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Abstract: Holographic displays are an upcoming technology for AR and VR applications, with the
ability to show 3D content with accurate depth cues, including accommodation and motion parallax.
Recent research reveals that only a fraction of holographic pixels are needed to display images with
high fidelity, improving energy efficiency in future holographic displays. However, the existing
iterative method for computing sparse amplitude and phase layouts does not run in real time; instead,
it takes hundreds of milliseconds to render an image into a sparse hologram. In this paper, we present
a non-iterative amplitude and phase computation for sparse Fourier holograms that uses Perlin
noise in the image–plane phase. We conduct simulated and optical experiments. Compared to the
Gaussian-weighted Gerchberg–Saxton method, our method achieves a run time improvement of over
600 times while producing a nearly equal PSNR and SSIM quality. The real-time performance of our
method enables the presentation of dynamic content crucial to AR and VR applications, such as video
streaming and interactive visualization, on holographic displays.

Keywords: holography; Fourier holograms; Perlin noise

1. Introduction

Holographic displays are a promising upcoming display technology with the ability
to display 3D content by reconstructing the wavefield of a complete 3D scene. For AR
and VR devices, holographic displays also have the potential to resolve the vergence–
accommodation conflict, which leads to fatigue and virtual reality sickness [1–3]. Current
holographic displays are prototyped using spatial light modulators (SLMs) based on micro-
electro-mechanical systems (DMD or MEMS) or liquid crystal (LCD or LCoS) technology
supporting phase-only holograms. Future holographic displays promise control of both am-
plitude and phase with dual liquid–crystal panels [4], metasurfaces [5–8], or nanophotonic
phased arrays (NPAs) [9–12].

To address the high power consumption of large-scale NPA-based holographic dis-
plays, Jabbireddy et al. [13] propose using sparse holograms, complex holograms with
zero amplitude across a large fraction of the hologram–plane pixels. Sparse holograms
reduce power consumption by activating a sparse array of active antennas. The hologram
layout, phase, and amplitude are computed using a Gaussian-weighted Gerchberg–Saxton
(GGS) algorithm for a given target image. By adding a Gaussian weighted amplitude to
the Gerchberg–Saxton algorithm, their method redistributes energy in the hologram plane,
concentrating it in a few pixels and enabling high sparsity levels while maintaining the
image quality of the complete non-sparse image. Due to the iterative nature of Gerchberg–
Saxton, GGS takes over 2 s to generate the sparse hologram for a single channel on an
RTX 2080 GPU. This limitation prevents sparse holograms from being used for interactive
applications which encompass most AR and VR use cases such as data visualization [14],
virtual collaboration [15], and live captioning [16].
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Non-iterative methods in computer-generated holography, either conventional or
learned ones, could help improve the speed of hologram generation. Traditionally, the
Gerchberg–Saxton algorithm [17] is used for phase-retrieval applications, such as comput-
ing the hologram–plane phase for phase-only holograms. As an alternative to Gerchberg–
Saxton, Pang et al. [18] propose a non-iterative method that combines a quadratic image–
plane phase with an error diffusion technique. However, this method is unsuitable for
generating sparse holograms, which concentrate the amplitude in a few hologram pixels
rather than diffusing it throughout all the pixels.

To enable sparse holograms for dynamic and interactive applications, in this paper, we
examine how the Gaussian-weighted Gerchberg–Saxton (GGS) algorithm generates sparse
holograms. We observe that each iteration of the GGS algorithm smooths out the image–
plane phase, converging to a primarily low-frequency phase. Based on this observation,
we propose to replace the random phase initialization of GGS with a low-frequency initial
phase based on Perlin noise [19,20]. We show that, by selecting a sufficiently low frequency,
a Perlin-noise-based phase initialization directly results in a converged solution for GGS,
allowing us to instantly generate a sparse hologram.

Figure 1 shows a visual overview of our algorithm results with a random phase, a
quadratic phase, and a Perlin-noise-based phase. We examine how the image–plane phase
distribution affects the amplitude distribution of Fourier holograms. We discover that using
a low-frequency Perlin noise allows us to generate sparse Fourier holograms (visualized at
80% sparsity) with an over 600× speedup over the current method.

Phase Distributions Sparse Holograms Image Reconstructions

Perlin Noise

QuadraticRandom

Perlin Noise

QuadraticRandom

Perlin Noise

QuadraticRandom

Figure 1. On the (left), we show a comparison between the random phase, the quadratic phase [18],
and Perlin noise [19,20]. In the (middle), we show the amplitudes of 80% sparse holograms con-
structed using each of these image–plane phase distributions. On the (right), we show images
reconstructed from the sparse holograms for each of these image–plane phase distributions.

In summary, the contributions of our paper are as follows:

• We examine how the Gaussian-weighted Gerchberg–Saxton algorithm optimizes
sparse holograms and discover that the frequency of the image–plane phase decreases
until convergence.

• We propose to use low-frequency Perlin noise as the image–plane phase, allowing us
to create sparse holograms in about one millisecond.

• We explore the relationship between the frequency of the image–plane phase and the
reconstruction quality of sparse holograms.

2. Background and Related Work

Our work builds upon the existing research in computer-generated holography. First,
we present some background on the sparse holograms. Then, we provide a brief overview
of recent work in holographic displays. Finally, we discuss related work in Gerchberg–
Saxton phase retrieval.

2.1. Sparse Holograms

Computer-generated holograms (CGHs) can be classified into three types: amplitude-
only holograms, phase-only holograms, and complex holograms. Most existing work in
CGHs focuses on generating phase-only holograms to accommodate the commercially
available phase-only spatial light modulators found in existing holographic display setups.
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Our work focuses on sparse complex holograms designed for future holographic display
setups with independent control of amplitude and phase for each hologram pixel.

In a far-field Fourier hologram setup, the hologram plane and the image plane are
related by a Fourier transform, as shown in Figure 2. Since a far-field hologram undergoes
a Fourier transform, we can use a hologram with sparsely activated pixel to display a
complete image. As illustrated in Figure 3b, a sparse hologram is a hologram where only a
subset of the hologram–plane pixels are activated with a non-zero amplitude.

Hologram Plane Image PlaneFourier Lens

f f

Figure 2. Visual overview of a Fourier hologram setup. On the hologram plane (left), a complex
hologram with amplitude and phase is emitted from the hologram plane. The hologram passes
through a Fourier lens (middle). On the image plane (right), a complete image is emitted.

Hologram Plane Image PlaneFourier Lens

(a) Phase-only hologram illustration.

Hologram Plane Image PlaneFourier Lens

(b) Sparse hologram illustration.

Figure 3. Illustrative comparison between a (a) phase-only hologram and a (b) sparse hologram. In
(a), pixels on the hologram plane have equal amplitude (visualized as transparency) and differing
phases (visualized as hue). In (b), only a subset of pixels are active with non-zero amplitude and
differing phases. In both (a) and (b), a complete image can be produced on the image plane.

Whereas phase-only holograms, illustrated in Figure 3a, are directly applicable to the
current generation of phase-only spatial light modulators (SLMs), sparse holograms are
intended to address upcoming SLMs that promise control of both amplitude and phase.
Jabbireddy et al. [13] explore sparse holograms targeting nanophotonic phased arrays
(NPAs) [9–12], where each antenna, or ‘pixel’, emits amplitude and phase independently.
Under such a setup, the usage of each hologram pixel directly contributes to the power
consumption and heat generation of the holographic display.

We note that this use of sparsity differs from Shi et al. [21], which uses the sparsity
of light fields in the angular domain for light field reconstruction. Most existing methods
such as Maimone et al. [22] and Peng et al. [23] are targeted towards generating real-time
phase-only CGH rather than sparse CGH.

2.2. Holographic Displays and Algorithms

Holographic displays generate images through the controlled diffraction and inter-
ference of coherent light. Unlike traditional displays, holographic displays reconstruct a
wavefront of the scene by controlling the phase of the emitted light. Holographic displays
are built using spatial light modulators (SLMs). Current SLMs are built upon liquid crystal-
based (LCD) or micro-electro-mechanical system (MEMS) technology. Existing SLMs
typically only offer phase-only modulation and can also be referred to as phase spatial
light modulators (PLMs). For complex holograms which have both amplitude and phase,
researchers are in the process of developing two-phase holograms [24], metasurfaces [6,7],
and nanophotonic phased arrays [9,10].
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Digital holography falls into a class of problems known as inverse problems [25–27],
since they aim to recover the hologram amplitude and phase which generates the observed
target image. Two common types of holograms are Fresnel and Fourier holograms. Fresnel
holograms are used in near-field holographic displays. Our paper focuses on Fourier
holograms, which are used in far-field holographic displays.

2.3. Gerchberg–Saxton Phase Retrieval

Conventional spatial light modulators (SLMs) can only control either the amplitude
or phase of the coherent light. In the case of phase-only SLMs, the Gerchberg–Saxton
(GS) algorithm [17] is often used to compute the phase in the hologram plane with strict
amplitude constraints in the hologram and image planes. Existing research has focused on
improving the convergence performance and robustness of the GS algorithm for generating
phase-only holograms.

For phase-only Fourier holograms, Chen et al. [28,29] develop a weighted constraint
iterative algorithm (WCIA). Given target amplitude At, reconstructed amplitude Ar, and
input amplitude Ak, WCIA uses an adaptive over-compensation in their amplitude con-
straint, |Acon| = |Ak|(|At|/|Ar|)βk , in the signal region. Reducing the difference between
the reconstructed amplitude and the new amplitude in the image plane allows for better
amplitude uniformity in the hologram which enhances the convergence of Gerchberg–
Saxton. Pang et al. [18] propose a non-iterative method to generate phase-only Fourier
holograms using a quadratic phase (φ = am2 + bn2), which represents illumination with
a point light source. Building upon WCIA, Wu et al. [30] develop an adaptive weighted
Gerchberg–Saxton (AWGS). AWGS replaces the weighted ratio in the amplitude constraint
with eAt−Ar to achieve more stable convergence. Furthermore, they propose initializing the
phase in the target domain with an approximation to a quadratic phase. With both of these
techniques, AWGS can generate phase-only Fourier holograms with stable convergence,
fewer artifacts, and a PSNR that is 4.8 dB higher.

Thimons and Wittle [31] investigate the Gerchberg–Saxton algorithm under different
conditions, including applying a low-frequency filter to the input magnitude, multiplying
the input magnitude with Gaussian, and implementing a constant initial phase. In their
experiments, they found that, when one set of magnitudes is non-centrosymmetric, using
constant phase initialization leads to more stable and accurate convergence in far fewer
iterations. Cruz-López and González-Velázquez [32] analyze the effects of several random
phase distributions on Fourier and Fresnel hologram reconstruction. While we also examine
the phase distribution, our method uses Perlin noise to generate sparse complex holograms
rather than amplitude-only or phase-only holograms.

In contrast to these existing works, which develop algorithms for phase-only holo-
grams and existing phase-only SLM hardware, our work is focused on the constraint of
sparsity for future complex SLM hardware. To the best of our knowledge, we believe
Instant-SFH is the first to use Perlin noise for constructing sparse holograms and the first to
generate sparse holograms in real time with equivalent quality to those generated by GGS.

3. Method
3.1. Gaussian-Weighted Gerchberg–Saxton

In a Fourier hologram setup, an SLM produces a complex-valued source hologram
Es = SeiϕS with amplitude S and phase ϕS. The source hologram propagates through free
space or a Fourier lens to form a target far-field image Et = TeiϕT . At the far-field image
plane, only the intensity I ∝ T2 is perceptible to the viewer. Jabbireddy et al. [13] propose
the Gaussian-weighted Gerchberg–Saxton (GGS) algorithm to generate sparse amplitude
and phase layouts for Fourier holograms. GGS leverages the Gerchberg–Saxton algorithm
while modulating the amplitude in the hologram and image planes. However, unlike in
traditional phase-retrieval applications, GGS does not apply a strict amplitude constraint
in the hologram plane. Instead, at each iteration i, the amplitude constraint Acon used is a
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element-wise product of a Gaussian weight map W and the current amplitude |Ai| in the
hologram plane:

Acon = W ⊙ |Ai| (1)

Upon convergence, or after 1000 iterations, the amplitudes in the hologram plane are
truncated to the desired sparsity level, resulting in a sparse layout for a Fourier hologram
with amplitude and phase.

In their experiments, Jabbireddy et al. [13] observe that each iteration of GGS takes about
3.5 ms for a single channel. In total, their end-to-end pipeline takes 2.26 s per image channel
on average. Without the ability to run in real time, GGS is limited to generating holograms
of things that can be pre-computed offline, such as static images and text. This limitation
prohibits using sparse holograms in interactive applications and makes it difficult to view
even videos, which would require pre-computing and storing a sequence of sparse holograms.

A real-time method would enable sparse holograms to be used in far more scenarios
such as video streaming, data visualization, and other interactive applications. With
the goal of real-time sparse holograms in mind, we first examine how GGS generates
sparse holograms. The standard Gerchberg–Saxton algorithm enforces a strict amplitude
constraint in both the image plane and hologram plane. GGS uses a more relaxed constraint
by modulating the amplitude in the hologram plane instead of replacing it in each iteration.
However, the amplitude is still strictly enforced in the image plane. Since the Fourier
transform is an invertible transformation between holograms and images, the amplitude
constraint in the hologram plane must be reflected in the image–plane phase. We visualize
how the image–plane phase changes in Figures 4 and 5a. In Figure 5a, we see that the
phase changes significantly at the first iteration. This is expected of a non-converged phase.
As GGS progresses through 1000 iterations in Figure 4, the image–plane phase quickly
becomes smoother, consisting primarily of low-frequency components.

(a) Initialization. (b) Iteration 10. (c) Iteration 100. (d) Iteration 1000.

Figure 4. Image plane phase of Gaussian-weighted Gerchberg–Saxton (GGS) visualized with angles
directly mapped to color hues visualized at initialization (a), after 10 GGS iterations (b), after 100 GGS
iterations (c), and after 1000 GGS iterations (d).

	

(a) Random initialization.

	

(b) Perlin noise initialization.

Figure 5. Image–plane phase visualizations at initialization and after a single GGS iteration. In (a), we
show a random initial phase and the phase after a single iteration. In (b), we show a Perlin-noise-based
initial phase the phase after a single iteration.

3.2. Perlin Noise

Since GGS converges to a low-frequency phase distribution, we hypothesize that
initializing with a low-frequency phase will result in faster convergence. To initialize
the image–plane phase with a low-frequency distribution, we propose the use of Perlin
noise [19,20]. Perlin noise is a band-limited noise function that allows direct control
over the frequency content and can be made periodic with a proper selection of gradient
vectors. This property is not available in other types of noise such as Gaussian noise. In
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computer graphics, Perlin noise is commonly used to generate procedural textures and
terrain [19,33,34].

Perlin noise [19,20] is generated by enumerating a low-resolution 2D grid with unit-
length 2D vectors, known as gradient vectors. Next, we enumerate a high-resolution
2D image grid mapping to the low-resolution grid at a particular frequency. For each
image pixel, offset vectors to the four nearest low-resolution grid points are computed.
The dot products between gradient and offset vectors are computed at each grid point.
Finally, a smooth interpolation is applied across the four dot product values to produce a
smooth noise image. We scale the resulting Perlin noise output to an angle between 0 to 2π.
Implementations of Perlin noise are available online (Perlin noise: https://github.com/
pvigier/perlin-numpy, accessed on 21 April 2023).

When replacing the random initial phase with a low-frequency Perlin-noise-based phase,
we observe that successive GGS iterations do not significantly change the image–plane phase,
as shown in Figure 5b, suggesting a converged solution. Hence, with Perlin noise, a single
inverse FFT can be used to generate a sparse hologram without the need for GGS, as shown
in Figure 6. Directly generating a sparse hologram with a high-frequency random phase [17]
or quadratic phase [18] does not result in an acceptable reconstruction, as shown in Figure 7.

Input Target

A = ℱ −1{T eiψ}

Hologram

IFFT

T

Hologram Generation ReconstructionTruncation

Truncate Sa

Sparse Hologram

FFT

ψ

Figure 6. Overview of our instant sparse Fourier hologram (Instant-SFH) evaluation pipeline with
three components: hologram generation, truncation, and reconstruction. In hologram generation, the
target amplitude is augmented with a Perlin noise phase and converted to a complex hologram using
inverse FFT. In truncation, the complex hologram is converted to a sparse hologram by zeroing out
pixels at the lowest amplitude values. In reconstruction, we apply far-field propagation by taking an
FFT to reconstruct the image.

(a) (b)

(c) (d)

(e)

Figure 7. Comparison of 80% sparse hologram reconstructions using several methods. The original
image is first shown in (a) as a reference. Then for each method, we show the full image and a zoomed-in

https://github.com/pvigier/perlin-numpy
https://github.com/pvigier/perlin-numpy
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crop. (a) Original image; (b) sparse hologram reconstruction with quadratic phase, (≈1 ms); (c) sparse
hologram reconstruction with random phase, (≈1 ms); (d) sparse hologram reconstruction with
random phase and 1000 GGS iterations (≈600 ms); (e) sparse hologram reconstruction with Perlin-
noise-based phase (≈1 ms).

4. Experiments

We first examine the relationship between the frequency of the image–plane phase and
the sparse Fourier hologram reconstruction quality. Next, we explore whether there is a
relationship between the frequency of the image amplitude and the frequency of the image
phase when generating sparse holograms. Finally, we evaluate the quality and performance
of our instant sparse Fourier hologram method by comparing it to the Gaussian-weighted
Gerchberg–Saxton method.

4.1. Implementation and Setup

Our experiments are conducted using an existing image dataset. Following Jab-
bireddy et al. [13], we use the X2 bicubic split of the DIV2K dataset (Data available
at https://data.vision.ee.ethz.ch/cvl/DIV2K/, accessed on 21 April 2023) [35]. This
dataset contains a total of 900 images, most of which have a landscape orientation with
1020 × 678 resolution. To ensure consistent quality and performance evaluation results, we
rotate portrait images to landscape and resize and center crop all images to 1020 × 678. We
evaluate our method using all 900 images. We implement our algorithm and baseline meth-
ods using PyTorch 2.0.1, which enables GPU-accelerated computations. Our experiments
are run on a workstation with an Intel Core i7-12700K and an NVIDIA RTX 4090.

We first evaluate the performance and quality of our instant sparse Fourier hologram
method (Instant-SFH). We compare our method to the existing offline GGS method [13],
which uses a random initial phase and up to 1000 iterations for convergence. Note that
the offline GGS method is not suitable for dynamic content such as streaming video or
interactive 3D visualization. To quantitatively evaluate the reconstruction quality of our
methods, we use two standard reference-based image quality metrics: the peak signal-to-
noise ratio (PSNR) and the structural similarity metric (SSIM).

4.2. Frequency Ablation

Perlin noise [19,20] is generated by enumerating a grid with unit-length vectors and in-
terpolating between grid values using dot products and linear interpolation. The sampling
rate, or the ratio between image pixels and the underlying grid, represents the frequency of
the noise generated. To determine the ideal frequency of Perlin noise to use for the image–
plane phase, we evaluate how different frequencies affect the reconstruction quality. Specif-
ically, we conduct experiments across 28 frequencies: 0, 1, ..., 9, 10, 20, ..., 90, 100, 200, ..., 900.
This value is the resolution of the underlying grid being sampled when generating Perlin
noise. For frequency 0, we use a constant zero phase across the image.

Quantitative results averaged over all 900 images (28 × 900 = 25.2 K reconstructions)
are shown in Figure 8. Qualitative results at a few frequency levels are shown in Figure 9
with corresponding hologram amplitudes visualized in Figure 10. Across all sparsity
levels, we observe that the PSNR and SSIM quality decreases as the frequency of the
Perlin noise increases. The PSNR and SSIM values are maximized at the lowest non-zero
frequencies, specifically frequencies 1 to 10. Additionally, we observe that the higher the
sparsity level, the more sensitive the reconstruction is to the phase frequency. For the
majority of our evaluation, namely Sections 4.4 and 4.5, we use a frequency of 3 for our
Instant-SFH method.

https://data.vision.ee.ethz.ch/cvl/DIV2K/
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Figure 8. Quantitative evaluation of the sparse hologram reconstruction quality across Perlin noise
frequency levels from 0 to 100 and sparsity levels from 30% to 90%.

	

(a) Frequency 5 Perlin noise.

	

(b) Frequency 50 Perlin noise.

	

(c) Frequency 100 Perlin noise.

	

(d) Frequency 500 Perlin noise.

Figure 9. Qualitative ablation results showing the generated Perlin noise (left) and resulting
80% sparse hologram reconstruction (right) at Perlin noise frequency levels (a) 5, (b) 50, (c) 100,
and (d) 500. Please zoom in to see the differences in details.

	

(a) Frequency 5 Perlin noise.

	

(b) Frequency 50 Perlin noise.

	

(c) Frequency 100 Perlin noise.

	

(d) Frequency 500 Perlin noise.

Figure 10. Qualitative ablation results showing the generated Perlin noise (left) and resulting
80% sparse hologram amplitudes (right) at Perlin noise frequency levels (a) 5, (b) 50, (c) 100, and
(d) 500. The amplitude corresponds to the red channel of the image in Figure 9, where yellow pixels
indicate amplitudes at or above 0.001.

4.3. Amplitude vs. Phase Frequency

Next, we examine whether there is a relationship between the frequency of the ampli-
tude and the frequency of the phase in the image plane when generating sparse holograms.
To control the frequency of the amplitude, we apply a Gaussian blur to the target image
and conduct evaluations using different band-limited targets.
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Qualitative results on a single image are shown in Figure 11, and quantitative results
averaged over all images are shown in Figure 12. Gaussian-blurred images can be easily
reconstructed with low-frequency phases, achieving a higher SSIM than normal images at
the same sparsity level due to the lack of high-frequency details. With a high-frequency
phase, speckling artifacts emerge in sparse hologram reconstructions. These artifacts are
much more noticeable in low-frequency (e.g., blurred) regions of the target image that
otherwise lack high-frequency details in the reconstruction. Hence, the SSIM of Gaussian-
blurred image reconstructions falls below that of standard images.

	

(a) Reconstruction with no Gaussian blur.

	

(b) Reconstruction with Gaussian blur at σ = 3.

	

(c) Reconstruction with Gaussian blur at σ = 10.

	

(d) Reconstruction with Gaussian blur at σ = 20.

Figure 11. Qualitative results showing band-limited target images and resulting 80% sparse hologram
reconstruction quality at frequency 200 Perlin noise.

0 200 400 600 800
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0.0

0.2

0.4

0.6

0.8

1.0

SS
IM

SSIM vs Frequency
Gaussian Blur

=0
=3

=10
=20

Figure 12. Quantitative evaluation with Gaussian blurred target images at 80% sparsity.

4.4. Performance

First, we evaluate the performance of our method to determine whether interactive
performance can be achieved by removing GGS. We present cumulative performance
results over all three color channels in Table 1. Note that the results shown are rounded
so run times for all stages may not add up to the total run time. On our workstation, we
observe that offline GGS takes 664.4 ms, making it unsuitable for interactive scenarios.
Using GGS in an interactive scenario would result in less than 2 FPS. Meanwhile, our instant
sparse Fourier hologram method runs in 1.0 ms on average, a performance improvement
of over 600×. Next, we benchmark our Instant-SFH method at higher resolutions to
determine whether it is suitable for large-field-of-view applications. At 720p HD and
1080p full HD resolutions, our method runs in 1.2 ms and 4.0 ms, respectively, as shown in
Table 2. The high performance of our method allows sparse holograms to take advantage
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of the high refresh rate available in holographic displays and enables high-refresh-rate and
high-resolution content to be displayed.

Table 1. Run time (ms) evaluation comparing running GGS with 1000 iterations and our Instant-SFH
method at 1020 × 678 resolution. The results are the total run time for all three channels of the RGB
images. Numbers in parentheses indicate standard deviation.

Method Generate Truncate Reconstruct Total

GGS 595.6 0.4 0.2 596.2
(std) (1.0) (0.1) (0.0) (1.0)

Instant-SFH 0.4 0.4 0.2 1.0
(std) (0.1) (0.1) (0.0) (0.1)

Table 2. Run time (ms) evaluation for our Instant-SFH method at 720p (1280 × 720) and 1080p
(1920 × 1080) resolution. Numbers in parentheses indicate standard deviation.

Resolution Generate Truncate Reconstruct Total

1020 × 678 0.4 0.4 0.2 1.0
(std) (0.1) (0.1) (0.0) (0.1)
720p 0.4 0.5 0.3 1.1
(std) (0.0) (0.0) (0.1) (0.1)

1080p 1.8 0.9 1.2 3.8
(std) (0.0) (0.1) (0.1) (0.2)

4.5. Quality

Finally, we compare the image reconstruction quality of GGS and Instant-SFH. Quan-
titative results for GGS and Instant-SFH are shown in Table 3. In the offline setup, where
up to 1000 iterations of GGS can be computed, initializing with a random phase achieves
very high PSNR and SSIM results even at 70% or 80% sparsity. With Perlin noise, our
Instant-SFH method matches the PSNR and SSIM of GGS without requiring any iterations
of GGS. Random phase [17] and quadratic phase [18] generate a sparse hologram with
PSNR values around 11 dB, which is not acceptable. A constant zero phase yields a sparse
hologram but with ≈1 dB worse PSNR results than low-frequency Perlin noise. Finally,
optimized random phase (ORAP) [36], which involves transferring a phase distribution
optimized for another image, achieves PSNR and SSIM scores slightly below that of GGS
and Perlin noise. In Figure 13, our Instant-SFH method achieves PSNR and SSIM results
consistent with GGS across all sparsity levels.

20% 40% 60% 80% 100%
Sparsity Level
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25

30

35

40
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NR
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Instant-SFH

(a) PSNR

20% 40% 60% 80% 100%
Sparsity Level

0.6

0.7

0.8
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1.0
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IM

SSIM vs Sparsity

GGS
Instant-SFH

(b) SSIM

Figure 13. Quantitative comparison between GGS [13] and our Instant-SFH method. Note that GGS
and Instant-SFH have overlapping results. Results are averaged over 900 images.
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Table 3. Quantitative comparison of GGS with 1000 iterations and Instant SFH with different image
phases. Results are computed at 70% sparsity and averaged over 900 images. Numbers in parentheses
indicate standard deviation. Bold numbers indicate the best results.

Method Initial Phase PSNR (dB) SSIM

GGS Random 36.12 (4.16) 0.944 (0.034)
Instant-SFH Random 10.88 (2.29) 0.118 (0.064)
Instant-SFH Quadratic 10.90 (2.18) 0.139 (0.070)
Instant-SFH Zeros 34.98 (4.24) 0.918 (0.050)
Instant-SFH ORAP 36.02 (4.15) 0.943 (0.035)
Instant-SFH Perlin 36.19 (4.21) 0.945 (0.034)

4.6. Optical Verification

In the absence of commercially available amplitude-phase SLMs, we use a phase-only
SLM to optically verify that our Instant-SFH method achieves similar results to GGS. Specif-
ically, we generate 80% sparse complex holograms using GGS and Instant-SFH. Both sets of
sparse holograms are then converted to phase-only holograms using the double-phase am-
plitude coding (DPAC) [22,23,37] method and displayed on a phase-only SLM. While our
method is broadly applicable to natural images, phase-only holograms produced by DPAC
cannot encode high amplitude information at low frequencies [38]. Consequently, we opt to
display sketches from the human sketch image dataset published by Eitz et al. [39] (Sketch
Dataset: https://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/, accessed on 21
April 2023). Our setup consists of a Holoeye Leto SLM with 1080p resolution and 6.4 µm
pixel pitch. Coherent light emitted by a 532 nm green laser is passed through a beam
expander and is incident on the SLM. The modulated light forms a far-field image, which
is captured by a 1024 × 1280 camera through a 200 mm lens. Our optical verification
setup and results are shown in Figure 14. From our experiments, we see that Instant-SFH
generates similar results to GGS despite only taking a fraction of the time. In this situation,
we replace reconstruction with DPAC, which only takes 0.1 ms. We attribute the speckling
artifacts to the DPAC conversion and environmental variables since they exist in both the
results of GGS and Instant-SFH. As our objective is to show the quality similarity between
our real-time method and offline GGS, we have not tuned the Perlin noise to improve the
quality for this scenario.

Target GGS Instant-SFH

SLM Laser

Lens Camera

Beam 
Expander

Figure 14. Optical verification setup and results. Sparse holograms (80% sparsity) from GGS and
Instant-SFH are converted to phase-only holograms using double phase-amplitude coding and
displayed on a phase-only SLM.The left column shows the target images. The center column shows
images generated from GGS. The right column shows images generated from Instant-SFH.

https://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/
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5. Discussion

This paper focuses on Fourier holograms that display flat 2D images, similar to other
recent holography papers [13,40]. To achieve the full benefits of holographic displays
including accommodation and motion parallax, 3D content can be displayed using near-
field holograms with multiple focal planes [41,42]. Since Instant-SFH runs at KHz rates,
our method can be extended to display 3D by generating multiple 2D depth slices and time-
multiplexing near-field 2D holograms generated with a Fresnel transform. Alternatively,
the 3D method by Chakravarthula et al. [43] also applies whereby an eye-tracker is used
to determine the depth of the foveal region based on the scene and a 2D Fresnel hologram
is shown at the detected depth.

As observed by Chakravarthula et al. [40], a constant phase can lead to a smaller
effective eye box as the light energy is concentrated in the small, low-frequency region. In
Figure 15, we observe that Instant-SFH and GGS have a similar eyebox as both use smooth
phases, prioritizing hologram quality over eyebox size. While outside the scope of this
paper, our sub-ms run-times also open up the possibility of adaptively compensating for a
moving eyebox. For example, in a pupil-tracked environment [44], one could pair Perlin
noise with a few iterations of GGS and a pupil-weighted threshold [40] when determining
the amplitudes at the SLM. Such compensation is only viable for algorithms, like ours, that
can run at KHz rates.

P
up

il 
M

as
ks

G
G

S
P

er
lin

 N
oi

se

Hologram 
Amplitude

(R channel)

Figure 15. Eyebox comparison between GGS and Instant-SFH with Perlin-noise-based phase at
80% sparsity. The pupil mask (top row) shows the pupil moving progressively to the right. The
center row shows images reconstructed from GGS. The bottom row shows images reconstructed from
Instant-SFH using Perlin noise.

Time-division multiplexing for multiple focal planes and dynamic eyebox adjustment
require fast algorithms to achieve interactive frame rates. The millisecond run times of
Instant-SFH open up the possibility of pairing such techniques with sparse holograms.
Our evaluation performs FFT using a desktop NVIDIA RTX 4090 GPU. To deploy our
algorithm on more portable form factors, we believe a digital signal processor with the
ability to perform FFT in real time would be necessary to accommodate the requirements
of Instant-SFH.

6. Conclusions

In this paper, we examine how sparse Fourier holograms can be adapted to view
dynamic content such as videos and interactive applications. First, we examine how
the Gaussian-weighted Gerchberg–Saxton (GGS) algorithm alters the image–plane phase.
Next, we discover that using Perlin noise allows for the instantaneous generation of sparse
Fourier holograms, eliminating the need for any iterations of GGS. Finally, we quantitatively
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evaluate how the frequency of the Perlin noise affects the hologram reconstruction quality
across an existing dataset of 900 images and on band-limited images. Our Instant-SFH
method achieves a performance improvement of over 600 times, opening up the possibility
of using sparse holograms for dynamic content. We believe our method will broaden the
use of upcoming holographic displays for dynamic applications.
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