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Abstract: This study focuses on Scene Text Recognition (STR), which plays a crucial role in various
applications of artificial intelligence such as image retrieval, office automation, and intelligent
transportation systems. Currently, pre-trained vision-language models have become the foundation
for various downstream tasks. CLIP exhibits robustness in recognizing both regular (horizontal) and
irregular (rotated, curved, blurred, or occluded) text in natural images. As research in scene text
recognition requires substantial linguistic knowledge, we introduce the pre-trained vision-language
model CLIP and the pre-trained language model Llama. Our approach builds upon CLIP’s image
and text encoders, featuring two encoder–decoder branches: one visual branch and one cross-modal
branch. The visual branch provides initial predictions based on image features, while the cross-modal
branch refines these predictions by addressing the differences between image features and textual
semantics. We incorporate the large language model Llama2-7B in the cross-modal branch to assist in
correcting erroneous predictions generated by the decoder. To fully leverage the potential of both
branches, we employ a dual prediction and refinement decoding scheme during inference, resulting
in improved accuracy. Experimental results demonstrate that CLIP-Llama achieves state-of-the-art
performance on 11 STR benchmark tests, showcasing its robust capabilities. We firmly believe that
CLIP-Llama lays a solid and straightforward foundation for future research in scene text recognition
based on vision-language models.

Keywords: scene text recognition; vision-language model; pre-trained language model

1. Introduction

In the field of artificial intelligence, reading text from natural scene images, known as
Scene Text Recognition (STR), is an essential capability for building intelligent systems. STR
automatically recognizes text within natural images, such as street signs, billboards, and
product labels. STR applications span numerous fields, including industrial automation,
image-based geolocation, document analysis, human–computer interaction, image retrieval,
and intelligent transportation systems. However, STR faces significant challenges due to the
diversity and complexity of natural scene text, such as complex backgrounds, varied fonts,
flexible arrangements, and occlusions. While traditional Optical Character Recognition
(OCR) techniques have made notable progress in handling standard printed text, they
often fall short when dealing with irregular text in natural scenes, such as rotated, curved,
blurred, or obscured text.

In recent years, notable advancements in computer vision and natural language pro-
cessing have propelled the rapid development of STR. Leveraging advanced deep learning
architectures, large-scale annotated datasets, and algorithmic innovations, state-of-the-art
STR methods continuously push the boundaries of accuracy and robustness, driving further
applications and advancements in this dynamic field. STR remains a highly demanding
task due to the inherent challenges posed by complex backgrounds, diverse fonts, flexi-
ble layouts, and unexpected occlusions in scene text, especially in challenging scenarios.
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Previous approaches have addressed these challenges by incorporating related tasks into
the text recognition framework, leveraging additional information to improve recognition
performance. Recently, a new trend has emerged in introducing language knowledge
into the text recognition process. SRN [1] designed a global semantic reasoning module
to model global semantic context, while ABINet [2] proposed a bidirectional prediction
network to learn bidirectional feature representations as a language model. Both SRN
and ABINet adopt standalone language models to capture rich linguistic prior knowl-
edge. This approach, which combines visual models with language models [3], has shown
improved performance in STR tasks. Some multitask and multimodal machine learning
algorithms also provide valuable references for this task, such as methods DACT-GAN [4],
MTLHand [5], and DSTFS [6]. In recent years, the development of Vision-Language Models
(VLM) [7,8] and Large Language Models (LLM) [9,10] has provided new technological sup-
port for STR. These large models exhibit significant generalization abilities across various
multimodal tasks, especially in understanding fine-grained visual content. For example,
vision-language models such as CLIP [11], trained on nearly 400 million real image–text
pairs, employ a multitask learning approach to simultaneously optimize image and text
representations, aligning them more closely within the feature space. This establishes a
tight embedding relationship between image and text, allowing for effective recognition
and understanding of text information in natural scenes. Additionally, research has demon-
strated that incorporating text semantics into the text recognition process can effectively
enhance the model’s comprehension and predictive accuracy. Notably, including language
models helps address uncertainty in character prediction, particularly when facing oc-
cluded or blurred text. Considering the substantial benefits of large language and vision
models, we decided to conduct further research using pre-trained vision and language
models. This study proposes a scene text recognition framework named CLIP-Llama,
combining CLIP’s visual perception capabilities with Llama’s large language modeling
abilities. CLIP-Llama includes two encoding–decoding branches: a visual branch and
a cross-modal branch. The visual branch comprises a CLIP image encoder and a visual
decoder. In contrast, the cross-modal branch includes a CLIP text encoder, a cross-modal
decoder, and the Llama language model. The output from the visual branch undergoes
further prediction through the cross-modal branch. The main contributions of this paper
include (1) proposing a scene text recognition approach using the vision-language model
CLIP and language model Llama, (2) introducing a threshold-based decision mechanism
that enables score comparison and character-level masking, significantly reducing resource
wastage, and (3) achieving state-of-the-art (SOTA) performance on mainstream benchmarks
with the proposed CLIP-Llama.

2. Related Work

Scene Text Recognition (STR) has been a long-standing topic of interest and re-
search [12]. With the widespread adoption of deep learning methods, their effectiveness
in the field of STR has been widely validated. Based on the application of language
awareness, we categorize STR methods into two types: language-agnostic methods and
language-aware methods.

2.1. Language-Agnostic STR Methods

The mainstream approach to feature extraction in STR methods relies on CNN [13].
For instance, earlier STR methods [14] used VGG, while current STR methods employ
ResNet [15] for improved performance. Various methods have been proposed to address
STR based on the strength of CNN features. CTC-based methods [14] use Connectionist
Temporal Classification (CTC) for sequence recognition. Segmentation-based methods
approach STR as a semantic segmentation problem. Inspired by the success of Transform-
ers [16] in natural language processing (NLP) tasks, the application of Transformers in STR
has attracted increased attention. Vision Transformers (ViTs) [17] can directly process image
patches without convolution, setting a precedent for using Transformer blocks to tackle
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computer vision problems and achieving prominent results. ViTSTR [18] attempts to utilize
the feature representations from the ViT’s final layer for parallel character decoding. Addi-
tionally, some methods use Generative Adversarial Networks (GANs) [19] or segmentation
networks to assist in text recognition. For example, Luo et al. [20] used GANs to mitigate
background complexity in-text images, and Liu et al. [21] and Wang et al. [22] proposed
multitask frameworks integrating text recognition and font mask generation using GANs.
Generally, language-agnostic methods often struggle to recognize low-quality images due
to a lack of language information.

2.2. Language-Aware STR Methods

Language information is beneficial for recognizing low-quality images. RNN-based
methods [14] effectively capture dependencies between consecutive characters, which can
be considered an implicit language model. However, they cannot perform decoding in
parallel during training and inference. Recently, Transformer blocks have been introduced
into CNN-based frameworks to facilitate language content learning. SRN [1] proposed a
Global Semantic Reasoning Module (GSRM) to capture global semantic context through
multiple parallel transmissions. ABINet [2] introduced a Bidirectional Cloze Network
(BCN) [2] for explicit modeling of language information, further used for iterative correction.
VisionLAN [23] proposed a visual reasoning module that captures visual and linguistic
information by masking the input image at the feature level. NRTR [24] adopts a left-to-
right autoregressive decoding approach, while PARSeq [25] uses different attention masks
for more detailed semantic modeling.

2.3. Pre-Trained Models for STR

To enhance the performance of STR methods, several pre-trained STR research efforts
have been proposed [26,27]. They generally fall into two categories: encoder pre-training
and entire model pre-training. Encoder pre-training uses a large amount of unlabeled
real images to guide the encoder in learning real image representations, often through
self-supervised learning methods such as Masked Autoencoders (MAE) [28] or contrastive
learning. The trained encoder can then be applied more effectively to different down-
stream tasks. For example, SeqCLR [29] introduced a sequence-to-sequence contrastive
learning framework for text images, and CCD [27] incorporated glyph pseudo-labels to
guide the encoder’s focus on character foregrounds. MAERec [28] used a ViT-based STR
model, demonstrating that the model can utilize unlabeled images through masked image
modeling tasks. By contrast, entire model pre-training typically involves pre-training part
or all of the model and then fine-tuning it as a whole. For instance, TrOCR [30] learned
visual representations by pre-training on printed text images and fine-tuning on synthetic
scene text images. Additionally, it incorporates BERT-style pre-training. MaskOCR [31]
follows a three-stage approach, including encoder pre-training, decoder pre-training, and
full-model fine-tuning. Recent research also evaluates pre-training on synthetic data and
fine-tuning on real data. These methods primarily pre-train on synthetic text images, but
the domain gap between synthetic and real text images remains a significant factor limit-
ing their real-world performance. Given the CLIP encoder’s ability to better extract real
image information and enhance language information via the Llama language model, we
designed the CLIP-Llama network to perform STR tasks based on these advantages.

3. Method

CLIP-Llama consists of two encoding–decoding branches: a visual branch and a
cross-modal branch. The visual branch includes the CLIP image encoder and a visual
decoder, while the cross-modal branch consists of the CLIP [3] text encoder, a cross-modal
decoder, and the Llama language model [10]. The output from the visual branch undergoes
further prediction through the cross-modal branch. Specifically, as shown in Figure 1, we
utilize the CLIP visual encoder and text encoder to encode the image and text, with the
output being decoded by the visual decoder and the cross-modal decoder. For predictions
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from the cross-modal decoder, we set a confidence threshold: predictions that exceed the
threshold are directly output, while those below the threshold are re-decoded using Llama
to produce the final output.

Figure 1. The overall framework of CLIP-Llama. It comprises a visual branch and a cross-modal
branch. The cross-modal branch refines and corrects the predictions from the visual branch to produce
the final output.

3.1. Image Encoder and Text Encoder of CLIP

The image encoder in CLIP primarily uses a Vision Transformer (ViT) [17], specifically
a 24-layer Transformer Encoder [16] structure. The internal structure of this encoder
operates shown in Figure 2.

Figure 2. Encoder framework.

The core idea behind ViT is to divide an image into smaller patches and then process
these patches as a sequence input to a Transformer model. This process can be divided
into the following steps: Divide the input image into embedded patches. The input image
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is divided into N patches, and each patch is mapped to a fixed-dimensional embedding
through a linear projection. Let each embedding be represented as xi.

zi
0 = xi

pE, xi
p ∈ RN , E ∈ RN×D (1)

In this context, xi
p is the vector of the i-th image patch, and E is the learnable linear

projection matrix. Normalize it through a normalization layer to obtain the initial input h0.

h0 = Norm(x) h0 ∈ RN×D (2)

Multi-Head Self-Attention The first part of the encoder consists of a multi-head
self-attention layer. Let hl be the input features for layer L, and the multi-head attention
computation process is as follows:

Calculate the query Q, key K, and value V: Q = h0WQ, K = h0WK, V = h0WV

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (3)

Add the output of multi-head attention to the input through a residual connection.

hl+1 = hl + Attention(Q, K, V) (4)

The output of multi-head attention is processed through a normalization layer to
obtain the new feature h′l+1:

h′l+1 = Linear(Norm(hl+1)) + hl+1 (5)

The above steps are repeated L times in the Transformer Encoder. After stacking
L layers, the encoder finally outputs the feature representation hL.

The text encoder is similar to the image encoder, except that the input is text instead
of images. We denote the output of the text encoder as gL. By concatenating the outputs of
the image encoder and the text encoder, we create the input for the multimodal decoder.

Fi = hL ∈ RLi×D, Ft = gL ∈ RLt×D, Fc =
[
FT

i FT
t
]T ∈ RLc×D (6)

Fi serves as the input for the visual decoder, and Fc serves as the input for the multi-
modal decoder. Lt represents the length of the text sequence, Li is the length of the image
token sequence, D denotes the dimensionality of the joint image-text embedding space,
and the cross-modal sequence length Lc = Li + Lt.

3.2. Image Decoder and Cross-Modal Decoder

The image decoder and cross-modal decoder use the same structure. The difference is
that the visual decoder receives features from the visual encoder, while the cross-modal
decoder receives concatenated features from both the visual encoder and the text encoder.
Its structure is shown in Figure 3.

It adopts a transformer decoder design along with the Permutation Sequence Mod-
eling (PSM) technique, allowing predicted characters to have arbitrary dependencies on
input context during training. The visual decoder and cross-modal decoder have the same
architecture but different inputs. For the visual decoder, c is not required. They receive
the following inputs: learnable positional queries p, input context c, and randomly gen-
erated attention mask M. The decoder outputs predictions y. The decoding stage can be
represented as

y = DEC(p, c,M, F) (7)
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Figure 3. Decoder framework.

The first Multi-Head Attention (MHA) in Figure 2 performs context-position attention:

m1 = softmax(
pcT
√

D
+M)c + p. (8)

The second MHA attends to feature-position attention:

m2 = softmax(
m1FT
√

D
)F + m1 (9)

For simplicity, we omitted the input and output linear transformations as well as the
normalization operations in the attention mechanism of Equations (8) and (9). Then, we
use m2 for the next prediction y, recording the prediction score for each character.

y = Linear(MLP(m2) + m2) (10)

The prediction y and the prediction scores will be sent to the threshold judgment and
the language model.

3.3. Threshold Judgement and Language Model

In general, with the support of the CLIP visual and text encoders, the multimodal
decoder achieves relatively high accuracy. If each prediction is passed through the lan-
guage model for correction, it will lead to resource wastage. Therefore, we implement a
threshold judgment mechanism. If all characters in the multimodal decoder’s prediction
have confidence scores exceeding a preset threshold, the prediction from the multimodal
decoder is directly output. If any character’s confidence score falls below the threshold,
that character is masked, and the masked result is sent to the Llama language model for
re-decoding. The final output is then generated based on Llama’s prediction. For the
language model, we selected LLaMA2 [11], a large language model developed by Meta AI
based on the Transformer architecture [16], primarily utilizing the Transformer decoder.
The structure of this framework is illustrated as shown in Figure 4.
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Figure 4. Decoder framework.

The input passes through the embedding layer to obtain the embedded representation.
The input embeddings are normalized through the RMSNorm layer. The self-attention
layer uses a Grouped Multi-Query Attention mechanism with Q, K, and V caching.

h0 = Embedding(Input) (11)

Calculate the query Q, key K, and value V: Q = h0WQ, K = h0WK, V = h0WV

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (12)

Add the output of multi-head attention to the input through a residual connection.

h1 = h0 + Attention(Q, K, V) (13)

The output of the attention layer is normalized again through the RMSNorm layer.

h2 = RMSNorm(h1) (14)

The feedforward network uses the SwiGLU activation function, and the output of the
feedforward network is connected to the input through a residual connection.

h3 = Linear(MLP(h2) + h1) (15)

After repeating the above steps N times, the final output passes through RMSNorm, a
linear transformation, and Softmax to obtain the final output prediction.

y = Softmax(Linear(RMSNorm(h3))) (16)
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The LLaMA model structure follows the typical Transformer encoder architecture,
incorporating mechanisms such as Grouped Multi-Query Attention, SwiGLU feedforward
network, and RMSNorm. It achieves model expressiveness through multiple stacked layers.

3.4. Supervised Training Loss

The loss is calculated as
CLIP-Llama is optimized to minimize the sum of cross-entropy losses (CE(·)) for the

visual branch and the cross-modal branch, Cross-Entropy Loss is a loss function used to
evaluate the output of classification models, especially suitable for multi-class problems. It
measures the model’s performance by calculating the difference between predicted and
true distributions. The smaller the cross-entropy loss, the closer the model’s predictions are
to the true labels. For multi-class classification, the cross-entropy loss extends to

CE() = − 1
N

N

∑
i=1

C

∑
j=1

yij log(pij) (17)

where C is the number of classes, yij is the true label indicating whether the i-th sample
belongs to class j, and pij is the predicted probability for class j for that sample.

The loss of CLIP-Llama is calculated as

L = CE(yi, ŷ) + CE(yc, ŷ) (18)

where ŷ represents the ground truth, yi is the prediction of the visual decoder, and yc is the
prediction of the cross-modal decoder.

In summary, CLIP-Llama consists of a visual branch and a cross-modal branch. To
fully utilize the functionality of both branches, we employ a dual-prediction and opti-
mized decoding scheme during inference. The visual branch first performs autoregressive
decoding, where each subsequent output depends on the previous predictions. Then,
the cross-modal branch addresses potential discrepancies between the visual predictions
and text semantics. The decoder’s output serves as an intermediate prediction. For re-
sults with confidence scores below the threshold, the Llama language model is used for
fill-in-the-blank prediction to enhance recognition accuracy.

4. Experiment
4.1. Dataset

Previous studies on training datasets have shown that real training data can lead
to better performance compared to commonly used synthetic data such as MJSynth (MJ,
9M samples) [32] and SynthText (ST, 6.9M samples) [33]. Therefore, we primarily uti-
lize real data for training. Some examples can be seen in Figure 5. Specifically, we
use COCO-Text (COCO) [34], RCTW17 [35], Uber-Text (Uber) [36], ArT [37], LSVT [38],
MLT19 [39], ReCTS [40], TextOCR [41], and Open Images annotations [42] from the Open-
VINO toolkit [43]. These real datasets collectively comprise 3.3 million images. Evaluation
benchmarks include IIIT5K [44], CUTE80 [45], Street View Text (SVT) [46], SVT-Perspective
(SVTP) [47], ICDAR 2013 (IC13) [48], ICDAR 2015 (IC15) [49], as well as two proprietary
datasets—HOST and WOST [23]. Additionally, we utilize three recent large-scale bench-
marks: COCO-Text (9.8K samples; low-resolution, occluded text) [34], ArT (35.1K samples;
curved and rotated text) [37], and Uber-Text (80.6K samples; vertical and rotated text) [36].

4.2. Experimental Configuration

Label preprocessing follows the method used in previous work. During training, we
set the maximum label length to T=26 and used a character set size of S = 94, which in-
cludes a mix of uppercase and lowercase alphanumeric characters and punctuation. Image
preprocessing is conducted: images are first augmented, resized, and finally normalized to
the range [−1, 1]. The augmentation set primarily includes RandAugment operations, ex-
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cluding sharpness adjustments. All images are resized unconditionally to 224 × 224 pixels.
During inference, only lowercase letters and numeric characters are used, resulting in
C = 36. The evaluation metric is word accuracy, where a prediction is considered correct
only if all characters match strictly at every position. Model parameters: images are divided
into 224 × 224 pixels, segmented into 256 small patches of 14 × 14 pixels each, with an
embedding dimension of 512. The encoder has 12 heads, a depth of 24, and a width of
768, while the decoder has 8 heads, a depth of 1, and a width of 768. Other parameters
are consistent with CLIP4STR. The Llama model parameters remain unchanged. Learning
Strategy: We apply warm-up and cosine learning rate decay strategies. The learning rate for
the CLIP encoder is set to 8.4 × 10−5 × batch size

512 . For models trained from scratch (decoder),
the learning rate is multiplied by 19.0, with a batch size 960. For real data, we train for
10 epochs. For synthetic data, we train for 5 epochs. We use the AdamW [50] optimizer
with a weight decay value of 0.2. All experiments are conducted with mixed precision
training on 8 NVIDIA GeForce RTX 4090 GPUs.

Figure 5. Part of the dataset images.

4.3. Comparison Experiment

Comparison with State-of-the-Art Techniques: We compared CLIP-Llama and previ-
ous state-of-the-art (SOTA) methods on 8 common STR benchmarks as shown in Table 1.
CLIP-Llama significantly outperforms previous methods, achieving new SOTA perfor-
mance. It is noteworthy that CLIP-Llama performs exceptionally well on irregular text
datasets such as IC13, IC15 (incidental scene text), SVTP (perspective scene text), HOST
(severely occluded scene text), and WOST (weakly occluded scene text). This is because
CLIP demonstrates robust recognition of both regular and irregular text. CLIP-Llama
exhibits excellent reading ability on occluded datasets, outperforming previous SOTA by
2.53% and 1.32% on HOST and WOST, respectively. This capability can be attributed to the
pre-trained language model Llama, which utilizes textual semantics to infer erroneous or
missing characters.

In addition to small-scale general benchmarks, we evaluated CLIP-Llama on three
larger, more challenging benchmarks. These benchmarks primarily consist of the irregular
text of various shapes, low-resolution images, rotations, etc. The results are shown in
Table 2, where we highlight the best results in bold, further demonstrating the strong
generalization ability of CLIP-Llama. It significantly outperforms previous SOTA methods,
with a notable improvement of 1.19% accuracy on the COCO dataset and a 0.95% accuracy
improvement on the ArT dataset compared to the previous SOTA. Figure 6 shows the
qualitative results of CLIP-Llama compared to CLIP4STR on the test set, demonstrating
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relative improvement over the original CLIP4STR model. Due to various degrees of
blurriness, occlusion, and lighting issues, a purely visual model could not recognize
certain images. However, thanks to CLIP’s powerful feature extraction capabilities for real
images and Llama’s strong semantic correction abilities, CLIP-Llama significantly enhances
accuracy in STR tasks, thereby validating its generalization capabilities.

Before using the language model Llama, we scored the predicted characters based
on their confidence levels. When the score was below a certain threshold, the characters
were masked. We conducted experiments with different confidence thresholds, specifically
0.7, 0.8, and 0.9, as shown in Table 3. The best results are highlighted in bold. Through exper-
imentation, we found that setting the threshold to 0.8 yielded the best overall performance.

Table 1. Word Accuracy on 8 Common Benchmarks. Bold highlights the best results. Benchmark
datasets (B)—SVT, IIIT5K, SVTP, CUTE80, IC13, and IC15. MJ+ST represents training with synthetic
datasets, B represents benchmark datasets, Real represents real datasets, and Union14M-L [51]
represents large-scale datasets. In the “type” column, “V” represents using only the visual model,
and “VL” represents using both the visual and language models.

Method Type Train III5k SVT IC13 IC15 IC15 SVTP CUTE HOST WOST
Data 3000 647 1015 1811 2077 645 288 2416 2416

PlugNet V MJ+ST 94.4 92.3 95.0 - 82.2 84.3 85.0 - -
ASTER V MJ+ST 93.4 89.5 - 76.1 - 78.5 79.5 - -

SRN VL MJ+ST 94.8 91.5 - 82.7 - 85.1 87.8 - -
TextScanner V MJ+ST 95.7 92.7 94.9 - 83.5 84.8 91.6 - -
SE-ASTER V MJ+ST 93.8 89.6 92.8 80.0 - 81.4 83.6 - -

RCEED VL MJ+ST+B 94.9 91.8 - - 82.2 83.6 91.7 - -
TRBA V MJ+ST 92.1 88.9 - 86.0 - 89.3 89.2 - -

VisionLAN VL MJ+ST 95.8 91.7 - 83.7 - 86.0 88.5 50.3 70.3
ABINet VL MJ+ST 96.2 93.5 - 86.0 - 89.3 89.2 - -

ViTSTR-B V MJ+ST 88.4 87.7 92.4 78.5 72.6 81.8 81.3 - -
LevOCR VL MJ+ST 96.6 92.9 - 86.4 - 88.1 91.7 - -
MATRN VL MJ+ST 96.6 95.0 95.8 86.6 82.8 90.6 93.5 - -

PETR V MJ+ST 95.8 92.4 97.0 83.3 - 86.2 89.9 - -
DiG-ViT-B VL MJ+ST 96.7 94.6 96.9 87.1 - 91.0 91.3 74.9 82.3

TrOCR VL MJ+ST+B 94.1 96.1 97.3 88.1 84.1 93.0 95.1 - -
SIGA VL MJ+ST 96.6 95.1 96.8 86.6 83.0 90.5 93.1 - -

PARSeq VL MJ+ST 97.0 93.6 96.2 86.5 82.9 88.9 92.2 - -
CLIP4STR-L VL MJ+ST 98.0 95.2 96.9 87.7 84.5 93.3 95.1 82.7 88.8
MAERec-B VL Union14M-L 98.5 97.8 98.1 - 89.5 94.4 98.6 - -
IGTR-PR VL MJ+ST 97.6 95.2 97.6 88.4 88.4 91.6 95.5 - -

MGP-STR(Fuse) VL MJ+ST 96.4 94.7 97.3 87.2 87.2 91.0 90.2 - -
CAM-Base VL MJ+ST 97.4 96.1 97.2 87.8 87.8 90.6 92.4 - -

SVIPTRv2-B VL MJ+ST 94.8 94.2 97.0 88.0 88.0 90.0 90.2 - -

DiG-ViT-B VL Real 97.6 96.5 97.6 88.9 - 92.9 96.5 62.8 79.7
ViTSTR-S V Real 97.9 96.0 97.8 89.0 87.5 91.5 96.2 64.5 77.9
ABINet VL Real 98.6 98.2 98.0 90.5 88.7 94.1 97.2 72.2 85.0
PARSeq VL Real 99.1 97.9 98.4 90.7 89.6 95.7 98.3 74.4 85.4

NRTR+DPTR VL Real 99.2 97.8 98.1 91.8 90.6 95.7 98.6 - -
CLIP4STR-L VL Real 99.5 98.5 98.5 91.3 90.8 97.4 99.0 79.8 89.2

CLIP-Llama(Ous) VL Real 99.47 98.45 98.52 91.99 91.43 97.67 98.96 82.33 90.52

While our model has achieved excellent performance, there are still some inaccuracies
in the recognition results. This may be due to the ambiguity in the language model or
because the images are pretty blurry, leading to the visual model being unable to identify the
results accurately. Overall, CLIP-Llama fine-tunes the pre-trained CLIP and Llama models
and effectively transfers the knowledge of CLIP and Llama to the STR task. These results
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support our motivation that CLIP-Llama has strong scene text perception capabilities and
can correct misrecognition, serving as an effective scene text reader.

Table 2. Word accuracy on three large-scale benchmarks.

Method Train COCO ArT Uber
Data 9825 35,149 80,551

ViTSTR-S MJ+ST 56.4 66.1 37.6
TRBA MJ+ST 61.4 68.2 38.0

ABINet MJ+ST 57.1 65.4 34.9
PARSeq MJ+ST 64.0 70.7 42.0
MPSTR MJ+ST 64.5 69.9 42.8

CLIP4STR-L MJ+ST 67.0 73.7 44.5

DiG-ViT-B Real 75.8 - -
ViTSTR-S Real 73.6 81.0 78.2

TRBA Real 77.5 82.5 81.2
ABINet Real 76.5 81.2 71.2
PARSeq Real 79.8 84.5 84.1
MPSTR Real 80.3 84.4 84.9

CLIP4STR-L Real 81.9 85.9 87.6
CLIP-Llama(Ours) Real 83.09 86.85 87.67

Table 3. Experimentation with different confidence thresholds.

Threshold Train III5k SVT IC13 IC15 IC15 SVTP CUTE
Data 3000 647 1015 1811 2077 645 288

0.7 Real 99.31 98.12 98.10 91.12 91.34 97.69 98.37
0.8 Real 99.47 98.45 98.52 91.99 91.43 97.67 98.96
0.9 Real 99.35 98.20 98.27 91.67 91.54 97.54 98.76

Figure 6. The model’s text recognition results.

5. Conclusions

In conclusion, we propose a novel text recognition method called CLIP-Llama, which
leverages CLIP and Llama for STR. It features a dual encoder–decoder architecture: a visual
branch for initial prediction, a cross-modal branch for refinement, and a language model
correction module. In this approach, we first use the pre-trained visual language model
CLIP to extract image features and make initial predictions. Then, the uncertain predictions
are refined using the powerful language model Llama, pre-trained on a large corpus, to
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generate high-confidence predictions. Through this process, CLIP-Llama achieves state-of-
the-art results on 11 STR benchmarks, demonstrating its effectiveness as a robust scene text
reader and the benefit of visual language pre-training for STR. We envision CLIP-Llama as
a simple yet powerful baseline for future STR research.
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