson Orin NX platform.

Method Model Size
Picture (FPS) Real-Time Video (FP16, FPS)

640 × 480 640 × 480 1920 × 1080

YOLOv8n 6.2 56.8 74.0 44.0
EFF-YOLO (ours) 5.9 58.8 83.0 50.7

Bold represents the best results.

To validate EFF-YOLO in real-world application scenarios applied to the edge of equip-
ment performance, we present the visualization results of pedestrian detection in various
complex campus scenes in Figure 12. During the day, both EFF-YOLO and YOLOv8n
demonstrate comparable detection performance in a variety of campus settings. Whether
in open areas with clear visibility or in more cluttered environments with numerous ob-
stacles, both models maintain high detection accuracy. However, EFF-YOLO shows a
notable advantage in detecting small-scale pedestrians. For instance, in the first image,
EFF-YOLO accurately detects a person riding a bicycle behind a flower bed, a scenario
where YOLOv8n struggles. At night, the challenges increase due to reduced lighting
and potential occlusions. Despite these conditions, EFF-YOLO continues to perform well,
accurately detecting pedestrians even at a distance. This capability is particularly valu-
able for nighttime surveillance and safety applications, where traditional models might
struggle due to poor lighting conditions. In contrast, the baseline YOLOv8n experiences
more difficulties. On streets with significant exposure and tree interference, YOLOv8n
produces a higher number of false negatives. Additionally, in the third row and third
column image, YOLOv8n incorrectly identifies distant lights as pedestrians. These results
further confirm that EFF-YOLO maintains excellent real-time detection performance while
ensuring accuracy, making it a superior choice for applications such as campus security
and crowd management, especially in challenging environments.

Sensors 2024, 24, x FOR PEER REVIEW 17 of 19

accurately detecting pedestrians even at a distance. This capability is particularly valuable
for nighttime surveillance and safety applications, where traditional models might strug-
gle due to poor lighting conditions. In contrast, the baseline YOLOv8n experiences more
difficulties. On streets with significant exposure and tree interference, YOLOv8n produces
a higher number of false negatives. Additionally, in the third row and third column image,
YOLOv8n incorrectly identifies distant lights as pedestrians. These results further confirm
that EFF-YOLO maintains excellent real-time detection performance while ensuring accu-
racy, making it a superior choice for applications such as campus security and crowd man-
agement, especially in challenging environments.

YOLOv8n

EFF-YOLO
(ours)

YOLOv8n

EFF-YOLO
(ours)

 (a) (b)

Figure 12. Visualization of small-scale pedestrian-detection results under different illumination on
the Jetson Orin NX platform. (a) Day. (b) Night.

4. Conclusions
This paper addresses the challenge of small-scale pedestrian detection in complex

backgrounds by proposing EFF-YOLO, a detection method that balances detection accu-
racy and model lightweight. Built upon YOLOv8n, EFF-YOLO incorporates advanced
FasterNet and the GD mechanism to optimize the network. This design ensures that fea-
ture mappings not only contain semantic information from high-level features but also
retain detailed information from low-level features, thereby enhancing the real-time and
precise detection capabilities for small-scale pedestrians. The proposed algorithm was
tested on the COCO-person, CityPersons, and LLVIP datasets. Experimental results show
that, compared to YOLOv8n, EFF-YOLO improves detection accuracy by 2%, 1.3%, and
0.6%, respectively, and reduces the model size by 5%. On the edge device NVIDIA Orin
NX, the model processes 1920 × 1080-pixel video frames from camera inputs at a smooth-
ness of 50.7 fps, significantly exceeding the industrial standard of 30 fps. It is also able to
accurately recognize pedestrians in dim lighting at night in the deployed applications.
Moreover, when compared with other classic detection networks, EFF-YOLO exhibits su-
perior results in terms of mAP, model parameters, and FPS. Overall, EFF-YOLO strikes a
balance between accuracy and detection speed, effectively addressing the issues of small-
scale pedestrian detection. We hope this research will contribute to advancing the

Figure 12. Visualization of small-scale pedestrian-detection results under different illumination on
the Jetson Orin NX platform. (a) Day. (b) Night.

Sensors 2024, 24, 7308 17 of 19

4. Conclusions

This paper addresses the challenge of small-scale pedestrian detection in complex
backgrounds by proposing EFF-YOLO, a detection method that balances detection accuracy
and model lightweight. Built upon YOLOv8n, EFF-YOLO incorporates advanced FasterNet
and the GD mechanism to optimize the network. This design ensures that feature mappings
not only contain semantic information from high-level features but also retain detailed
information from low-level features, thereby enhancing the real-time and precise detection
capabilities for small-scale pedestrians. The proposed algorithm was tested on the COCO-
person, CityPersons, and LLVIP datasets. Experimental results show that, compared to
YOLOv8n, EFF-YOLO improves detection accuracy by 2%, 1.3%, and 0.6%, respectively, and
reduces the model size by 5%. On the edge device NVIDIA Orin NX, the model processes
1920 × 1080-pixel video frames from camera inputs at a smoothness of 50.7 fps, significantly
exceeding the industrial standard of 30 fps. It is also able to accurately recognize pedestrians
in dim lighting at night in the deployed applications. Moreover, when compared with other
classic detection networks, EFF-YOLO exhibits superior results in terms of mAP, model
parameters, and FPS. Overall, EFF-YOLO strikes a balance between accuracy and detection
speed, effectively addressing the issues of small-scale pedestrian detection. We hope this
research will contribute to advancing the application of edge intelligence terminals in areas
such as intelligent surveillance, autonomous driving, and smart robotics.

Author Contributions: Conceptualization, M.H. and T.J.; methodology, Y.Z. and T.J.; software, M.H.
and Y.Z.; validation, M.H., Y.Z., X.W. and J.L.; resources, T.J., H.X., H.L. and S.H.; writing—original
draft preparation, M.H. and Y.Z.; writing—review and editing, M.H., Y.Z. and S.H.; supervision, H.X.,
H.L. and S.H.; funding acquisition, T.J., H.L. and S.H; project administration, H.L. All authors have
read and agreed to the published version of the manuscript.

Funding: The Talent Project of University under Grant No. 2022LJJB005.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The COCO-person dataset used in the experiments can be found at
http://mscoco.org (accessed on 15 March 2024), The Citypersons dataset can be found at https:
//www.cityscapes-dataset.com (accessed on 15 March 2024), The LLVIP dataset can be found at
https://bupt-ai-cz.github.io/LLVIP (accessed on 15 March 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Cao, J.; Pang, Y.; Xie, J.; Khan, F.S.; Shao, L. From Handcrafted to Deep Features for Pedestrian Detection: A Survey. IEEE Trans.

Pattern Anal. Mach. Intell. 2022, 44, 4913–4934. [CrossRef] [PubMed]
2. Abdelmutalab, A.; Wang, C. Pedestrian Detection Using MB-CSP Model and Boosted Identity Aware Non-Maximum Suppression.

IEEE Trans. Intell. Transp. Syst. 2022, 23, 24454–24463. [CrossRef]
3. Mahaur, B.; Mishra, K.K. Small-Object Detection Based on YOLOv5 in Autonomous Driving Systems. Pattern Recognit. Lett. 2023,

168, 115–122. [CrossRef]
4. Aher, V.A.; Jondhale, S.R.; Agarkar, B.S.; George, S.; Shaikh, S.A. Advances in Deep Learning-Based Object Detection and

Tracking for Autonomous Driving: A Review and Future Directions. In Multi-Strategy Learning Environment; Vimal, V., Perikos, I.,
Mukherjee, A., Piuri, V., Eds.; Algorithms for Intelligent Systems; Springer Nature: Singapore, 2024; pp. 569–581.

5. Na, K.; Park, B. Real-time 3D Multi-pedestrian Detection and Tracking Using 3D LiDAR Point Cloud for Mobile Robot. ETRI J.
2023, 45, 836–846. [CrossRef]

6. Ansari, M.F.; Lodi, K.A.; Ansari, M.F.; Lodi, K.A. A Survey of Recent Trends in Two-Stage Object Detection Methods. In Renewable
Power for Sustainable Growth; Iqbal, A., Malik, H., Riyaz, A., Abdellah, K., Bayhan, S., Eds.; Lecture Notes in Electrical Engineering;
Springer: Singapore, 2021; Volume 723, pp. 669–677.

7. Zhang, Y.; Li, X.; Wang, F.; Wei, B.; Li, L. A Comprehensive Review of One-Stage Networks for Object Detection. In Proceedings
of the 2021 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xi’an, China,
17 August 2021; pp. 1–6.

http://mscoco.org
https://www.cityscapes-dataset.com
https://www.cityscapes-dataset.com
https://bupt-ai-cz.github.io/LLVIP
https://doi.org/10.1109/TPAMI.2021.3076733
https://www.ncbi.nlm.nih.gov/pubmed/33929956
https://doi.org/10.1109/TITS.2022.3196854
https://doi.org/10.1016/j.patrec.2023.03.009
https://doi.org/10.4218/etrij.2023-0116

Sensors 2024, 24, 7308 18 of 19

8. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 13–28 June 2014;
pp. 580–587.

9. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef] [PubMed]

10. Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile,
7–13 December 2015; pp. 1440–1448.

11. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

12. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer
Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988.

13. Xie, X.; Cheng, G.; Wang, J.; Li, K.; Yao, X.; Han, J. Oriented R-CNN and Beyond. Int. J. Comput. Vis. 2024, 132, 2420–2442.
[CrossRef]

14. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Computer
Vision–ECCV 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Lecture Notes in Computer Science; Springer International
Publishing: Cham, Switzerland, 2016; Volume 9905, pp. 21–37.

15. Fu, C.Y.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. DSSD: Deconvolutional Single Shot Detector. arXiv 2017, arXiv:1701.06659.
16. Zhang, Q. A Novel ResNet101 Model Based on Dense Dilated Convolution for Image Classification. SN Appl. Sci. 2022, 4, 9.

[CrossRef]
17. Cao, G.; Xie, X.; Yang, W.; Liao, Q.; Shi, G.; Wu, J. Feature-Fused SSD: Fast Detection for Small Objects. arXiv 2017, arXiv:1709.05054.
18. Li, Z.; Yang, L.; Zhou, F. FSSD: Feature Fusion Single Shot Multibox Detector. arXiv 2024, arXiv:1712.00960.
19. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
20. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525.
21. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
22. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,

arXiv:2004.10934.
23. Jocher. Network Data. 2020. Available online: https://github.com/ultralytics/yolov5 (accessed on 24 December 2022).
24. Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A Single-Stage Object Detection

Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976.
25. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object

Detectors. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver,
BC, Canada, 17–24 June 2023; pp. 7464–7475.

26. Ultralytics. YOLOv8. Available online: https://docs.ultralytics.com/ (accessed on 21 June 2023).
27. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
28. Lin, T.Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In

Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017; pp. 936–944.

29. Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. RepVGG: Making VGG-Style ConvNets Great Again. In Proceedings of
the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021;
pp. 13728–13737.

30. Chen, J.; Kao, S.; He, H.; Zhuo, W.; Wen, S.; Lee, C.H.; Chan, S.H.G. Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural
Networks. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver,
BC, Canada, 17–24 June 2023; pp. 12021–12031.

31. Wang, C.; Nie, W.H.Y.; Guo, J.; Liu, C.; Han, K.; Wang, Y. Gold-YOLO: Efficient Object Detector via Gather-and-Distribute
Mechanism. In Proceedings of the 37th International Conference on Neural Information Processing Systems (NIPS), New Orleans,
LA, USA, 30 May 2024; pp. 51094–51112.

32. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In
Proceedings of the 32nd International Conference on Machine Learning (ICML), Lille, France, 6–11 July 2015; pp. 448–456.

33. Zhang, Q.; Wang, C.; Wu, H.; Xin, C.; Phuong, T.V. GELU-Net: A Globally Encrypted, Locally Unencrypted Deep Neural Network
for Privacy-Preserved Learning. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence;
International Joint Conferences on Artificial Intelligence Organization, Stockholm, Sweden, 13–19 July 2018; pp. 3933–3939.

34. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in
Context. In Computer Vision–ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Lecture Notes in Computer Science;
Springer International Publishing: Cham, Switzerland, 2014; Volume 8693, pp. 740–755.

35. Zhang, S.; Benenson, R.; Schiele, B. CityPersons: A Diverse Dataset for Pedestrian Detection. In Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4457–4465.

https://doi.org/10.1109/TPAMI.2015.2389824
https://www.ncbi.nlm.nih.gov/pubmed/26353135
https://doi.org/10.1109/TPAMI.2016.2577031
https://www.ncbi.nlm.nih.gov/pubmed/27295650
https://doi.org/10.1007/s11263-024-01989-w
https://doi.org/10.1007/s42452-021-04897-7
https://github.com/ultralytics/yolov5
https://docs.ultralytics.com/

Sensors 2024, 24, 7308 19 of 19

36. Jia, X.; Zhu, C.; Li, M.; Tang, W.; Zhou, W. LLVIP: A Visible-Infrared Paired Dataset for Low-Light Vision. In Proceedings of the
2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October 2021;
pp. 3489–3497.

37. Jeong, E.; Kim, J.; Ha, S. TensorRT-Based Framework and Optimization Methodology for Deep Learning Inference on Jetson
Boards. ACM Trans. Embed. Comput. Syst. 2022, 21, 1–26. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/3508391

	Introduction
	Methods
	Overview of EFF-YOLO Architecture
	Lightweight Backbone Network
	Enhanced Feature-Fusion Module
	Low-GD
	High-GD

	Experiments and Discussion
	Datasets
	Experiment Settings
	Evaluation Metrics
	Results
	Ablation Study
	Comparison of Detection Accuracy Metrics
	Comparison of Detection Inference Speed
	Edge Deployment

	Conclusions
	References

