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Abstract: Individual physiotherapy is crucial in treating patients with various pain and health issues,
and significantly impacts abdominal surgical outcomes and further medical problems. Recent techno-
logical and artificial intelligent advancements have equipped healthcare professionals with innovative
tools, such as sensor systems and telemedicine equipment, offering groundbreaking opportunities to
monitor and analyze patients’ physical activity. This paper investigates the potential applications
of mobile accelerometers in evaluating the symmetry of specific rehabilitation exercises using a
dataset of 1280 tests on 16 individuals in the age range between 8 and 75 years. A comprehensive
computational methodology is introduced, incorporating traditional digital signal processing, feature
extraction in both time and transform domains, and advanced classification techniques. The study
employs a range of machine learning methods, including support vector machines, Bayesian analysis,
and neural networks, to evaluate the balance of various physical activities. The proposed approach
achieved a high classification accuracy of 90.6% in distinguishing between left- and right-side motion
patterns by employing features from both the time and frequency domains using a two-layer neural
network. These findings demonstrate promising applications of precise monitoring of rehabilitation
exercises to increase the probability of successful surgical recovery, highlighting the potential to
significantly enhance patient care and treatment outcomes.

Keywords: physical activity monitoring; motion symmetry; rehabilitation; abdominal wall repair;

computational intelligence; accelerometers; machine learning

1. Introduction

Human activity recognition [1,2] and artificial intelligence (AI) [3] have a wide range
of applications in rehabilitation, neurology, and sports. Wearable sensors are widely used
in individual physiotherapy, detection of various types of pain, and improvements in
physical fitness [4]. Specialized rehabilitation exercises and physical activities [5] play a
crucial role in the pre-operative and post-operative stages of surgical treatment [6,7] to
optimize the healing and recovery process. This area is increasingly important in line
with population ageing, with demands for general surgery expected to rise. However,
post-operative complications following abdominal surgery are frequently reported.

Pre-operative assessment is crucial for optimizing surgical outcomes and minimizing
post-operative complications, despite the overall success rate sometimes being limited [8].
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Traditional pre-operative evaluation methods primarily rely on medical history, physical
examination, and imaging studies, which may not always capture the dynamic physio-
logical changes occurring in a patient’s daily activities. Various studies show positive
effects of rehabilitation in patients undergoing orthopedic surgery [9] and on recovery after
abdominal surgery [10]. Deep learning models have been developed to predict rare but
severe post-operative complications following specific surgical treatments [11,12].

Different studies focus on prehabilitation exercises and their evaluation [13-16] by
computational methods, and their monitoring via telemedicine equipment [17,18] to reduce
complication rates and risk factors associated with complex abdominal surgeries. Recent
advancements in inertial measurement units (IMUs) for motion capture have introduced
novel approaches to pre-operative assessment [7,19,20] and general rehabilitation, with
thermal cameras [21] and mobile accelerometers emerging as promising tools in this domain.
Mobile accelerometers, commonly found in smartphones and wearable devices [22-25], can
continuously monitor a patient’s movements, providing real-time data on physical activity,
posture, and mobility. This wealth of information offers a unique opportunity to enhance
the pre-operative assessment process, enabling a more comprehensive understanding of a
patient’s functional capacity and aiding surgeons in tailoring their decisions and approach
to abdominal wall repair.

The use of mobile accelerometers in pre-operative assessment allows for the collection
of objective and quantitative data on a patient’s movement patterns and activity levels.
By continuously monitoring these metrics, healthcare providers can gain insights into
a patient’s functional capacity, identify specific movement patterns, and pinpoint high-
risk patients. Various rehabilitation programs [26-28] study the effectiveness of specific
exercises involving repetitive muscle contractions, core stability, and balance exercises.
Further studies explore the use of force sensors to monitor respiratory functions and
measure the activation of abdominal wall muscles [29].

Utilizing mobile accelerometers for core muscle rehabilitation and pre-operative as-
sessment involves two key phases: preparing the patients for surgery by assessing their
core strength and stability, and aiding in their post-surgery recovery by monitoring and
guiding their rehabilitation. By integrating wearable sensors with artificial intelligence
tools, clinicians can now assess and monitor patient movements more precisely, allowing
for personalized rehabilitation plans.

Mobile accelerometers can play a significant role in both pre-operative and post-
operative rehabilitation. By tracking a patient’s progress in real-time, rehabilitation proto-
cols can be personalized, monitored remotely, and adjusted based on the patient’s response
to therapy. This enables more efficient and effective rehabilitation, potentially reducing
recovery time, minimizing complications, and improving overall patient satisfaction.

Data processing methods are based on the general methodology of signal process-
ing [30], computational intelligence [31], and time-frequency signal analysis. This approach
evaluates features for assessing the balance criterion associated with individual rehabilita-
tion exercises. The classification of symmetry in rehabilitation [32,33] can vary depending
on the specific motion parameters [34] being considered and the clinical context. Evaluating
separate rehabilitation exercises based on the development of sensor technology has been
crucial in realizing the potential for both clinical and remote rehabilitation. While there is
no fixed number of symmetry degrees universally used, an objective scoring system can be
proposed to evaluate the feasibility of balance assessment technology for adaptation into
remote rehabilitation settings. Specific exercises can be proposed for both prehabilitation
before different kinds of abdominal surgeries and to treat various motion disorders [35-37],
utilizing the important research area of body kinematics [38].

The integration of mobile accelerometers into the rehabilitation and pre-operative
assessment process [39] has the potential to enhance interaction between patients, rehabili-
tation specialists, and surgeons. By leveraging this technology, healthcare providers can
gain deeper insights into a patient’s daily life and functional capabilities, enabling them to
make more informed decisions and provide personalized care. As we explore the role of
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mobile accelerometers in the context of complex abdominal surgeries [40-43], including
open, robotic, and laparoscopic techniques, we will uncover the transformative impact they
can have on patient outcomes and the future of surgical practice.

There are many factors that influence ody motion symmetry and asymmetrical move-
ment patterns. They mainly include injuries, muscle strength, age, and neurological dis-
orders that can impact muscle control and coordination, resulting in asymmetry due to
impaired movement on one side of the body.

The goal of this paper is to discuss the benefits of using mobile accelerometers in
the evaluation of rehabilitation exercises to reduce the probability of complications after
surgeries. Associated topics include the abilities of this methodology to capture objective
and quantitative data, track changes in physical activity levels, and detect movement
patterns. Another goal is to address the challenges and limitations associated with this tech-
nology, such as data privacy concerns, device compatibility, and the need for standardized
algorithms to interpret accelerometer data. The proposed data analysis procedures con-
tribute to this research area by (i) demonstrating the use of smartphones, communication
links, and remote data stores to record accelerometric data during rehabilitation exercises,
(ii) proposing a fast symmetry level evaluation using a suggested global criterion function,
and (iii) designing a general web-page that allows data import, remote signal processing
in both time and frequency domains, and evaluation of the coefficient of symmetry. The
novelty of the paper lies in the use of communication links for data acquisition with remote
storage and the proposal of a symmetry coefficient evaluation.

2. Methods

This paper describes the use of wearable accelerometers to analyze the symmetry of dif-
ferent rehabilitation exercises using wearable sensors embedded in a mobile phone [44,45]
placed on the body. Figure 1 illustrates the framework for analyzing rehabilitation exercises
and data processing that include

(a) Activation of sensors in a smartphone and specification of their parameters in the
mobile Matlab environment.

(b) Data acquisition from the right and left part of the body with the selected sampling
frequency.

(c) Export of signals through communication links into the remote drive.

(d) Evaluation of accelerometric signals, estimation of the symmetry coefficient of left/right
parts of the body, and classification of motion features.

The selected rehabilitation exercises were acquired and processed in the Matlab 2024b
(MathWorks, Natick, MA, USA) computational environment. Data were recorded by mobile
Matlab connected to the Matlab cloud with saving data on the Matlab Drive.

The dataset includes records acquired by a smartphone equipped with a three-axis
accelerometer. All procedures involving human participants were conducted in accor-
dance with the ethical standards of the institutional research committee and the 1964
Helsinki Declaration and its later amendments. The study received ethical approval from
the Ethics Committee (UCT EK/7/2022), and the anonymity of the obtained data was
strictly maintained.

The analysis is based on eight exercises performed during 1280 tests on different
individuals. Detailed descriptions of observations can be found on IEEE DataPort (Reha-
bilitation Exercises and Computational Intelligence, 10.21227 /xp41-7325) [46] for further
investigation. This repository includes the accelerometric data acquired during all ex-
periments, an informative video presentation of the rehabilitation exercises, the Matlab
graphical user interface, and a graphical video abstract of the paper.
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Figure 1. Principle of data processing during rehabilitation exercises presenting (a) mobile Matlab
initialization, (b) data acquisition using accelerometric sensors inside the smartphone, (c) export of
recorded signals to the remote drive, and (d) processing of data on the remote drive in time and
frequency domains to extract motion features and evaluate the coefficient of symmetry.

2.1. Data Acquisition

Figure 2 and Table 1 present a brief specification of the selected rehabilitation exer-
cises. The smartphone was affixed to the left or right leg or arm with the display facing
forward [47] and was used as a sensor for accelerometric data acquisition via the mobile
Matlab application, with a sampling frequency of 100 Hz. Signals from the left and right
sides of the body were acquired and processed in the Matlab environment. Each exercise
was repeated ten times and performed during 16 tests involving different individuals.

T

Figure 2. Selected rehabilitation exercises used for accelerometric data acquisition recorded by
wearable sensors (red squares) located on the left and right sides of the body used for data acquisition
and processing in the computational and visualization environment of the mobile Matlab system.
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Table 1. Description of selected exercises used for prehabilitation before the surgery treatment.

Exercise Name Description
El basic spinal motion both legs bent
E2 spinal motion one leg bent
E3 lifting of one leg other leg on the floor
E4 foot circles circles in the hip joint
E5 arm flection arms motion
E6 body cross-motion body sculpture rotation
E7 leg lifting one-leg lift
E8 squat high squat

The study included 16 participants, comprising 9 males and 7 females, with ages rang-
ing from 8 to 75 years and BMI value 23.4 + 2.9 kg/m?. Detailed participant information is
presented in Table 2.

Table 2. Description of participants in the rehabilitation exercises, including age, gender, height, and
BMI of each individual.

. . Age Gender Height BMI
Individual [yegar] m/f fera] [keg/m?]
1-AP 75 m 187 27.7
2-HCH 45 f 152 21.6
3-AM 21 f 173 18.0
4-DM 21 m 184 21.6
5-DDM 47 m 178 26.5
6-DH 24 m 185 22.8
7-JH 21 m 176 22.3
8-IM 69 m 185 27.5
9-LN 22 m 182 19.0
10-VM 47 f 163 25.6
11-MS 34 m 192 27.1
12-AB 47 m 176 22.6
13-TT 22 f 175 245
14-KA 8 f 135 21.6
15-T2 22 f 175 24.5
16-H2 46 f 152 21.6
MEAN 35.7 173.1 23.4
STD 18.9 15.3 29

2.2. Signal Processing

In the field of rehabilitation, accelerometric data processing is essential for monitoring
and analyzing movement patterns. Computational intelligence tools play a significant
role in this domain by providing advanced methods for data analysis, interpretation, and
decision-making, which aid in developing personalized rehabilitation programs.

Fundamental signal processing methods include digital filtering techniques to remove
noise and extract relevant signal components. The Fourier transform converts accelero-
metric signals from the time domain to the frequency domain, facilitating the analysis
of periodic components. Alternatively, the Wavelet transform offers multi-resolution
analysis of accelerometric signals, enabling the detection of both transient and continu-
ous features. Machine learning algorithms, such as support vector machines, decision
trees, and neural networks, are then employed to classify movement patterns and predict
rehabilitation outcomes.

Three-dimensional accelerometers are widely used in rehabilitation to monitor and
assess body movement comprehensively, using acceleration data across three orthogonal
axes (x, y, and z). The resulting data, observed with the sampling frequency f;, form
column vectors d,, for position p, representing the left (p = L) and right (p = R) parts of
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the body. Each sequence can then be divided into M subsequences, each N values long,

defining a vector [dg) Lo, d(LM), dg) Lo, d%M)] and forming a time-domain signal matrix:

Dyxo=[d1 d» -+ dg | (1)

with Q = 2 x M columns. The elements of each column vector d; = {d;(n) }nk]i ( for

k-1)N+
q=1,2,---,Q specify the observed accelerometric data.
By applying the discrete Fourier transform (dft) to each column of the matrix Dy,

we can construct the associated matrix Gy g as follows:

GNXQ:dft(DNXQ) (2)

This matrix contains the frequency components of the separate signal subwindows in its
column vectors, with frequency components ranging from 0 to fs Hz. The values in each
column q of the matrix Gy g are evaluated by the following relation:

N
Z dq e —j (k1) (n-1)27/N (3)

fork=1,2,---,N, and the mean value dq of each column g of the matrix Dy for a
selected individual and the left and right sides of the body. Spectral components are
evaluated with the frequency resolution 4 fs Hz and its values f (k) = % fs-

With the frequency components of each accelerometric signal subwindow, it is possible
(i)

to evaluate the relative power E;’ for each subwindow g of the observed sequence in the

frequency band B() = ( fc(li), fc(zl)> using spectral components evaluated by the discrete
Fourier transform according to Equation (3) by the relation:

2
Etgl) — Zned> i |g£] | (4)

N/2|gq |

where ®(0) is the set of indices for the frequency components f (k) € ( fc(ll ), fc(zl)> This pro-
cess can be applied for the whole matrix Gy g to find Q features of separate subwindows
and selected frequency bands.

When analyzing a selected rehabilitation exercise, each subwindow can be described
(i) in the time domain by its mean and standard deviation, and (ii) in the frequency
domain by the power in the selected frequency bands. This forms a matrix with time-

and frequency-domain features for the left and right side of the body forming a vector

o, p™M ) Pl

Matrix Dy is used for the evaluation of means and standard deviations in the time
domain, as well as to evaluate power components to form a pattern matrix:

PRXQ: [Pl/ P2, /PQ] (5)

that includes R features evaluated for each subwindow associated with the rehabilitation
experiment.

The associated target vector specifying the positions of sensors includes the values
[L,---,L,R,---,R] that can be substituted by target probabilities of each class:

1

0 --- 0 1 ---
10 --- 0 6)

TSXQ = [t1/t2/' ° /tQ] - 1

for classification into two classes (S = 2) associated with the positions of the sensors on the
body during each rehabilitation exercise.

Motion symmetry is a valuable concept in analyzing rehabilitation exercises because
it allows clinicians and researchers to evaluate whether movements on both sides of the
body are aligned, balanced, and coordinated, which is essential for assessing the recovery
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progress. During rehabilitation, symmetry in motion between the left and right sides of the
body is often a goal, particularly before and after surgeries using specific motion capture
systems or wearable sensors.

Complete records of the accelerometric signal for the left and right sides of the body
were divided into M segments and for each of them, the evaluation was performed to

define the left-side feature Fq(L) (r) and the right-side feature Fq(R) (r) based on property r
for segment g = 1,2, -- , M. The symmetry index, based on a commonly used one, can be
calculated by the following relation:

1R K0
2 FD () + BN ()

cq(7) 100 7)

The average of c;(r) over all segments g € (1, Q) results in the standard symmetry coeffi-
cient related to the selected feature r.

The alternative criterion for one experiment and a selected feature set can be evaluated
using the proposed relation:

1 1 & o
length(¥) rz @qzzlcq(f) (8)

c¥Y

where Y is the selected set of features using the global symmetry criterion evaluation.

Classifying rehabilitation exercises using accelerometers involves several steps, includ-
ing data collection, preprocessing, feature extraction, and classification. The classification
of Q signal segments by a specific machine learning method typically requires the determi-
nation of the pattern and target matrices. In this case, the pattern matrix Pg o defined by
Equation (5), and target matrix T o specified by Equation (6), respectively, were used. The
number of features was reduced to R = 2 for better visualization.

Commonly used algorithms for signal segment classification include support vector
machines (SVM), which are effective in high-dimensional spaces, Bayesian methods, and
the simple and commonly used k-nearest neighbor methods. Alternatively, neural network
methods, including deep learning approaches, are suitable for handling large and complex
systems. In the simplest case of a two-layer neural network with S; and S elements in the
first and second layers, respectively, the outputs Agll),Q and Ag?g of the individual layers
are evaluated by the following relations:

n  _ (1) 1)
ASLQ = h (Wsl,R PR,Q/bsl,l) 9)
2)  _ 2) 1 4@
ASZ/Q - f2 (WSZ/Sl AS],Q'bSQ,l)
with the network coefficients forming matrices Wéll) r and ng)sl, and vectors b(Sll)1 and

bg) 1- The proposed model uses the sigmoidal transfer function f; in the first layer and the

probabilistic softmax transfer function f; in the second layer.

To determine the predictive model’s ability to perform classification during practical
implementation, the k-fold cross-validation method is often used. In this paper, the leave-
one-out method, with the same number of folds as the number of data points, is employed.

When implementing and evaluating models, it is crucial to consider the context and the
specific costs associated with false positives and false negatives. Sensitivity and specificity
provide a clear picture of the model’s performance in identifying both positive and negative
cases, aiding in making decisions about model deployment and potential improvements.
For classifying rehabilitation exercises using accelerometers into two classes, common
performance metrics can be used:

*  Sensitivity (True positive rate, recall) defined as the proportion of actual positives that
are correctly identified by relation:
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TP

TPR= 757 EN

(10)

*  Specificity (True negative rate) defined as the proportion of actual negatives that are
correctly identified by relation:

TN

INR= TN+ Fp ()
*  Accuracy defined as a probability of global correct classification:
TP+ TN
AC= TP INT P EN 12

where TP, TN, FP and FN stand for the number of true positive, true negative, false
positive, and false negative classifications [48].

3. Results

The proposed graphical user interface [49,50] is presented in Figure 3. It enables the
visualization of rehabilitation exercises through videos accessible from the initial web-
page. The motion accelerometric data acquisition and processing using a specific web-page
includes the following steps:

*  Animating motion exercises for training and data acquisition by a mobile phone.

*  Selecting accelerometric signals recorded by the smartphone of a chosen individual
and stored in the specified datastore.

e  Trimming inaccurate data at the beginning and end of each record.

¢  Evaluating spectral components recorded on the right and left sides of the body using
the discrete Fourier transform, with results displayed in Figure 3b.

e  Estimating the percentage power of signals in selected frequency ranges and speci-
fied subwindows.

*  Visualizing motion features associated with the left and right sides of the body.

¢  Evaluating the proposed symmetry criterion coefficient for the selected rehabilita-
tion exercise.

Table 3 lists the individuals, types of rehabilitation exercises, and the symmetry
criterion values evaluated by Equation (8) using features in the frequency domain for each
exercise. The last column includes the average symmetry index values for each individual.
The last two rows present the overall average symmetry coefficients across all individuals
and their standard deviations.

Figure 4 presents the symmetry criteria for eight rehabilitation exercises, evaluated
using both time domain and spectral domain features. It shows the mean values of 16 tests,
each with 10 repetitions of each rehabilitation exercise for a selected individual. The highest
asymmetry, exceeding the mean value, was observed for exercises E2, E3, E4, and E6 by
both methods. The best symmetry criterion coefficients were observed for exercises E1
and E7.

More detailed results are presented in Table 3 for the set of individuals under study.
A comparison of symmetry criteria for 16 tests involving different individuals and 8 reha-
bilitation exercises, evaluated using time domain and spectral domain features, is shown
in Figure 5. The best symmetry was observed for individual 15, with a mean symmetry
coefficient of 1.1 across all rehabilitation exercises.
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Figure 3. Principle of data processing during rehabilitation exercises presenting (a) animation of
motion exercises to train individuals and data acquisition using a smartphone, (b) data import into the
proposed web-page, (c) frequency domain remote signal processing including symmetry coefficient
estimation, and (d) extraction and analysis of motion features.

Table 3. Results of symmetry values of the set of 16 tests of different individuals (Ind) for separate
exercises evaluated by the mixed-domain features, and their mean values associated with each
participant of the study.

Exercise
Ind. Mean
E1 E2 E3 E4 E5 E6 E7 E8
1 15 1.7 2.1 24 2.3 7.7 1.0 5.7 3.0
2 1.5 3.7 4.5 2.1 1.1 0.6 2.9 3.7 2.5
3 2.0 0.8 1.9 3.2 3.5 7.3 1.6 1.6 2.7
4 3.0 0.8 1.8 14 0.3 3.5 3.5 3.3 2.2
5 3.1 6.2 6.7 3.8 3.8 2.9 1.6 0.6 3.6
6 4.8 3.6 5.1 5.8 3.6 7.0 1.3 3.0 43
7 0.5 0.7 15 3.9 2.5 1.3 0.8 19 1.6
8 3.9 3.1 3.7 0.8 3.2 3.8 4.2 7.6 3.8
9 2.9 4.8 5.9 4.7 5.9 2.5 1.5 0.9 3.6
10 25 5.7 0.8 5.6 0.1 4.0 2.3 0.5 2.7
11 0.1 3.9 4.7 2.3 29 1.2 1.6 44 2.6
12 1.3 2.5 1.8 1.1 2.0 0.8 45 3.0 2.1
13 0.7 3.5 0.8 4.0 1.3 4.7 1.8 1.6 2.3
14 4.3 0.6 14 75 3.6 4.6 7.3 34 41
15 1.0 1.0 2.0 1.0 1.3 0.4 0.8 1.3 1.1
16 1.4 1.7 4.0 3.6 0.6 1.7 1.3 5.5 2.5
Mean 2.1 2.8 3.0 3.3 24 34 2.3 3.0

Std 1.4 1.8 1.9 1.9 1.6 24 1.8 2.0
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Figure 4. Symmetry criteria for 8 rehabilitation exercises evaluated by (a) time domain and (b) mixed-
domain features presenting mean values by 16 tests of different individuals with 10 repetitions of
each rehabilitation exercise.
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Figure 5. Comparison of symmetry criteria for 16 tests involving different individuals and eight
rehabilitation exercises, evaluated using time domain and spectral domain features.

Features evaluated from the sensors on the left and right sides of the body for selected
exercises, as well as mixed-domain features, are presented in Figure 6. This comparison
shows results for selected exercises that demonstrate prevailing asymmetric and symmet-
ric motions, with centers of the right and left side positions and multiples of standard
deviations for ¢ = 0.2,0.5, 1.

Figure 7 presents the classification of the symmetry features for cross-motion (exer-
cise 6) using mixed features and three different methods: support vector machine, the
Bayesian method [51,52], and a two-layer neural network (NN) with 10 neurons in the first
layer and sigmoidal/softmax transfer functions in the first and second layers, respectively.
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Figure 6. Comparison of distribution of the time and spectral domain features for selected exercises
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(individual 10, exercise 5) with centers of the right and left side positions and ¢ multiples of standard
deviations for ¢ = 0.2,0.5, 1.

(c) NN CLASSIFICATION
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Figure 7. Classification of symmetry features of the body cross-motion by mixed features using
(a) support vector machine, (b) the Bayes method, and (c) the two-layer neural network for a selected
individual 6-DH.

A summary of the accuracy and cross-validation errors for all individuals, a selected
rehabilitation exercise, and different classification methods is presented in Table 4. The
highest classification accuracy of 90.6% for individual 6-DH corresponds with their worst
coefficient of symmetry in Table 3. The cross-validation errors were calculated using the
leave-one-out method.
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Table 4. Symmetry classification of rehabilitation exercise patterns performed by the support vector
machine, Bayesian, and two-layer neural network methods using two features specified as the
power in the selected frequency band and the associated standard deviation of accelerometric data,
presenting the accuracy (AC) and the cross-validation error (CV) for exercise 6 and all individuals (Ind).

nd SVM Method Bayes Method NN Method
" AC [%] cv AC [%] cv AC [%] cv
1 69.6 0.39 59.8 0.37 76.1 0.34
2 72.0 0.42 54.8 0.53 76.3 0.16
3 84.9 0.25 79.6 0.28 84.9 0.16
4 63.4 0.45 54.8 0.56 66.7 0.44
5 76.8 0.37 73.7 0.23 82.1 0.18
6 86.5 0.21 81.3 0.25 90.6 0.11
7 72.6 0.38 71.6 0.35 72.6 0.21
8 63.4 0.45 59.1 0.48 74.2 0.25
9 66.3 0.40 64.1 0.47 78.3 0.30
10 73.7 0.39 63.2 0.40 75.8 0.20
11 68.1 0.44 52.7 0.48 69.2 0.22
12 60.9 0.48 52.2 0.47 72.8 0.23
13 68.5 0.46 64.1 0.34 70.7 0.35
14 714 0.31 72.5 0.33 81.3 0.21
15 69.1 0.43 50.0 0.39 66.0 0.39
16 723 0.33 67.0 0.38 76.6 0.32

4. Discussion

This paper focuses on evaluating rehabilitation exercises designed to strengthen the
abdominal wall and reduce complications during potential surgeries. Accelerometric
data from a variety of exercises were used for symmetry analysis of different motion
patterns across 16 individuals. The features obtained were evaluated in both the time and
spectral domains to classify rehabilitation segments and various exercises. This approach is
significant for improving body fitness levels, reducing potential chest pains, and serving as
pre-operative muscle training before open or robotic surgery [53].

The most important features for evaluating the rehabilitation exercises were based
on signals recorded by an accelerometer inside a smartphone positioned on a specific part
of the body. The worst mean coefficient of symmetry was found for exercise E6, with a
mean value of 3.4 and the highest standard deviation of 2.4, indicating the difficulty of
this rehabilitation motion for all participants. Exercises E1, E2, E5, and E7 were among the
easier ones, with their coefficients of symmetry below 3 and standard deviations below 2.

The classification accuracy reached 90.6% for the two-layer neural network, with a
cross-validation error of 0.11 (using the leave-one-out method) for individual 6-DH, who
had the highest asymmetry and a coefficient of symmetry of 7, as shown in Figure 7.
Rehabilitation specialists must also consider individuals” ages, as some exercises are com-
plicated for elderly people, and their physical condition can affect the performance of
rehabilitation exercises.

Integrating sensor technology into pre-operative and post-operative care could help
develop a more sophisticated data-driven approach to surgical planning, monitoring, and
follow-up, improving outcomes and advancing the standards of surgical care. Sensors can
continuously track key indicators, such as range of motion and muscle strength. Early signs
of complications can be detected through subtle changes in these indicators.

Limiting factors of the use of accelerometers for the evaluation of rehabilitation sym-
metry include sensitivity to the placement of sensors, sensitivity to external factors (like
uneven surfaces), congenital asymmetry of movement, age of patients, and data interpreta-
tion. The influence of the last item can be reduced by correctly selected signal processing
methodology and Al application.

Evaluation of the rehabilitation exercises can be conducted through the proposed
web-page to inform individuals about their progress and to motivate them to perform
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rehabilitation exercises more precisely. Future studies should focus on more complex
computational methods and the use of multichannel sensor systems for time-synchronized
monitoring of motion patterns, allowing for a more detailed analysis of rehabilitation
exercises. These applications will include the use of more sophisticated sensors, advanced
computational methods, and deep learning strategies to monitor rehabilitation patterns,
potentially utilizing augmented reality and telerehabilitation.

5. Conclusions

The integration of mobile accelerometers and computational analysis in rehabilitation
exercises has the potential to significantly enhance healthcare and fitness levels. The
comprehensive data from appropriate sensors can lead to more personalized and data-
driven decision-making, improving patient outcomes. To realize the full potential of mobile
accelerometers in rehabilitation care, further research and collaboration between healthcare
professionals and technology developers are critical.

There is a high risk of developing post-operative complications after abdominal
surgery for patients with lower pre-operative physical activity. Hence, pre-operative
specific rehabilitation and physical activity measurement may be useful in decreasing
post-surgery complications.

The future of computational intelligence in the analysis of rehabilitation exercises
is promising, with the potential to significantly enhance the precision, personalization,
and effectiveness of rehabilitation programs. An emerging trend involves using wearable
sensors and digital technology to monitor motion activities. By integrating advanced
technologies such as machine learning, computer vision, and robotics, rehabilitation can
become more adaptive, patient-centered, and efficient, ultimately leading to better outcomes
and an improved quality of life for patients undergoing surgery.

In rehabilitation settings, the use of accelerometers is becoming more prevalent due to
their affordability, ease of use, and integration with other technologies. This makes them a
key tool in improving the quality and effectiveness of rehabilitation therapy.

Author Contributions: A.P. was responsible for the mathematical methods of data processing, D.M.
recorded all data, M.V. and D.]. were responsible for proposal of the rehabilitation exercises, H.C.
contributed to data analysis, and O.V. contributed to data acquisition and evaluation of results. All
authors have read and agreed to the published version of the manuscript.

Funding: This investigation was reinforced by the European Union under the project ROBOPROX—
Robotics and Advanced Industrial Production (reg.no. CZ.02.01.01/00/22_008/0004590) in the area

of machine learning. The research related to data acquisition and their computational processing was

supported by Operational Programme Johannes Amos Comenius financed by European Structural

and Investment Funds and the Czech Ministry of Education, Youth and Sports (Project No. SENDISO—
CZ.02.01.01/00/22_008/0004596).

Institutional Review Board Statement: All procedures involving human participants were conducted
in accordance with the ethical standards of the institutional research committee and the 1964 Helsinki
Declaration and its later amendments. The study received ethical approval from the Ethics Committee
(UCT EK/7/2022), and the anonymity of the obtained data was strictly maintained.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Accelerometric data acquired during all experiments with detailed de-
scriptions of observations can be found on IEEE DataPort (Rehabilitation Exercises and Computational
Intelligence, 10.21227 /xp41-7325) for further investigation (https://doi.org/10.21227 /xp41-7325,
accessed on 11 November 2024).

Acknowledgments: Thanks are due to all participants of the study.

Conflicts of Interest: The authors declare no conflicts of interest.


https://doi.org/10.21227/xp41-7325

Sensors 2024, 24, 7330 14 of 16

References

1.  Gomaa, W.; Khamis, M. A perspective on human activity recognition from inertial motion data. Neural Comput. Appl. 2023,
35, 20463-20568. [CrossRef]

2. Xu, Z.; Wu, Z.; Wang, L.; Ma, Z.; Deng, J.; Sha, H.; Wang, H. Research on Monitoring Assistive Devices for Rehabilitation of
Movement Disorders through Multi-Sensor Analysis Combined with Deep Learning. Sensors 2024, 24, 4273. [CrossRef] [PubMed]

3. Wei, S;; Wu, Z. The Application of Wearable Sensors and Machine Learning Algorithms in Rehabilitation Training: A Systematic
Review. Sensors 2023, 23, 7667. [CrossRef] [PubMed]

4. Carnevale, A.; Longo, U.; Schena, E.; Massaroni, C.; Lo Presti, C.; Berton, A.; Candela, V.; Denaro, V. Wearable systems for
shoulder kinematics assessment: A systematic review. BMC Musculoskelet. Disord. 2019, 20, 546. [CrossRef]

5. Grimes, L.; Outtrim, J.; Griffin, S.; Ercole, A. Accelerometery as a measure of modifiable physical activity in high- risk elderly
preoperative patients: A prospective observational pilot study. BM] Open 2019, 9, e032346. [CrossRef]

6.  Regterschot, G.; Ribbers, G.; Bussmann, J. Wearable Movement Sensors for Rehabilitation: From Technology to Clinical Practice.
Sensors 2021, 23, 4744. [CrossRef]

7.  Syversen, A.; Dosis, A.; Jayne, D.; Zhang, Z. Wearable Sensors as a Preoperative Assessment Tool: A Review. Sensors 2024, 24, 482.
[CrossRef]

8. Mclsaac, D.; Gill, M.; Boland, L.; Hutton, B.; Branje, K.; Shaw, J.; Grudzinski, A.; Barone, N.; Gillis, C. Prehabilitation in adult
patients undergoing surgery: An umbrella review of systematic reviews. Br. |. Anaesth. 2022, 128, 244-257. [CrossRef]

9. Master, H.; Bley, J.; Coronado, R.; Robinette, P.; White, D.; Pennings, J.; Archer, K. Effects of physical activity interventions using
wearables to improve objectively-measured and patient-reported outcomes in adults following orthopaedic surgical procedures:
A systematic review. PLoS ONE 2022, 17, e0263562. [CrossRef]

10. Adams, S.; Bedwani, N.; Massey, L.; Bhargava, A.; Byrne, C.; Jensen, K.; Smart, N.; Walsh, C. Physical activity recommendations
pre and post abdominal wall reconstruction: A scoping review of the evidence. Hernia 2022, 26, 701-714. [CrossRef]

11. Ayuso, S; Elhage, S.; Zhang, Y.; Aladegbami, B.; Gersin, K,; Fischer, J.; Augenstein, V.; Colavita, P.; Heniford, B. Predicting rare
outcomes in abdominal wall reconstruction using image-based deep learning model. Surgery 2023, 173, 748-755. [CrossRef]
[PubMed]

12. Timmer, A.; Claessen, J.; Boermeester, M. Risk Factor-Driven Prehabilitation Prior to Abdominal Wall Reconstruction to Improve
Postoperative Outcome. A Narrative Review. |. Abdom. Wall Surg. 2022, 1, 10722. [CrossRef] [PubMed]

13. Kamarajah, S.; Bundred, J.; Weblin, J.; Tan, B. Critical appraisal on the impact of preoperative rehabilitation and outcomes after
major abdominal and cardiothoracic surgery: A systematic review and meta-analysis. Surgery 2020, 167, 540-549. [CrossRef]

14. Hughes, M.; Hackney, R.; Lamb, P.; Wigmore, S.; Deans, D.; Skipworth, R. Prehabilitation Before Major Abdominal Surgery:
A Systematic Review and Meta-analysis. World J. Surg. 2019, 43, 1661-1668. [CrossRef]

15. Liao, Y.; Vakanski, A ; Xian, M.; Paul, D.; Baker, R. A review of computational approaches for evaluation of rehabilitation exercises.
Comput. Biol. Med. 2020, 119, 721. [CrossRef]

16. Jeske, P.; Wojtera, B.; Banasiewicz, T. Prehabilitation-Current Role in Surgery. Pol. J. Surg. 2022, 94, 65-72. [CrossRef]

17.  Pan, H.; Wang, H.; Li, D.; Zhu, K.; Gao, Y.; Yin, R.; Shull, P. Automated, IMU-based spine angle estimation and IMU location
identification for telerehabilitation. Neural Comput. Appl. 2024, 21, 96. [CrossRef]

18. Lee, A.; Deutsch, ].; Holdsworth, L.; Kaplan, S.; Kosakowski, H.; Latz, R.; McNeary, L.; O'Neil, ].; Ronzio, O.; Sanders, K.; et al.
Telerehabilitation in Physical Therapist Practice: A Clinical Practice Guideline From the American Physical Therapy Association.
Phys. Ther. 2024, 104, pzae045. [CrossRef]

19. Abouelnaga, W.; Aboelnour, N. Effectiveness of Active Rehabilitation Program on Sports Hernia: Randomized Control Trial. Ann.
Rehabil. Med. 2019, 43, 305-313. [CrossRef]

20. Gillis, C,; Ljungqvist, O.; Carli, F. Prehabilitation, enhanced recovery after surgery, or both? A narrative review. Br. |. Anaesth.
2022, 128, 434-448. [CrossRef]

21. Vutan, A.; Lovasz, E.; Gruescu, C,; Sticlaru, C.; Sirbu, E.; Jurjiu, N.; Borozan, I.; Vutan, C. Evaluation of Symmetrical Exercises in
Scoliosis by Using Thermal Scanning. Appl. Sci. 2022, 12, 721. [CrossRef]

22.  Whelan, D.; O’'Reilly, M.; Ward, T.; Delahunt, E.; Caulfield, B. Technology in Rehabilitation: Evaluating the Single Leg Squat
Exercise with Wearable Inertial Measurement Units. Methods Inf. Med. 2017, 56, 88-94. [PubMed]

23. Basil, G,; Sprau, A.; Eliahu, K.; Borowsky, P.; Wang, M.; Jang, W. Using Smartphone-Based Accelerometer Data to Objectively
Assess Outcomes in Spine Surgery. Neurosurgery 2021, 88, 763-772. [CrossRef] [PubMed]

24. Wang, X,; Yu, H.; Kold, S.; Rahbek, O.; Bai, S. Wearable sensors for activity monitoring and motion control: A review. Biomim.
Intell. Robot. 2023, 3, 100089. [CrossRef]

25. Huang, X,; Xue, Y.; Ren, S.; Wang, F. Sensor-Based Wearable Systems for Monitoring Human Motion and Posture: A Review.
Sensors 2023, 23, 9047. [CrossRef]

26. Prat-Luri, A.; Moreno-Navarro, P.; Carpenac, C.; Manca, A.; Deriu, E; Barbado, D.; Vera-Garcia, F. Smartphone accelerometry

for quantifying core stability and developing exercise training progressions in people with multiple sclerosis. Mult. Scler. Relat.
Disord. 2023, 72, 104618. [CrossRef]


http://doi.org/10.1007/s00521-023-08863-9
http://dx.doi.org/10.3390/s24134273
http://www.ncbi.nlm.nih.gov/pubmed/39001051
http://dx.doi.org/10.3390/s23187667
http://www.ncbi.nlm.nih.gov/pubmed/37765724
http://dx.doi.org/10.1186/s12891-019-2930-4
http://dx.doi.org/10.1136/bmjopen-2019-032346
http://dx.doi.org/10.3390/s21144744
http://dx.doi.org/10.3390/s24020482
http://dx.doi.org/10.1016/j.bja.2021.11.014
http://dx.doi.org/10.1371/journal.pone.0263562
http://dx.doi.org/10.1007/s10029-022-02562-5
http://dx.doi.org/10.1016/j.surg.2022.06.048
http://www.ncbi.nlm.nih.gov/pubmed/36229252
http://dx.doi.org/10.3389/jaws.2022.10722
http://www.ncbi.nlm.nih.gov/pubmed/38314165
http://dx.doi.org/10.1016/j.surg.2019.07.032
http://dx.doi.org/10.1007/s00268-019-04950-y
http://dx.doi.org/10.1016/j.compbiomed.2020.103687
http://dx.doi.org/10.5604/01.3001.0015.7340
http://dx.doi.org/10.1186/s12984-024-01366-1
http://dx.doi.org/10.1093/ptj/pzae045
http://dx.doi.org/10.5535/arm.2019.43.3.305
http://dx.doi.org/10.1016/j.bja.2021.12.007
http://dx.doi.org/10.3390/app12020721
http://www.ncbi.nlm.nih.gov/pubmed/27782290
http://dx.doi.org/10.1093/neuros/nyaa505
http://www.ncbi.nlm.nih.gov/pubmed/33437988
http://dx.doi.org/10.1016/j.birob.2023.100089
http://dx.doi.org/10.3390/s23229047
http://dx.doi.org/10.1016/j.msard.2023.104618

Sensors 2024, 24, 7330 15 of 16

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44.

45.

46.

47.

48.

49.

50.

Renshaw;, S.; Peterson, R.; Lewis, R.; Olson, M.; Henderson, W.; Kreuz, B.; Poulose, B.; Higgins, R. Acceptability and barriers to
adopting physical therapy and rehabilitation as standard of care in hernia disease: A prospective national survey of providers
and preliminary data. Hernia 2022, 26, 865-871. [CrossRef]

Perez, J.; Schmidt, M.; Narvaez, A.; Welsh, L.; Diaz, R.; Castro, M.; Ansari, K.; Cason, R.; Bilezikian, J.; Hope, W.; et al. Evolving
concepts in ventral hernia repair and physical therapy: Prehabilitation, rehabilitation, and analogies to tendon reconstruction.
Hernia 2021, 25, 1-13. [CrossRef]

Novak, J.; Busch, A.; Kolar, P.; Kobesova, A. Postural and respiratory function of the abdominal muscles: A pilot study to measure
abdominal wall activity using belt sensors. Isokinet. Exerc. Sci. 2021, 29, 175-184. [CrossRef]

Prochazka, A.; Vysata, O.; Mafik, V. Integrating the Role of Computational Intelligence and Digital Signal Processing in Education.
IEEE Signal Process. Mag. 2021, 38, 154-162. [CrossRef]

Prochazka, A.; Dostél, O.; Cejnar, P.; Mohamed, H.; Pavelek, Z.; Vali§, M.; VySata, O. Deep Learning for Accelerometric Data
Assessment and Ataxic Gait Monitoring. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 33434133. [CrossRef] [PubMed]
Brennan, L.; Bevilacqua, A.; Kechadi, T.; Caulfield, B. Segmentation of shoulder rehabilitation exercises for single and multiple
inertial sensor systems. J. Rehabil. Assist. Technol. Eng. 2020, 7, 2055668320915377. [CrossRef] [PubMed]

Alfakir, A.; Arrowsmith, C.; Burns, D.; Razmjou, H.; Hardisty, M.; Whyne, C. Detection of Low Back Physiotherapy Exercises With
Inertial Sensors and Machine Learning: Algorithm Development and Validation. JMIR Rehabil. Assist. Technol. 2022, 9, e38689.
[CrossRef]

Prochazka, A.; Schatz, M.; Tupa, O.; Yadollahi, M.; Vysata, O.; Valis, M. The MS Kinect Image and Depth Sensors Use for Gait
Features Detection. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27-30
October 2014; pp. 2271-2274.

Shah, N.; Aleong, R.; So, I. Novel Use of a Smartphone to Measure Standing Balance. JMIR Rehabil. Assist. Technol. 2016, 3, e4.
[CrossRef]

Skovbjerg, F.; Honoré, H.; Mechlenburg, I.; Lipperts, M.; Gade, R.; Naess-Schmidt, E. Monitoring Physical Behavior in Rehabilita-
tion Using a Machine Learning—-Based Algorithm for Thigh-Mounted Accelerometers: Development and Validation Study. JMIR
Bioinform. Biotechnol. 2022, 3, e38512. [CrossRef]

Gu, C,; Lin, W,; He, X.; Zhang, L.; Zhang, M. IMU-based motion capture system for rehabilitation applications: A systematic
review. Biomim. Intell. Robot. 2023, 3, 100097. [CrossRef]

Jandkova, D. Foot and Ankle Kinematics in Patients with Femoroacetabular Impingement Syndrome. Master’s Thesis, Charles
University, Prague, Czech Republic, 2021.

Wouters, D.; Cavallaro, G.; Jensen, K.; East, B.; JiSova, B.; Jorgensen, L.; L6pez-Cano, M.; Rodrigues-Gongalves, V.; Stabilini, C.;
Berrevoet, F. The European Hernia Society Prehabilitation Project: A Systematic Review of Intra-Operative Prevention Strategies
for Surgical Site Occurrences in Ventral Hernia Surgery. Front. Surg. 2022, 13, 847279. [CrossRef]

Ciomperlik, H.; Dhanani, N.; Cassata, N.; Mohr, C.; Bernardi, K.; Holihan, J.; Lyons, N.; Olavarria, O.; Ko, T.; Liang, M. Patient
quality of life before and after ventral hernia repair. Surgery 2020, 169, 1158-1163. [CrossRef]

See, C.; Kim, T.; Zhu, D. Hernia Mesh and Hernia Repair: A Review. Eng. Regen. 2020, 1, 19-33.

Qabbani, A.; Aboumarzouk, O.; El Bakry, T.; Al-Ansari, A.; Elakkad, M. Robotic inguinal hernia repair: Systematic review and
meta-analysis. ANZ J. Surg. 2021, 91, 2277-2287. [CrossRef]

Boukili, I; Flaris, A.; Mercier, E,; Cotte, E.; Kepenekian, V.; Vaudoyer, D.; Passot, G. Prehabilitation before major abdominal
surgery: Evaluation of the impact of a perioperative clinical pathway, a pilot study. Scand. J. Surg. 2022, 111, 14574969221083394.
[CrossRef] [PubMed]

Cvetkovic, B.; Szeklicki, R.; Janko, V.; Lutomski, P.; Lustrek, M. Real-time activity monitoring with a wristband and a smartphone.
Inf. Fusion 2018, 43, 77-93. [CrossRef]

Heredia-Elvar, J.; Juan-Recio, C.; Prat-Luri, A.; Barbado, D.; Vera-Garcia, F. Observational Screening Guidelines and Smartphone
Accelerometer Thresholds to Establish the Intensity of Some of the Most Popular Core Stability Exercises. Front. Physiol. 2021,
12, 751569. [CrossRef]

Prochazka, A. Rehabilitation Exercises and Computational Intelligence. Dataset, IEEE DataPort. 2024. Available online:
https:/ /ieee-dataport.org/documents/rehabilitation-exercises-and-computational-intelligence (accessed on 4 August 2024).
Dostal, O.; Prochazka, A.; Vysata, O.; Tupa, O.; Cejnar, P; Valis, M. Recognition of Motion Patterns Using Accelerometers for
Ataxic Gait Assessment. Neural Comput. Appl. 2021, 33, 2207-2215. [CrossRef]

Prochazka, A.; Vysata, O.; Tupa, O.; Mares, J.; Valis, M. Discrimination of Axonal Neuropathy Using Sensitivity and Specificity
Statistical Measures. Neural Comput. Appl. 2014, 25, 1349-1358. [CrossRef]

Martynek, D. Analysis of Rehabilitation Exercises Using Mobile Sensors. Mgr Thesis, University of Chemistry and Technology,
Prague, Czech Republic, 2024.

Martynek, D. Rehabilitation Data Analysis and Processing. WWW Page, University of Chemistry and Technology, Prague,
Czech Republic. 2024. Available online: https:/ /danielmartynekdp.pythonanywhere.com/ (accessed on 4 August 2024).


http://dx.doi.org/10.1007/s10029-022-02606-w
http://dx.doi.org/10.1007/s10029-020-02304-5
http://dx.doi.org/10.3233/IES-203212
http://dx.doi.org/10.1109/MSP.2021.3058634
http://dx.doi.org/10.1109/TNSRE.2021.3051093
http://www.ncbi.nlm.nih.gov/pubmed/33434133
http://dx.doi.org/10.1177/2055668320915377
http://www.ncbi.nlm.nih.gov/pubmed/32913661
http://dx.doi.org/10.2196/38689
http://dx.doi.org/10.2196/rehab.4511
http://dx.doi.org/10.2196/38512
http://dx.doi.org/10.1016/j.birob.2023.100097
http://dx.doi.org/10.3389/fsurg.2022.847279
http://dx.doi.org/10.1016/j.surg.2020.11.003
http://dx.doi.org/10.1111/ans.16505
http://dx.doi.org/10.1177/14574969221083394
http://www.ncbi.nlm.nih.gov/pubmed/35437086
http://dx.doi.org/10.1016/j.inffus.2017.05.004
http://dx.doi.org/10.3389/fphys.2021.751569
https://ieee-dataport.org/documents/rehabilitation-exercises-and-computational-intelligence
http://dx.doi.org/10.1007/s00521-020-05103-2
http://dx.doi.org/10.1007/s00521-014-1622-0
https://danielmartynekdp.pythonanywhere.com/

Sensors 2024, 24, 7330 16 of 16

51. Prochazka, A.; Vysata, O.; Vali§, M,; Tupa, O.; Schatz, M.; Mafik, V. Bayesian classification and analysis of gait disorders using
image and depth sensors of Microsoft Kinect. Digit. Signal Prog. 2015, 47, 169-177. [CrossRef]

52. Magris, M,; losifidis, A. Bayesian learning for neural networks: An algorithmic survey. Artif. Intell. Rev. 2023, 56, 11773-11823.
[CrossRef]

53. Goh, E.; Ali, T. Robotic surgery: An evolution in practice. J. Surg. Protoc. Res. Methodol. 2022, 2022, snac003. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1016/j.dsp.2015.05.011
http://dx.doi.org/10.1007/s10462-023-10443-1
http://dx.doi.org/10.1093/jsprm/snac003

	Introduction
	Methods
	Data Acquisition
	Signal Processing

	Results
	Discussion
	Conclusions
	References

