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Abstract: For drone-based detection tasks, accurately identifying small-scale targets like people,
bicycles, and pedestrians remains a key challenge. In this paper, we propose DV-DETR, an improved
detection model based on the Real-Time Detection Transformer (RT-DETR), specifically optimized for
small target detection in high-density scenes. To achieve this, we introduce three main enhancements:
(1) ResNet18 as the backbone network to improve feature extraction and reduce model complexity;
(2) the integration of recalibration attention units and deformable attention mechanisms in the neck
network to enhance multi-scale feature fusion and improve localization accuracy; and (3) the use of
the Focaler-IoU loss function to better handle the imbalanced distribution of target scales and focus on
challenging samples. Experimental results on the VisDrone2019 dataset show that DV-DETR achieves
an mAP@0.5 of 50.1%, a 1.7% improvement over the baseline model, while increasing detection
speed from 75 FPS to 90 FPS, meeting real-time processing requirements. These improvements not
only enhance the model’s accuracy and efficiency but also provide practical significance in complex,
high-density urban environments, supporting real-world applications in UAV-based surveillance and
monitoring tasks.

Keywords: transformer; small target detection; real-time task; RT-DETR algorithm

1. Introduction

With the rapid advancement of drone technology and significant cost reduction, drones
have been widely used in various fields such as urban planning, traffic monitoring, agricul-
ture, and environmental protection. Drone aerial photography has received great attention
due to its ability to provide unprecedented low-cost high-resolution images. Meanwhile,
real-time object detection algorithms, as an important research field in computer vision,
have become widely applied in drone aerial photography [1]. However, the data captured
by drones often contain a large number of small-sized targets, and due to limitations in
flight altitude and complex terrain, object detection tasks face many challenges, such as
small target size and severe occlusion. These factors greatly constrain the effective parsing
of drone image data, thereby limiting the efficiency and practicality of drone technology in
specific fields.

In recent years, deep learning, especially convolutional neural networks, has made
significant progress in the field of image processing. By utilizing deep networks to au-
tomatically learn complex feature representations, deep learning methods perform well
on traditional object detection tasks. Object detection algorithms are mainly divided into
two categories [2]: two-stage detection algorithms based on candidate regions and single-
stage detection algorithms based on direct prediction. Two-stage algorithms such as
R-CNN [3] and its variants (Fast R-CNN, Faster R-CNN) first generate region candidates,
and then perform classification and bounding box regression on these regions. This type of
method usually has high detection accuracy, but high computational cost and poor real-time
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performance, making it difficult to meet the real-time processing needs of drones. Single-
stage detection algorithms such as the YOLO (you only look once) [4–8] series directly
predict the target category and position on the image through one forward propagation.
Although it significantly improves processing speed compared to two-stage algorithms,
YOLO’s speed and accuracy are negatively affected by NMS, which essentially does not
achieve an end-to-end detection process. With the Transformer model becoming the stan-
dard paradigm in the field of natural language processing, the academic community has
begun to explore its application in object detection tasks. In this context, the DETR [9,10]
method serves as a groundbreaking example that reconstructs object detection as a sequence
prediction problem. This method adopts the encoder–decoder structure of Transformer
and combines a matching strategy based on a bipartite graph. Compared with traditional
object detection techniques, DETR omits a large number of candidate box generation and
non-maximum suppression processes, achieving direct correspondence between prediction
results and image results. However, due to DETR’s adoption of a Transformer architecture
with a large number of parameters, its real-time detection performance is limited when
dealing with complex tasks. Zhao et al. [11] proposed an improved real-time detection
version called RT-DETR to address the high computational cost issue of the DETR method.
By optimizing computational efficiency, RT-DETR can achieve high training accuracy in
fewer iterations. However, although RT-DETR has made significant progress in training ef-
ficiency, its encoding network still exhibits low efficiency in multi-scale feature recognition,
and the fusion effect of different hierarchical features also needs to be improved. These lim-
itations indicate that although RT-DETR provides innovation in real-time detection, further
optimization is still needed in feature processing and fusion techniques. The GD-based
scattering power decomposition method [12], by addressing pseudo-power components
in complex backgrounds, can reduce background interference in polarimetric SAR data.
This preprocessing can be particularly beneficial for small object detection in RT-DETR,
enabling the model to better distinguish targets in challenging environments, such as dense
vegetation and mixed-use landscapes.

In response to the above issues, and considering the current solutions for processing
unmanned aerial vehicle images with high viewing angles and high dynamic backgrounds,
which often suffer from insufficient detection accuracy due to insignificant small target
features and easy loss, we improve and design a target detection model under unmanned
aerial vehicle viewing angles based on the RT-DETR baseline—DV-DETR, and choose
ResNet18 [13] as the backbone network to reduce the complexity of the model; we propose
to use recalibration attention units [14] and reparameterization modules [15] to improve
the baseline hybrid encoder, effectively capturing the complex dependency relationships
between small targets and enhancing the model’s detection ability for small-sized targets.
In addition, a variable attention mechanism [16] is adopted to replace the baseline AIFI
module in order to better aggregate the features that need attention. On the bounding box
regression loss function, Focaler-IoU [17] is used to focus on different regression samples,
and the detection ability of the model for small-sized targets is enhanced by adjusting the
weights of positive and negative samples. Through the above improved design, we expect
that the model can improve the detection accuracy of small targets while ensuring real-time
performance. Finally, the performance of the proposed DV-DETR model was validated
through experiments.

2. Related Work
2.1. Challenges of YOLO Algorithm in Small Target Recognition

The YOLO algorithm [4–6,18] is an efficient single-stage object detection algorithm
that achieves object classification and localization during a single image viewing process.
This algorithm adjusts the size of the input feature map uniformly and uses grid partition-
ing to segment the image, ultimately generating bounding box coordinates and category
probabilities. After continuous iteration and improvement, YOLO has developed into
an important tool for real-time object detection and demonstrated superior performance
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in multiple benchmark tests, especially in terms of processing speed, surpassing many
other single-stage detectors. However, in the task of detecting small targets, YOLO series
algorithms face some unique challenges. Especially when using NMS to handle duplicate
detection problems, although NMS effectively solves the problem of overlapping multiple
detection boxes, it not only increases inference time but also introduces hyperparameters
that may affect detection stability, which is ineffective in some complex scenarios. For ex-
ample, in dense crowd detection scenarios, due to extremely close or even overlapping
individual distances, NMS may mistakenly delete multiple valid detection results, result-
ing in a significant decrease in recall rate, which means that many correct targets are not
detected. Due to the YOLO algorithm’s design preference for fast processing at the expense
of accuracy, its sensitivity to small targets is relatively low. Although the YOLO series
has significant advantages in speed and processing capability, its recall and accuracy in
handling high-density small target scenes such as drone aerial photography still need to
be improved.

2.2. End-to-End Object Detection Model

In response to the adverse effects and challenges of the NMS method on small tar-
get detection mentioned above, the RT-DETR model [11] can be used to quickly process
multi-scale features. By utilizing its efficient hybrid encoder to decouple intra-scale in-
teractions and cross-scale fusion of features at different scales, the inference speed has
been improved. RT-DETR transforms the detection problem into an unordered sequence
problem, transforming the originally dense detection into sparse detection. Therefore, this
method can avoid the delay caused by non-maximum suppression NMS in YOLO series
detectors [4], as long as the confidence ranking of feature classification scores is performed
on the final prediction results, thereby improving detection speed. In terms of detection
accuracy, the RT-DETR model introduces an uncertainty minimization query selection
mechanism to improve detection accuracy by optimizing the initial selection of queries.
This method selects the query that is most likely to represent the real object by evaluating
the uncertainty of encoder features (i.e., the uncertainty of localization and classification),
thereby reducing the uncertainty of the model in the decoding stage.

Although the RT-DETR model outperforms existing real-time detectors and similar-
sized end-to-end detectors in terms of speed and accuracy, it has certain limitations. Es-
pecially in small target detection, the performance is still not as good as that of strong
real-time detectors. Therefore, an improvement is needed to enhance the accuracy of small
target detection while ensuring that the detection speed is not reduced too much.

3. Methods
3.1. RT-DETR Model

RT-DETR is a real-time end-to-end object detection model based on Transformer,
which effectively processes multi-scale features by decoupling intra-scale interactions and
cross-scale feature fusion, significantly reducing the computational cost of traditional DETR
models. In terms of achieving faster processing speed and higher accuracy, RT-DETR is
significantly superior to similar advanced YOLO models. The RT-DETR network mainly
consists of three parts: the backbone network, the neck coding network, and the decoding
prediction network. In the backbone network section, we selected mainstream ResNet18,
SwinTransformer, and the baseline model’s backbone network HGNet for comparative
experiments. The training results are shown in Table 1, where ResNet18 has a parameter
count of 17.657M and FLOPs of 53.4G, making it the model with the lowest requirements
among all candidate models, highlighting its practicality as a lightweight and efficient
architecture. This makes ResNet18 particularly suitable for deployment in environments
with limited computing resources. Although its mean average accuracy (mAP) is 45.407%,
slightly lower than the other two models evaluated, the difference is still small and within
an acceptable range. Therefore, in this study, ResNet18, which balances network depth and
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detection accuracy, was selected as the backbone network of the model to meet the specific
requirements of small target detection in drone aerial photography.

Table 1. Performance comparison of different backbone networks.

Backbone Network Parameters/M GFLOPs Mean Average Precision mAP/%

ResNet18 17.657 53.4 45.407
SwinTransformer 36.620 98.1 46.579

HGNet 32.827 108.3 48.389

In the neck coding network section, an efficient hybrid encoder was designed for
the baseline model, which mainly consists of two modules: the Attention-Based Intra-
scale Feature Interaction (AIFI) module based on the attention mechanism and the CNN-
Based Cross-Scale Feature Fusion Module (CCFM) based on CNN. Although the proposed
efficient hybrid encoder can enhance the detection ability of complex objects and scenes
by iteratively fusing features from different levels, and gradually refine feature expression
through iteration to improve detection accuracy and stability, this design also has certain
limitations. Firstly, there may be insufficient fusion when dealing with multi-scale features,
as it mainly focuses on improving processing speed, which may sacrifice the comprehensive
effect of some features, especially in the multi-scale environment of drone aerial images
where feature details may not be rich enough. This is one of the reasons why the model’s
performance on small objects is still not good enough, as mentioned by the author. Secondly,
AIFI relies on high-level feature extraction and cannot effectively utilize the local details
and spatial information of low-level features. This article will further improve the neck
network proposed for the baseline model.

3.2. Recalibrate Attention Unit

To address the challenge of detecting small targets, like vehicles and pedestrians,
in drone aerial imagery, the recalibration attention unit (RAU) is introduced within the
SBA module. In such images, small targets tend to be concentrated in lower and middle
feature layers due to their limited size and feature detail. Traditional feature pyramid
networks, with their top-down approach, often experience information loss, particularly
when merging features across levels. Inspired by [14], we incorporated the RAU in our
network to enhance feature retention by utilizing bidirectional fusion between high- and
low-resolution features. This module, shown in Figure 1, better supports the detection
of multi-scale targets by preserving crucial boundary and semantic information, thus
improving object contours and location accuracy, especially in dense urban scenes where
fine detail is critical.

Specifically, in order to fuse different hierarchical features more finely, the RAU
adaptively extracts complementary information representations from two input features
(Fs,Fb) before feature fusion. These two features come from the deep semantic information
of the encoder and the shallow boundary detail features from the backbone network,
respectively. As illustrated in Figure 2, both high-level and low-level information undergo
different RAU processing methods to address the limitations of high-level features missing
boundary details and low-level features missing semantic context.
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Figure 1. SBA module structure.

Figure 2. RAU unit structure.

To combine these enhanced features, outputs from both RAU units pass through a
3 × 3 convolution. The RAU function can be formulated as follows:

T′
1 = Wθ(T1), T′

2 = Wϕ(T2) (1)

PAU(T1, T2) = T′
1 ⊙ T1 + T′

2 ⊙ T2 ⊙ (⊖(T′
1)) + T1 (2)

In this expression, T1 and T2 are input features processed through linear mappings
Wθ(·) and Wϕ(·), which use a 1 × 1 convolution to reduce the channel dimension to 32,
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producing feature maps T′
1 and T′

2. The operator ⊙ represents element-wise multiplication,
while ⊖(·) denotes the complement of T′

1.
The SBA module process can then be summarized as follows:

Z =C3×3(Concat(PAU(Fs,Fb), PAU(Fb,Fs))) (3)

Here, C3×3(·) is a 3 × 3 convolution followed by batch normalization and a ReLU
activation layer. Fs, containing encoder-generated deep semantic details, is in R H

8 × H
8 ×32,

while Fb, carrying boundary information from the backbone, is in R H
4 × H

4 ×32. Concat(·)
concatenates along the channel dimension, resulting in the final output Z ∈ R H

4 × H
4 ×32 for

the SBA module.

3.3. Reparameterization Module

Multi-branch structures, such as ResNet [13], significantly enhance the extraction of
multi-scale features by processing data streams at different scales in parallel, thus achieving
better performance than single-branch structures in object detection tasks. However, this
structure brings significant computational and parameter burdens due to its diverse parallel
branches. To address this challenge, this study is inspired by the RepVGG network [15] and
adopts a structural reparameterization strategy. This strategy uses a multi-branch structure
in the training stage to optimize feature extraction and obtain better weight parameters,
while in the inference stage, it switches to a single-branch structure to improve detection
efficiency. Especially in object detection tasks from the perspective of drones, the similarity
in features between tricycles, awning-tricycles, and motorcycles can easily lead to false
positives. The use of the above-mentioned multi-parameter multi-branch structure can
effectively extract multi-scale features, thereby solving such false detection problems, while
the reparameterization process ensures the efficiency of the inference stage.

We improve the backbone network of the model by introducing the RepConv module
to replace traditional convolution, in order to enhance the fusion and extraction of multi-
scale features. The module structure is shown in Figure 3. As the core of the RepVGG
network, the RepConv module enriches multi-scale information through batch normal-
ization (BN) and parallel structures of 1 × 1 and 3 × 3 convolutions during the training
phase. In the validation phase, the multi-branch structure is fused into a single branch
through reparameterization techniques, achieving efficient and high-precision detection of
the model.

Figure 3. RepConv module.
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3.4. Deformable Attention Mechanism

In drone aerial image detection, scenes are often complex and variable, posing chal-
lenges for static feature fusion methods. The efficient hybrid encoder in the RT-DETR
baseline model adopts a static feature fusion strategy, which may appear less flexible when
dealing with complex and changing scenes compared to attention mechanisms that can
dynamically adjust attention points. Inspired by [16], we introduce the deformable atten-
tion mechanism called DAttention. Unlike the traditional ViT [19] model, this mechanism
allows for adaptive focus on relevant regions in the feature map, guided by sampling points
generated through an offset network, thereby enhancing the ability to capture relationships
among objects.

DAttention operates by first identifying critical regions in the feature map through
multiple sets of sampling points learned from the query. Bilinear interpolation is then
used to sample features from the feature map, after which the sampled features undergo
key–value projection to yield deformed key–value pairs. Standard multi-head attention
is subsequently applied, where the queries gather features from these deformed values.
The underlying structure is illustrated in Figure 4. The input feature map x ∈ RH×W×C

generates a uniformly spaced grid of reference points p ∈ RHG×WG×2, where grid di-
mensions HG = H/r and WG = W/r are determined by the downsampling factor r.
These reference points are arranged as normalized coordinates [−1,+1] relative to the
grid dimensions, where (−1,−1) indicates the top-left corner and (+1,+1) represents the
bottom-right corner.

To determine offsets for each reference point, the feature map is projected onto a
query feature, denoted as q = xWq, and then passed through a lightweight network
θo f f set(·), producing offset values ∆p = θo f f set(q). These offsets modify the initial grid
points, and the sampling function ϕ(·; ·) combines the input features, reference points,
and offsets to generate the transformed feature x̃. The computation is described by the
following expressions:

q = xWq, k̃ = x̃Wk, ṽ = x̃Wv (4)

∆p = θo f f set(q), x̃ = ϕ(x; p + ∆p) (5)

In these equations, k̃ and ṽ are the key and value matrices derived from the position-
sampled features of the offset reference point. The sampling function ϕ(·; ·) uses bilinear
interpolation, as defined by Equation (6). Here, (rx, ry) indexes all positions in z ∈ RH×W×C,
while (px, py) represents the offset coordinate of reference point p + ∆p:

ϕ(z; (px + py)) = ∑
(rx ,ry)

g(px, rx)g(py, ry)z
[
ry, rx, :

]
, (6)

where
g(a, b) = max(0, 1 − |a − b|) (7)

Then, using multi-head attention and combining it with the relative position offset
matrix R to output features, the following is obtained:

z(m) = σ(
q(m) k̃(m)T

√
d

+ ϕ(B̂; R))ṽ(m) (8)
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Figure 4. Deformable attention structure.

3.5. Focaler-IoU Loss Function

Boundary box regression plays a crucial role in the field of object detection, and the
localization accuracy of object detection largely depends on the loss function of boundary
box regression. There is a widespread problem of sample imbalance in the perspective
of drone aerial photography, where difficult samples such as pedestrians and bicycles
contribute the majority of gradients, limiting the regression of bounding boxes. Based on
the problem of imbalanced training samples, the Focaler-IoU [17] method is used to focus
on the distribution of difficult and easy samples, and the linear interval mapping method
is used to reconstruct the IoU loss. It applies a linear interval mapping to adjust the IoU
loss, thereby making sample focus more adaptive. The boundary box regression loss is
improved, and the formula is as follows:

IoU f ocaler =


0, IoU ≪ d

IoU−d
u−d , d ≪ IoU ≪ u

1, IoU ≫ u
(9)

By adjusting the values of u and d, Focaler-IoU can be made more flexible on different
samples. The definition of loss is as follows:

LFocaler−Iou = 1 − IoUFocaler (10)

After applying the Focaler-IoU loss to the boundary box regression loss based on EIoU,
the contribution of high-quality samples is improved while suppressing the contribution of
low-quality samples. The formula is defined as follows:

LFocaler−EIou = LEIoU + IoU − IoUFocaler (11)

Traditional IoU-based losses (e.g., GIoU [20], DIoU, and CIoU [21]) improve localiza-
tion accuracy by measuring the geometric overlap between predicted and ground-truth
boxes, but they lack a mechanism to focus on sample difficulty. Focaler-IoU, on the other
hand, incorporates the weight adjustment idea from Focal Loss, enabling the model to
focus on bounding box regression for difficult or easy samples, thus optimizing localization
performance more effectively.

3.6. DV-DETR Model

To address the issue of insufficient detection performance in the RT-DETR model,
recalibration attention units and reparameterization modules are introduced into the hybrid
encoder of the neck network to enhance the perception of position information in small
object detection and improve the learning efficiency of feature representation; at the fusion
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of internal scale features, the deformable attention mechanism is used to replace the
baseline AIFI module in order to better aggregate the features that need attention. The final
optimized object detection model DV-DETR from the perspective of unmanned aerial
vehicles is shown in Figure 5.

Figure 5. DV-DETR model structure.

4. Results
4.1. Dataset Introduction

To evaluate the effectiveness and applicability of our approach for small object de-
tection, we performed experiments using the VisDrone2019 dataset, provided by the
Machine Learning and Data Mining Laboratory at Tianjin University [22]. This compre-
hensive benchmark dataset contains 288 video clips, totaling 261,908 frames, along with
10,209 static images. This dataset includes imagery captured across 14 cities, covering
a wide range of environments such as urban and rural areas, bright and dim lighting
conditions, and various weather scenarios. This dataset encompasses both sparse and
densely populated scenes, and is one of the largest, widest coverage, and most diverse
image datasets in China’s drone aerial photography field.

The dataset defines 10 categories of detection targets, such as pedestrians, vehicles,
bicycles, and more, specifically targeting small and densely packed objects, ideal for small
object detection research. The target categories are defined as pedestrians, people, bicycles,
cars, vans, trucks, tricycles, awning-tricycles, buses, and motorcycles. Many annotations,
especially for pedestrians and distant objects, involve very small, densely clustered targets.

The dataset was divided into three subsets: 6471 images for training, 548 images for
validation, and 3190 images for testing, each with a resolution of 1333 × 800. In the training
set, each image was annotated with an average of 53 targets, while in the test set, each
image had an average of 71 targets. These targets often exhibited varying degrees of partial
occlusion in the image.
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4.2. Experimental Environment

All network structure improvements and model training experiments were conducted
in the same computer environment and configuration, as shown in Table 2.

Table 2. Experimental environment.

Configurations Parameters

OS Ubuntu 20.04
CPU Intel Xeon E5-2680
GPU NVIDIA GeForce RTX 3090 24 GB

CUDA Version CUDA 12.1
Memory 64 GB

Deep Learning Framework Pytorch 2.2.0

The parameters for experimental network training are shown in Table 3, and the
first 300 features were selected to initialize the decoder’s object query.

Table 3. Training parameters.

Name Parameters

Epoch 200
Batch Size 8
Input Size 640 × 640
Optimizer AdamW

Initial Learning Rate 0.0001
Weight Decay Coefficient 0.0001

4.3. Model Evaluation Indicators

To verify the detection performance of the proposed model, we selected commonly
used evaluation metrics in object detection tasks: precision (P), recall (R), and mean average
precision (mAP). The detailed formulas for these metrics are listed below:

P =
TP

TP + FP
(12)

R =
TP

TP + FN
(13)

AP =
∫ 1

0
P(R)dR (14)

mAP =
∑n

i=0 AP(i)
n

(15)

In Equations (12)–(15), precision (P) refers to the proportion of correctly predicted
targets among all predicted targets, while recall (R) represents the proportion of correctly
predicted targets among all targets. True positive (TP) refers to the positive cases of
successful prediction, false positive (FP) refers to the negative cases that are not detected,
false negative (FN) refers to the positive cases that are misclassified by the model, average
precision (AP) refers to the detection accuracy of each category, and n refers to the total
number of categories. Additionally, parameters such as model size (number of parameters),
detection speed (FPS), and computational complexity (GPLOPs) were chosen to measure
the inference performance of the model.
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4.4. Analysis of Experimental Results
4.4.1. Performance Evaluation

The variation curves of IoU loss, classification loss, and L1 loss during the training
process of the improved model are shown in Figure 6. On both the training and validation
sets, the IoU loss shows a rapid decreasing trend and tends to stabilize after the initial
25 training cycles. This indicates that the model quickly achieved high performance in
spatial positioning accuracy and made relatively accurate predictions for bounding boxes.
The decreasing trend of classification loss on the training and validation sets is relatively
gentle, indicating that the classification task was more complex. Nevertheless, the loss
gradually stabilizes after sufficient training epochs, indicating that the model gradually
adapted to learning to distinguish between different categories of targets. The L1 loss
shows a continuous decreasing trend on both the training and validation sets, reflecting
the model’s continuous improvement in finely adjusting the predicted position. The stable
decrease in L1 loss also indicates that the model’s ability to handle position errors gradually
increased. In the end, all three types of losses tended to stabilize, indicating that the
improved model proposed in this paper is effective and has a good learning effect. Overall,
the loss curves on the training and validation sets show a consistent trend, indicating that
the model did not experience overfitting. The performance of the model on the validation
set was similar to that on the training set, indicating its good generalization ability.

Then, we present a comparative analysis of the DV-DETR model against several
state-of-the-art models focused on small object detection in drone imagery. The selected
models for comparison include Fast R-CNN [23], YOLOv5s, YOLOv7-t, DA-YOLO v5 [24],
and RT-DETR [11]. These models were chosen due to their prominence in the field and their
demonstrated effectiveness in detecting small objects in various scenarios. The experimental
results are shown in Table 4. It shows that DV-DETR has better accuracy than RT-DETR in
all classifications. The categories of pedestrians, people, bicycles, cars, vans, trucks, tricycles,
awning-tricycles, buses, and motorcycles increased by 3.5%, 2.5%, 5.1%, 1.7%, 3.8%, 5.3%,
3.7%, 5.6%, 11.2%, and 3.7%, respectively. When IoU is 0.5, the mAP value of DV-DETRD is
50.2%, higher than RT-DETR [11] and better than all other networks. Especially in the classes
of pedestrians, people, bicycles, tricycles, awning-tricycles, and motorcycles, significant AP
improvements were achieved, with rates of 58.3%, 49.4%, 25.7%, 36.5%, 20.1%, and 61.2%,
respectively. The mAP value of DV-DETR is 50.2%, which is 28.5%, 24%, 13.1%, 12.41%,
and 4.6% higher than Fast R-CNN [23], YOLOv5s, YOLOv7-t, DA-YOLO v5 [24], and
RT-DETR [11], respectively. From the experimental data, it can be concluded that the
optimized network structure has a significant improvement in detecting small targets, and
is capable of meeting the special needs of object detection tasks in drone aerial images.

Table 4. Detection results of each model (%). (The bold data in the table indicate the best results).

Model Pedestrians People Bicycles Cars Vans Trucks Tricycles Awning-
Tricycles Buses Motorcycles mAP@0.5

Fast
R-CNN [23] 21.4 15.6 6.7 51.7 29.5 19 13.1 7.7 31.4 20.7 21.7

YOLOv5s 22.6 20.6 14.6 59.7 24 21.3 20.1 17.4 37.9 23.7 26.2
YOLOv7-t 41.5 37.5 11.4 77.9 39.8 32.8 23.7 12 48.1 46.7 37.1
DA-YOLO

v5 [24] 47.1 37.9 14.2 78.3 37.4 32.3 23.5 15.6 47.2 44.4 37.79

RT-DETR [11] 54.8 46.9 20.6 85.1 49.5 35.9 32.8 14.5 58.1 57.5 45.6
DV-DETR 58.3 49.4 25.7 86.8 53.3 41.2 36.5 20.1 69.3 61.2 50.2
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(a) Training process

(b) Valuing process

Figure 6. Curves in the loss function of the DV-DETR.

4.4.2. Ablation Experiment

In order to verify the improvement of model detection performance by various im-
provement schemes proposed in this article, six ablation experiments were conducted on
the test set, with the same hyperparameters set for each experiment and the same training
strategy used. The experimental results are shown in Tables 5 and 6.
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Table 5. Ablation experimental results (%).

Number Models P R mAP@0.5 mAP@0.5:0.95

Exp1 RT-DETR (Baseline) 62.147 46.657 48.389 29.7
Exp2 + ResNet18 59.293 43.943 45.407 27.8
Exp3 + ResNet18 + SBA Module 61.233 47.240 49.438 30.9
Exp4 + ResNet18 + SBA Module + DAttention 61.566 47.565 49.496 31.1
Exp5 + ResNet18 + SBA Module + Focaler-IoU 61.559 47.314 49.462 31.0
Exp6 + ResNet18 + SBA Module + DAttention + Focaler-IoU 62.431 47.759 50.050 31.4

Table 6. Comparative results of model inference performance in ablation experiments.

Number Models FPS GFLOPs Params/106

Exp1 RT-DETR (Baseline) 75.0 103.5 32.004
Exp2 + ResNet18 139.1 (+64.1) 52.0 (−51.5) 17.447 (−14.557)
Exp3 + ResNet18 + SBA Module 92.0 (+17.0) 84.4 (−19.1) 19.498 (−12.506)
Exp4 + ResNet18 + SBA Module + DAttention 89.6 (+14.6) 84.6 (−18.9) 19.501 (−12.503)
Exp5 + ResNet18 + SBA Module + Focaler-IoU 90.3 (+15.3) 84.4 (−19.1) 19.498 (−12.506)
Exp6 + ResNet18 + SBA Module + DAttention + Focaler-IoU 90.0 (+15.0) 84.6 (−18.9) 19.501 (−12.503)

From Table 5, it can be seen that after replacing the RT-DETR backbone network with
ResNet18 for feature extraction, the recall rate, mAP@0.5, and mAP@0.5:0.95 of ResNet18
decreased by 2.714, 2.982, and 1.9 percentage points compared to the baseline model.
However, Table 5 shows that FPS increased by 64.1, and GFLOPs and parameter count
decreased by 51.5 and 14.557M, respectively. This indicates that ResNet18, as a lightweight
backbone network, has slightly inferior feature extraction capabilities compared to the
baseline model, but significantly reduces the overall network parameter count, which
can meet the requirements of real-time detection. After adopting the SBA module and
adjusting the neck network structure, the precision, recall rate, and mAP@0.5 decreased by
1.94, 3.297, and 4.031 percentage points compared to experiment 2, which indicates that the
SBA module can greatly improve the model’s detection performance for small targets and
significantly increase the average accuracy by fusing high-resolution and low-resolution
features to better handle multi-scale information. After adopting the DAttention module,
the precision and recall rate increased by 0.333 and 0.325 percentage points, respectively,
compared to experiment 3, indicating that this mechanism can model the relationship
between markers in complex and changing scenarios, thus paying more attention to
small targets. After using Focaler-IoU loss, the precision and mAP@0.5:0.95 increased by
0.426 and 0.1 percentage points compared to experiment 3, indicating that Focaler-IoU
pays attention to the distribution of difficult and easy samples, thereby improving the
contribution of high-quality samples while suppressing the contribution of low-quality
samples. The precision, recall, mAP@0.5, and mAP@0.5:0.95 of the final improved DV-
DETR model increased by 0.284, 1.102, 1.661, and 1.7 percentage points compared to the
baseline model, respectively, indicating that DV-DETR is more efficient in fine feature
extraction and high/low-resolution feature fusion, and the drone has stronger real-time
small target detection capabilities.

Table 6 compares the inference performance of the improved model against others.
The mechanism of bidirectional feature fusion after adding the SBA module can pre-
serve more feature information, resulting in an increase in computational complexity and
parameter quantity of the model, and a slight decrease in detection speed. After introduc-
ing the DAttention module, it focused more specifically on related feature information,
with slightly increased computational complexity and parameter count, and almost no
change in detection speed. Compared with the original model, the improved DV-DETR
model showed varying degrees of improvement in various detection performance evalua-
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tion indicators, and reduced computational complexity and parameter count. It performed
better in real-time detection tasks for small targets in UAV aerial photography.

5. Conclusions

To address the challenge of low real-time detection accuracy of small targets in UAV
aerial photography with high viewing angles and dynamic scenarios, this paper presents
an enhanced DV-DETR model based on RT-DETR. By substituting the backbone network
with ResNet18, the model achieves better extraction of multi-level image features, which
improves small target detection accuracy and localization precision, while also significantly
reducing model parameters. In the feature fusion process, the recalibration attention
unit, which aggregates refined boundary and the semantic information to better calibrate
small object positions, and the reparameterization module, which uses a multi-branch
structure during training to optimize multi-scale feature extraction and consolidates to a
single-branch structure during inference, are incorporated to enable effective bidirectional
fusion of high- and low-resolution features, enhancing the model’s ability to handle multi-
scale targets. Additionally, the DAttention mechanism models relationships between
target labels to better aggregate important features. Finally, the Focaler-IoU loss function
is utilized to adjust weights for positive and negative samples, optimizing the model’s
focus on challenging samples and enhancing its small target recognition performance.
Experimental results indicate that DV-DETR substantially boosts the effectiveness of drone-
based monitoring systems, particularly in complex urban environments with crowded
scenes. While the proposed DV-DETR model exhibits promising performance, further
refinement and extensive field testing are required to validate its robustness in diverse
operational conditions. Future testing in a variety of environments, including different
weather conditions, longer observation periods, and more diverse datasets, would facilitate
comprehensive validation and adaptation of the model for practical applications.
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