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Abstract: Multi-channel speech enhancement has become an active area of research, demonstrat-
ing excellent performance in recovering desired speech signals from noisy environments. Recent
approaches have increasingly focused on leveraging spectral information from multi-channel inputs,
yielding promising results. In this study, we propose a novel feature integration network that not
only captures spectral information but also refines it through shifted-window-based self-attention, en-
hancing the quality and precision of the feature extraction. Our network consists of blocks containing
a full- and sub-band LSTM module for capturing spectral information, and a global–local attention
fusion module for refining this information. The full- and sub-band LSTM module integrates both
full-band and sub-band information through two LSTM layers, while the global–local attention
fusion module learns global and local attention in a dual-branch architecture. To further enhance
the feature integration, we fuse the outputs of these branches using a spatial attention module. The
model is trained to predict the complex ratio mask (CRM), thereby improving the quality of the
enhanced signal. We conducted an ablation study to assess the contribution of each module, with each
showing a significant impact on performance. Additionally, our model was trained on the SPA-DNS
dataset using a circular microphone array and the Libri-wham dataset with a linear microphone array,
achieving competitive results compared to state-of-the-art models.

Keywords: multi-channel speech enhancement; LSTM; deep learning; self-attention

1. Introduction

Multi-channel speech enhancement, which aims to recover desired speech signals in
noisy environments, plays an essential role in the development of devices with multiple
microphones, such as hearing aids, mobile phones, and cameras. In recent years, many
researchers have focused on studying multi-channel speech enhancement. Traditional
speech enhancement methods, e.g., minimum variance distortionless response beamform-
ers (MVDR) [1], mainly leverage spatial information to suppress noise and undesired
speakers. However, traditional speech enhancement methods are typically grounded
in idealized assumptions, achieving strong performance with stationary noise but often
struggling to effectively handle non-stationary noise.

Over recent decades, deep learning has demonstrated substantial efficacy in the field
of speech enhancement [2]. This technology has the capability to autonomously extract
meaningful features from spatial and spectral information, facilitating the restoration of
clear target signals from noisy environments. Early studies involved the use of deep
neural networks (DNNs) for time–frequency (T-F) masking, an approach inspired by the
auditory masking phenomenon. This phenomenon occurs when a quieter sound becomes
imperceptible in the presence of a louder sound within a critical frequency band [3]. Early
research trained long short-term memory (LSTM) neural networks to generate ideal ratio
masks (IRMs) for estimating the spatial covariance of noise, which were subsequently
used to derive minimum variance distortionless response (MVDR) filters [4–6]. An IRM
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enhances the magnitude response of noisy speech but directly utilizes the noisy phase
for reconstruction, without considering phase refinement. To address this limitation,
recent studies have advanced speech enhancement through the use of complex ratio
masking [7–9] or neural beamforming techniques. These methods have demonstrated
outstanding performance and are increasingly becoming the dominant approaches in
multi-channel speech enhancement.

To date, many studies have adopted encoder–decoder architectures to effectively learn
hierarchical and spatial features [10–12]. Although stacked convolutional layers tend to
incur a considerable parameter overhead, thereby increasing memory demands, LSTMs are
advantageous for handling long sequences with lower memory requirements, enhancing
their effectiveness for temporal context learning. RNN-based approaches employ a series
of RNN blocks to model sequences across both frequency and time dimensions [7,8,13,14].
Li’s team proposed a full-band and sub-band fusion model to learn global and local
spectral patterns for single-channel speech enhancement [15]. Subsequently, they further
leveraged spatial information for multi-channel speech enhancement by designing a fused
multiple-cue network, capable of fully exploiting both spectral and spatial information [8].
Meanwhile, Kristina et al. proposed the FT-JNF network [7], which allows control over the
availability of spatial, spectral, and temporal information, allowing for the analysis of the
interdependencies within temporal and spectral domains. The FT-JNF network comprises
two stacked LSTM layers that separately process full-band and sub-band data. Furthermore,
Wang et al. integrated full- and sub-band modeling with LSTM-based approaches to
reduce algorithmic complexity and minimize latency [13,14]. These methods demonstrated
the effectiveness of full-band and sub-band fusion models in speech enhancement tasks.
Accordingly, the model proposed herein also incorporates full- and sub-band modules to
capture both spatial and spectral information.

Transformers [16] and their variants have been extensively utilized in speech enhance-
ment [9,17,18], due to their ability to model global information. On the other hand, models
based on convolutional neural networks (CNNs) excel at capturing detailed local contex-
tual information [19]. Various strategies exist for integrating CNNs and transformers to
effectively exploit both global and local features, thereby leveraging the strengths of each
architecture. For instance, Xiang et al. [20] introduced a multiscale aggregation block
that integrates local and global speech features synergistically. However, the standard
self-attention architecture requires significant computational time and memory resources
to effectively capture the global context.

The aforementioned methods have demonstrated that employing stacked LSTMs as
the DNN backbone to integrate full- and sub-band information yields impressive perfor-
mance. Given that LSTMs are advantageous for handling long sequences with reduced
memory requirements, we employ stacked LSTMs as the DNN backbone to effectively
process these sequences, while minimizing memory overhead. We propose a novel feature
integration network that not only captures spectral information but also refines it through
shifted-window-based self-attention, thereby enhancing the quality and precision of feature
extraction. Our network consists of blocks that contain a full- and sub-band LSTM module
for capturing spectral information, as well as a global–local attention fusion module for
refining this information. The full- and sub-band LSTM module integrates both full-band
and sub-band information through two LSTM layers. The GLAF module’s dual-branch
architecture is designed to simultaneously learn global and local attention information,
with a spatial attention (SA) module further refining this integration. Unlike traditional
methods, the global branch of our model incorporates an efficient global–local attention
mechanism [21] to effectively capture global information, while the local branch leverages
convolutional layers for precise local feature extraction. Additionally, inspired by [22],
our SA module facilitates advanced feature integration, dynamically blending global and
local attention insights for optimal enhancement. Our model’s output is trained to predict
the complex ratio mask, a technique that ensures more accurate signal reconstruction. To
thoroughly evaluate the model, we conducted an ablation study on the SPA-DNS dataset,
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which uses a circular microphone array, to assess the individual contributions of each
module. Furthermore, we developed the Libri-wham dataset with a linear microphone
array. Our approach demonstrated competitive performance on both the SPA-DNS and
Libri-wham datasets, performing favorably compared to leading models in the field.

The remainder of this paper is organized as follows: Section 2 introduces the signal
model for multi-channel signal processing. Section 3 describes the proposed algorithms.
Section 4 outlines the datasets and experimental setup used in our study. Section 5 presents
the performance evaluation of the proposed system. Finally, Section 6 concludes the paper.

2. Signal Model

Considering a mixture recorded under anechoic conditions using M microphones, a
physical model in the short-time Fourier transform (STFT) domain can be formulated as:

ym( f , t) = sm( f , t) + zm( f , t)

= sd
m( f , t) + sr

m( f , t) + zm( f , t)

= sd
m( f , t) + nm( f , t), (1)

where sm( f , t) represents the speech received at microphone m, which includes direct-path
speech sd

m( f , t) and reverberated speech sr
m( f , t). Additionally, zm( f , t) denotes the noise

signal at the m-th microphone, while nm( f , t) represents the overall interference, including
both noise and reverberation. For brevity, the frequency and time frame indices, f and t,
will be omitted in the following text. In this work, our goal is to estimate the direct-path
clean speech from the reference microphone using the mixture signals captured by the
microphone array. We designate the first microphone as the reference microphone.

3. Proposed Algorithms

The architecture of our system is illustrated in Figure 1. The multi-channel input
signals, denoted as Noisy, are transformed into complex features via the STFT, resulting in
a three-dimensional tensor Y = [y1, . . . , yM] ∈ C2M×F×T . This process involves stacking
the real (R) and imaginary (I) components of the STFT in the channel dimension to form a
complete representation. Here, F denotes the number of frequency bins and T denotes the
number of frames. The stacked tensor is then fed into a two-dimensional (2D) convolutional
(Conv2D) layer to generate an embedding. This embedding is gradually refined through
N feature integration blocks, each consisting of a full- and sub-band LSTM (FaS) module
coupled with a GLAF module. Each module incorporates a residual connection. Following
this refinement, a 2D deconvolution (Deconv2D) layer is employed to predict the real and
imaginary components of the complex ratio mask. The output spectrum is derived by
multiplying the noisy spectrum from the reference channel with the complex ratio mask.
Finally, the spectrum is transformed back into the time domain using an inverse short-time
Fourier transform (ISTFT) to produce the enhanced signal. The above process can be
expressed as follows:

Y = STFT(Noisy), (2)

Embedding = Conv2D(Y), (3)

Re f ined_ f eature = GLAF(FaS(Embedding)), (4)

CRM = Deconv2D(re f ined_ f eature), (5)

Enhanced_speech = ISTFT(CRM ∗ Y). (6)

The FaS module captures fine-grained spectral information, thereby enhancing the
speech clarity by emphasizing key spectral features. Additionally, the GLAF module cap-
tures both global and local attention simultaneously, facilitating more effective feature
learning and bolstering the model’s robustness to diverse noise conditions. A spatial atten-
tion mechanism is incorporated within the GLAF module to further refine performance,
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avoiding the limitations of simple concatenation or summation of global and local attention,
which can impair the discriminative capacity of deep models. The integration of these
modules leads to improved performance by ensuring that the model not only captures
detailed spectral information (via FaS) but also learns how to prioritize and refine features
based on both local and global contexts (via GLAF and spatial attention). The contributions
of these components are analyzed in detail in the Experimental Setup section.

Figure 1. This diagram illustrates our proposed feature integration network. This architecture
comprises multiple feature integration blocks, each containing a full- and sub-band module (the
blue box) coupled with a global–local attention fusion module (the green box). * N means repeat the
integration block (the gray box) N times.

3.1. Full- and Sub-Band LSTM Module

A full-band and sub-band fusion model was initially proposed by [15] for single-
channel speech enhancement, inspiring subsequent extensions to multi-channel speech
enhancement, as seen in [7,8,13]. The blue box in Figure 1 illustrates the full- and sub-band
LSTM module developed in our work. The D-dimensional embeddings D̃ obtained from
the Conv2D layer are first permuted to the order (F, B, T, D), where B is the batch size,
and then reshaped to (F, B ∗ T, D). These data are fed into the first LSTM layer, followed
by a feedforward layer and a tanh activation function. The LSTM with H1 hidden units
models the D-dimensional frame embeddings, producing a tensor with shape (F, B ∗ T, H1).
A linear layer then maps the H1-dimensional embeddings back to D-dimensions, followed
by a tanh activation function. This series of operations strategically focuses on full-band
spatial information, enabling the network to effectively enhance and refine spatial details
across the frequency spectrum. Next, the output of the full-band block is reshaped to
(F, B, T, D) and added to the D-dimensional embeddings via a residual connection. The
enhanced tensor is permuted to the order (T, B, F, D) and reshaped to (T, B ∗ F, D), which
is then fed into the second LSTM layer. This is followed by another feedforward layer and
a tanh activation function, concentrating on sub-band spatial information. The LSTM with
H2 hidden units models the D-dimensional frame embeddings, resulting in a tensor with
shape (F, B ∗ T, H2). A linear layer then maps the H2-dimensional embeddings back to
D-dimensions, followed by a tanh activation function. Finally, the output of the sub-band
block is reshaped to (F, B, T, D) and reintegrated with the input tensor of the sub-band
block via a residual connection, preserving and enhancing the continuity of both spatial
and spectral information. The above process can be expressed as

B̃ f ull = tanh(FC(LSTM1(D̃))) + D̃, (7)

B̃sub = tanh(FC(LSTM2(B̃ f ull))) + B̃ f ull . (8)
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3.2. Global–Local Attention Fusion Module

The green box in Figure 1 illustrates the GLAF module developed in our work. It
consists of a batch normalization layer, a global and local attention fusion layer, another
batch normalization layer, and a multilayer perceptron. The global and local attention
fusion layer, illustrated in Figure 2, consists of two branches, a global branch and a local
branch, along with a spatial attention (SA) module. The global branch captures global
information, while the local branch captures local information. The local branch employs
two parallel Conv2D layers, each followed by a batch normalization layer. These two
Conv2D layers utilize different kernel sizes to extract local information:

Outputlocal = BN(Conv2D1(B̃sub)) + BN(Conv2D2(B̃sub)). (9)

Figure 2. Diagram of the global and local attention fusion layer. It comprises two branches, a global
branch and a local branch, along with a spatial attention (SA) module.

The global branch utilizes window-based multi-head self-attention [21], known for
its efficiency in capturing global information. The input tensor first undergoes a window
partition operation, as detailed in Figure 3. Initially, a Conv2D layer expands the channel
dimension threefold. Subsequently, the feature map is divided into smaller windows. Each
window is reshaped from [B, F

W , T
W , 3D, W, W] to [3 ∗ B ∗ F

W ∗ T
W ∗ h, W ∗ W, D

h ], and then
split into value, key, and query vectors, which are critical for the attention mechanism.
Here, W represents the window size and h represents the number of heads. The attention
weights are calculated by first taking the matrix product of the key and query vectors.
This is then scaled by

√
d, where d = D/h, to avoid large values in the matrix product

which could slow down the gradient convergence. The scaled result is passed through a
so f tmax function to obtain the normalized attention weights. These weights represent the
importance of each element in the sequence relative to others within the window. Finally,
the attention weights are used to compute a matrix product with the value vectors, followed
by a transformation to restore the original shape (B, D, F, T). The global branch’s output is
expressed mathematically as

Outputglobal = Attention(Q,K,V) = so f tmax(
QKT
√

d
)V, (10)

where T denotes the transpose operation, and Q, K, V denotes the value, key, and query
vectors. More details on the window-based multi-head self-attention can be found in [21].
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Figure 3. The window partition operation.

3.3. Spatial Attention Module

In [23], the authors argued that simply concatenating or summing multiscale features
can impair the discriminative ability of deep models. Here, we integrate Outputlocal and
Outputglobal to enhance the performance using the SA module, rather than simply summing
them, as illustrated in the yellow box in Figure 2. The spatial attention mechanism enables
neurons to gather multi-scale spatial information [22]. We refine the sum of Outputlocal and
Outputglobal using a Conv2D layer, a BatchNormalization layer, and a ReLU layer, yielding
the intermediate result p. We then employ another Conv2D layer, followed by a sigmoid
operation, to generate the weighted feature map, which is then split into s1 and s2. Each
of these is multiplied by its respective branch output, either Outputlocal or Outputglobal.
Finally, these two outputs are added to fuse the channel and spatial features, resulting in
the output of the SA module, denoted as U. The process is outlined below:

p = ReLU(BN(Conv2D(Outputlocal + Outputglobal))) (11)

s1, s2 = Split(Sigmoid(Conv2D(p))) (12)

U = s1 ∗ Outputlocal + s2 ∗ Outputglobal (13)

4. Experimental Setup
4.1. Dataset

In this paper, we used the Python toolbox Pyroomacoustics [24] to simulate real spatial
scenarios. Considering the variety of microphone arrays in real-world applications, we
created two spatial datasets with different microphone arrays to evaluate the proposed
model: the SPA-DNS dataset with a circular microphone array and the Libri-wham dataset
with a linear microphone array. Both the SPA-DNS and Libri-wham datasets encompass
a wide range of acoustic scenarios, covering the two main types of microphone array
configurations commonly used in real-world applications. We employed a method similar
to that used in [25] to generate multi-channel datasets. Descriptions of these two datasets
are provided below.

• The SPA-DNS dataset: This dataset was created with simulated room sizes ranging
from 5 × 5 × 3 m3 to 10 × 10 × 4 m3, covering common indoor dimensions. Rever-
beration times (RT60) were varied between 0.2 and 1.2 s, simulating a range from
low to moderate reverberant conditions typical in indoor environments. A circular
microphone array of four microphones, with a radius of 10 cm, was randomly placed
in each room. Both the array and the two sources—clean speech and noise—were
positioned at random locations at least 0.5 m from the walls, with a source–source
distance of 0.75 to 2 m. Clean speech and noise samples were sourced from the DNS
Challenge 2020 corpus [26]. Noise clips were selected from Audioset and Freesound,
encompassing a wide range of typical real-world noise types commonly encountered
in daily life. In total, we generate 85,000 training utterances (3–6 s), 4400 validation
utterances (3–10 s), and 2700 test utterances (3–10 s) with signal-to-noise ratios (SNRs)
between −5 dB and 10 dB, mimicking real-world noisy conditions. The ratios of the
training, validation, and test sets were 92%, 5%, and 3%, respectively.
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• The Libri-wham dataset: The rooms were created with sizes ranging from 3 × 3 ×
2.5 m3 to 8 × 8 × 3 m3, covering common indoor dimensions. The RT60 values ranged
from 0.3 to 0.6 s, simulating a range from low to moderate reverberant conditions
typical in indoor environments. A linear array of four microphones was randomly
positioned within each room, with a spacing of 0.5 cm between each microphone.
The two sources, consisting of speech and noise, were randomly positioned within
the room at heights between 1.2 and 1.6 m, to simulate typical speaking heights and
realistic noise scenarios in daily life. Clean speech files were obtained from Librispeech
(train-clean-100) [27], while noise files were selected from the MUSAN dataset [28],
which contains 929 diverse noise samples representing various real-world noise types
encountered in everyday environments. We generated 16,724 training utterances of
6 s each, 1872 validation utterances of 6 s each, and 543 test utterances of 6 s each. The
ratios of the training, validation, and test sets were 87%, 10%, and 3%, respectively.
Signal-to-noise ratios (SNRs) ranged from −5 dB to 10 dB.

4.2. Model Configurations

All data were sampled at 16 kHz. To transform the data into the STFT domain, we
used a Hanning window with a length of 512 and an overlap of 50%. We set the channel
dimension length of the first Conv2D layer as D = 48 and the number of feature integration
blocks as N = 3. The number of hidden units was set to H1 = 256 for the first LSTM
layer and H2 = 128 for the second LSTM layer. The window size for the window partition
operation was set to 8. The network was trained using the Adam optimizer [29] with a
learning rate of 0.001 and a batch size of 2 input sequences. We trained our model using
the same loss function as proposed in [30], and the epoch count was set to 150.

The performance of the model in this work was evaluated using the following three
metrics: perceptual evaluation of speech quality (PESQ) [31], which evaluates objective
speech quality; short-time objective intelligibility (STOI) [32], which evaluates objective
speech intelligibility; and scale-invariant signal-to-distortion ratio (SI-SDR) [33]. The PESQ
score ranges from −0.5 to 4.5, and the STOI score ranges from 0 to 1, with higher scores
indicating better quality and intelligibility for both of these metrics.

5. Experimental Results and Analysis
5.1. Ablation Study

In this section, we performed an ablation study on the SPA-DNS dataset to analyze
the individual contributions of each module mentioned above. We compared the results of
using different fusion types, the presence of the GLAF module, and the number of feature
integration blocks, as shown in Table 1. Table 1 details the number of parameters for each
case, the number of floating point operations per second, the real-time factor (RTF) tested
on an Intel(R) Xeon(R) Gold 5218R processor, sourced from Intel Corporation, Santa Clara,
CA, USA, and the memory usage during the training step with a batch size of 1. The RTF
is defined as the ratio of the time taken to process the audio to the duration of the audio
itself. A lower RTF indicates better suitability for real-time applications, while a higher RTF
suggests increased computational requirements, which may make real-time deployment
more challenging. We utilized the Python toolbox pro f ile to calculate the FLOPs. The
Python version is 3.11.5, and the pro f ile is imported from thop 0.1.1.

It can be observed that the FLOPs increased from 5.67 G/s in Case A to 17.09 G/s
in Case E, while the memory usage increased from 8087 MB to 17,632 MB. Furthermore,
there were consistent performance improvements from Case A to Case E, highlighting the
effectiveness of the introduced module. This growth in model size and computation re-
sulted in a longer training time. Additionally, the increased number of parameters imposes
challenges for real-time deployment, particularly in resource-constrained environments.
Therefore, practical deployment, especially on edge devices, requires careful consideration
of the trade-offs between model complexity and performance gains.

The detailed analysis indicated the contribution of each module as follows:
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• Full- and Sub-Band LSTM Module Contribution: Compared to the noisy input, Case
A, which contained only two LSTM layers, showed significant improvements across
all evaluation metrics. Specifically, the PESQ score improved from 1.56 to 2.77, the
STOI score from 0.652 to 0.902, and the SI-SDR from −6.56 to 5.16, demonstrating the
effectiveness in capturing spectral information. This module provided a foundational
improvement by allowing the model to learn from both full- and sub-band spectral
features, which are crucial for enhancing noisy speech.

• GLAF Module Contribution: Case A, which lacked the GLAF module, exhibited
the poorest performance among all cases. The inclusion of the GLAF module in
Case B resulted in gains of +0.009 in PESQ and +0.004 in STOI compared to Case
A, highlighting the effectiveness of refining spectral information by incorporating
global–local attention. This module plays an important role in enhancing specific
details by applying both global and local attention, thereby effectively boosting the
precision of the extracted features.

• Fusion Type Impact: A comparison between Case B and Case C showed that fusion
using SA (spatial attention) outperformed the fusion by summation, resulting in im-
provements of +0.13 in PESQ, +0.013 in STOI, and +1.28 in SI-SDR. This improvement
highlights that using spatial attention to selectively integrate feature information
is more effective than a simple summation approach, leading to more significant
enhancements in speech quality and intelligibility.

• Number of Feature Integration Blocks: Increasing the number of feature integration
blocks from one (Case A) to three (Case E) consistently improved performance. Specif-
ically, the PESQ score increased from 2.99 to 3.62, the STOI score from 0.919 to 0.965,
and the SI-SDR from 6.20 to 12.00. These findings illustrate that having more feature
integration blocks leads to better model performance, although at the cost of increased
parameter size and computational complexity. The performance gains in terms of
PESQ, STOI, and SI-SDR make the additional complexity worthwhile in scenarios
where high-quality speech enhancement is crucial. However, in real-time or resource-
constrained deployments, the increase in parameters and computational cost must be
balanced against these improvements.

Table 1. Experimental results of ablation study. The bold values show the best results.

Case Para.
(M)

FLOPs
(G/s) RTF N GLAF Fusion

Type
Memory

Usage (MB) PESQ STOI SI-SDR

Noisy - - - - - - - 1.56 0.652 −6.56
A 0.85 5.67 0.12 1 × - 8087 2.77 0.902 5.16
B 0.90 5.69 0.71 1 ✓ sum 8091 2.86 0.906 4.92
C 0.91 5.70 0.72 1 ✓ SA 8093 2.99 0.919 6.20
D 1.8 11.40 0.83 2 ✓ SA 11,585 3.50 0.957 10.75
E 2.7 17.09 0.95 3 ✓ SA 17,632 3.62 0.965 12.00

Figure 4 displays spectrograms of the noisy signal, the clean signal, and the cases
presented in Table 1. The remaining spectrograms (from the top middle to the bottom row)
illustrate the outputs from each model configuration, starting with Case A and progressing
to Case E. As we move from Case A to Case E, the spectrograms reveal progressively
more refined spectral details, with noise being more effectively suppressed in the later
cases. Notably, the regions highlighted by yellow circles indicate areas where the model’s
performance in recovering speech details improved. Case A contained relatively sparse
spectral details due to the limited configuration of modules, resulting in less effective noise
suppression. With each subsequent case, the integration of additional modules (such as the
GLAF module and more feature integration blocks) led to noticeable improvements in the
recovered spectral content. Case E, with the full model configuration, closely resembles the
clean spectrogram, demonstrating the substantial enhancement achieved by our approach.
The improvements shown in these spectrograms are consistent with the quantitative results
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in Table 1, indicating that each module contributed significantly to the enhancement in
performance. As the value of N increased, the performance improved; however, the number
of parameters and FLOPs also increased accordingly. A balance between model size and
performance should be considered for practical deployment, especially on edge devices.

Figure 4. Spectrograms of the noisy, clean, and the five cases in Table 1 (A–E).

5.2. Comparison to the Baseline Models

In this section, we conducted a comparative analysis of our proposed multi-channel
speech enhancement method against other state-of-the-art models using both the SPA-DNS
and Libri-wham datasets. The SPA-DNS dataset was generated using a circular microphone
array, whereas the Libri-wham dataset was generated using a linear microphone array. We
compared our model with three non-causal advanced models: FasNet-TAC [34], an end-
to-end speech enhancement neural network; EaBNet [10], a two-stage neural beamformer;
and FT-JNF [7], a DNN-based joint non-linear filter. It is worth noting that while the
datasets were simulated, the noise conditions and microphone setups were specifically
chosen to replicate real-world scenarios, such as home and office environments, where
speech enhancement systems are often deployed.

Table 2 presents the results of the models trained separately on the SPA-DNS and
Libri-wham datasets. Our model was trained using the same configuration as for Case
E in Table 1. It can be seen that our proposed model outperformed the three advanced
models, whether using a circular microphone array or a linear microphone array. For the
SPA-DNS dataset, which was generated using a circular microphone array, the PESQ score
improved by 2.06, the STOI score by 0.313, and the SI-SDR score by 18.56. For the Libri-
wham dataset, generated using a linear microphone array, the PESQ score improved by
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1.99, the STOI score by 0.338, and the SI-SDR score by 20.816. These results demonstrate that
our model effectively generalized across different microphone configurations, highlighting
its robustness.

Compared to FasNet-TAC, which had the largest parameter size of 4.1 M, our model
achieved better performance with fewer parameters (2.7 M for Case E). Despite having
fewer parameters, our model achieved significant improvements across PESQ, STOI, and
SI-SDR metrics, which demonstrated an efficient balance between parameter size and
enhancement quality. This makes our model more suitable for deployment on devices
with limited resources, where memory and computational power are critical constraints.
Although FasNet-TAC had the most parameters, it performed worse on both the SPA-DNS
dataset (+0.741 in PESQ, +0.172 in STOI, +10.881 in SI-SDR) and the Libri-wham dataset
(+0.47 in PESQ, +0.098 in STOI, +7.276 in SI-SDR). Compared with EaBNet and FT-JNF, our
proposed model stood out with its smaller parameter size and excellent performance.

The improvements observed in PESQ, STOI, and SI-SDR came with increased compu-
tational complexity, as evidenced by the growth in FLOPs and parameter count from Case
A to Case E. This trade-off must be carefully considered in practical deployment scenarios,
particularly those requiring real-time performance. In high-resource environments, such as
powerful telecommunication servers, this increased complexity is acceptable, due to the
significant gains in speech quality and intelligibility. However, in resource-constrained
environments, such as battery-powered IoT devices, our model might require further op-
timization to maintain a balance between enhancement performance and computational
feasibility. In conclusion, the results demonstrate that our proposed model consistently
achieved the highest scores while maintaining the smallest parameter size, underscoring
the effectiveness of our approach.

Table 2. Performance metrics of various models trained separately on the SPA-DNS dataset and
Libri-wham dataset. The bold values show the best results.

Dataset Model Cau. Para. (M) PESQ STOI SI-SDR

SPA-DNS

Noisy - - 1.56 0.652 −6.56
FasNet-TAC [34] × 4.1 2.301 0.824 4.321

EaBNet [10] × 2.8 2.718 0.878 3.904
FT-JNF [7] × 3.3 2.886 0.885 5.269

Prop. × 2.7 3.62 0.965 12.00

Libri-wham

Noisy - - 1.44 0.604 −12.436
FasNet-TAC [34] × 4.1 1.91 0.702 −5.160

EaBNet [10] × 2.8 2.37 0.810 −2.292
FT-JNF [7] × 3.3 2.50 0.854 1.894

Prop. × 2.7 3.43 0.942 8.38

5.3. Robustness to Unseen Noise and Reverberation Time

To further analyze the generalization capability of our model in real-world noisy
environments, we conducted additional experiments with both unseen noise and varying
reverberation conditions. A test set was created consisting of unseen noise samples, which
were real-life recordings of everyday noises obtained from Freesound. Table 3 presents
the performance metrics of the various models trained on the Libri-wham dataset and
evaluated on this unseen noise. Our proposed model (denoted as “Prop.”) achieved the
highest performance across all evaluated metrics, with a PESQ of 3.54, a STOI of 0.951, and
an SI-SDR of 10.08. Compared to the other models, these results demonstrate significant
improvements in both speech quality and intelligibility, highlighting the effectiveness
of our approach under unseen noise conditions. This superior performance indicates a
strong generalization capability, making our model more robust for dealing with real-world
noisy environments.
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Table 3. Performance metrics of the various models trained on the Libri-wham dataset but tested on
unseen noise. The bold values show the best results.

Model PESQ STOI SI-SDR

Noisy 1.38 0.592 −12.11
FasNet-TAC [34] 1.72 0.677 −6.09

EaBNet [10] 2.23 0.784 −2.56
FT-JNF [7] 2.23 0.823 0.87

Prop. 3.54 0.951 10.08

Furthermore, we evaluated our proposed model under several different reverberation
conditions to assess its robustness further. Figure 5 illustrates the performance of our
model in terms of improvements (∆) in PESQ (Figure 5a), STOI (Figure 5b), and SI-SDR
(Figure 5c) across various reverberation scenarios. The results demonstrate that our model
consistently maintained a high performance, even with varying levels of reverberation,
indicating resilience and adaptability.

Overall, the combined evaluation under unseen noise conditions and multiple re-
verberation levels provides strong evidence for the robustness of our proposed model.
These findings suggest that our model can effectively generalize to challenging real-world
conditions, which is crucial for practical applications in speech enhancement.

Figure 5. The influence of the reverberation time in terms of ∆PESQ, ∆STOI, and ∆SI_SDR is shown
in (a–c).

6. Conclusions

In this paper, we proposed a feature integration network for multi-channel speech
enhancement, consisting of a Conv2D layer, several feature integration blocks, and a
Deconv2D layer. Each feature integration block includes a full- and sub-band LSTM
module, as well as a global–local attention fusion module. The experimental results
demonstrated that each module significantly contributed to the overall enhancement
performance. Additionally, the proposed model outperformed other state-of-the-art models
in PESQ, STOI, and SI-SDR on both the SPA-DNS and Libri-wham datasets. In future work,
we aim to enhance the model’s capability for practical applications, particularly in diverse
and challenging real-world environments.
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