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Abstract: For binocular stereo matching techniques, the most advanced method currently is using
an iterative structure based on GRUs. Methods in this class have shown high performance on both
high-resolution images and standard benchmarks. However, simply replacing cost aggregation with
a GRU iterative method leads to the original cost volume for disparity calculation lacking non-local
geometric and contextual information. Based on this, this paper proposes a new GRU iteration-based
adaptive kernel convolution deep recurrent network architecture for stereo matching. This paper
proposes a kernel convolution-based adaptive multi-scale pyramid pooling (KAP) module that fully
considers the spatial correlation between pixels and adds new matching attention (MAR) to refine the
matching cost volume before inputting it into the iterative network for iterative updates, enhancing
the pixel-level representation ability of the image and improving the overall generalization ability of
the network. At present, the AKC-Stereo network proposed in this paper has a higher improvement
than the basic network. On the Sceneflow dataset, the EPE of AKC-Stereo reaches 0.45, which is
0.02 higher than the basic network. On the KITTI 2015 dataset, the AKC-Stereo network outperforms
the base network by 5.6% on the D1-all metric.

Keywords: stereo matching; GRU; adaptive; matching attention

1. Introduction

Binocular stereo matching has always been a focal point in research on stereo vision,
emulating human binocular vision to recognize 3D information within the field of view [1].
The binocular camera takes two viewpoint images of the same scene and estimates the
disparity by finding the horizontal correspondence between the corrected left and right
images [2], and then obtains the depth map. Depth map has a wide range of applications.
Because it can record the distance between objects in the scene and the camera, it has a wide
range of applications in robot navigation [3,4], visual basic models [5], smart healthcare [6],
3D measurement [7], and augmented reality [8,9]. In recent years, with the support of
large synthetic datasets [10–12], stereo matching methods based on Convolutional Neural
Networks (CNNs) have elevated the accuracy of disparity estimation to a new level [13–15].
However, due to various real-world challenges, achieving both high accuracy and efficiency
is crucial for practical applications.

Traditional stereo matching algorithms [16–18] typically involve four steps: computing
the matching cost, cost aggregation, disparity computation, and disparity refinement [1].
And the matching process can be divided into two types: global matching methods and
local matching methods. Since the high-efficiency local algorithms [19] are based on the
assumption that the disparity of local windows is the same, which is not true in many
cases, it will lead to poor matching performance. The global algorithms with better per-
formance [20,21], although achieving better matching results through constraints such as
smoothness constraints between two-dimensional adjacent pixel disparities, have a larger
memory footprint and slower speed. In this case, in order to combine the advantages
of the above two methods while avoiding their disadvantages, the semi-global matching
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method [22,23] was proposed. The disparity map obtained through the semi-global match-
ing method was not significantly different in effect from the global algorithm, but there was
a significant improvement in algorithm efficiency, making semi-global matching a widely
used method at the time. However, in open-world environments, traditional methods like
these still struggle with issues such as image noise, uneven lighting, and large textureless
areas. It is therefore essential to develop targeted solutions to effectively handle real-world
scenarios, particularly outdoor images.

In recent years, with the development of deep learning, each step in traditional stereo
matching methods can be replaced by deep neural networks to improve performance [24];
thus, learning-based methods have been widely used in the field of binocular stereo
matching. Compared to traditional methods, learning-based approaches produce more
accurate and smoother disparity maps [14,15] and offer a slight advantage in computation
speed [14,25]. The first end-to-end stereo matching network, DispNetC [11], computes
a correlation volume from the features of the left and right images and uses a CNN to
directly regress the disparity map. Since then, various learning-based methods have been
proposed, and cost volume and correlation volume have been introduced into the network
structure. GCNet [26] proposes using cascaded features to construct cost volumes and
employing 3D convolution for cost aggregation. GA-Net [27] notes the drawbacks of 3D
convolution and designs a semi-global aggregation layer and a local-guided aggregation
layer, and tries to replace it with these two guided aggregation layers to further improve
the accuracy. Meanwhile, GwcNet [28] proposes a group-wise correlation cost volume to
enhance similarity measurements.

As mentioned above, most current algorithms use 2D CNNs to extract features, form-
ing a cost volume that is subsequently fed into cost aggregation and regularization modules
composed of 2D or 3D CNNs to compute the final disparity map. However, the aggregated
information is often redundant [29], because it just concatenates all the information on a
large number of feature dimensions. It does not require so much information to predict the
disparity, and too much redundant information will have a bad impact on the network [30].
In fact, with the advancement of camera technology, the quality and resolution of initial
images have greatly improved, leading to a significant amount of high-frequency informa-
tion being disregarded during the aforementioned computation processes. This results in
relatively blurry disparity maps lacking in detail, leading to insufficient matching accuracy
and blurred depth estimation for the details. Consequently, the above algorithms are no
longer compatible with the rapid advancements in current camera technology.

To adapt to higher-resolution images, the current state-of-the-art stereo methods [15,31–33]
use an iterative structure based on ConvGRU [34] and have shown higher performance on
both high-resolution images and standard benchmarks. Different from the above methods,
the iterative approaches bypass the computationally expensive cost aggregation operations
by only calculating the visual similarity between pixels at the same height. This substitutes
the four-dimensional cost volume with a three-dimensional cost volume, while introducing
multi-stage GRUs to progressively update the disparity map. This solution allows for the
direct computation of cost volumes using high-resolution images, enhancing the ability
of the update operators to propagate information across the image, and making it more
suitable for high-resolution images. For instance, RAFT-Stereo [15] utilizes multi-layer
convolutional gated recurrent units (ConvGRUs) [34] to cyclically update the disparity map
using local cost volume retrieved from All-Pairs Correspondences (APCs); IGEV-Stereo [35]
constructs a combined geometrically encoded volume to encode geometric and contextual
information as well as local matching details, which is iteratively indexed to update
disparity to make full use of all information. However, using iterative methods in place
of cost aggregation results in the original cost volume lacking spatial-level information,
and failing to better exploit the inherent geometric advantages present in stereo images.
This leads to difficulties in handling pathological cases characterized by local blurriness,
such as thin-structured objects (e.g., fences, wires) and textureless regions (e.g., highly
reflective surfaces like glass). Another challenge is that due to their limited generalization
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ability, they are often less effective when applied to real-world scenarios than on specific
datasets [36].

Therefore, the purpose of this article is to explore a better stereo matching method to
make up for the shortcomings brought by the iterative method based on the GRU structure
and solve the problem of disparity estimation in the above ill-posed regions. This article
proposes a new design based on the IGEV-Stereo network, which can effectively improve
the accuracy of the stereo matching network, extract features more accurately, make full
use of the effective information of the images, and process thin structures and textureless
areas more perfectly. The main contributions can be summarized as follows:

• In the feature extraction phase, this paper proposes the Kernel Normalization Con-
volution Layer-based Adaptive Spatial Pyramid Pooling (KAP) module to extract
multi-scale features from images. This approach takes into full account the spatial
correlation between pixels, thereby enhancing the performance of the deep network.
The KAP module extracts more plentiful contextual features, enabling the network to
better handle issues such as overexposure, thin structures, and low-texture regions,
while also allowing the network to learn error correction capabilities.

• For the cost matching computation phase, this paper believes that conventional meth-
ods of connecting two cost volumes and then performing regularized correlation
volume calculations struggle to fully exploit the advantages of the two image samples.
To obtain a more reliable correlation volume, this paper proposes a new attention
module (MAR) that integrates the regularized cost volume to produce a more accurate
similarity measure. It not only effectively utilizes the effective geometric information
of the binocular images, but also reduces the number of subsequent GRU iterations.

• Furthermore, this paper also utilizes a kernel convolution-based gated recurrent
unit [37] as the iterative update operator within the main network framework, which
retrieves features from the previously obtained stereo matching correlation volume
and regressively updates the disparity. It enables GRUs to consider wider contextual
information around each pixel, promotes the fusion of local and global information,
and provides a more comprehensive understanding of the feature space.

This article demonstrates the effectiveness of the proposed method on several pub-
licly available datasets of binocular images. Due to the mature and widely used eval-
uation benchmarks of the KITTI dataset, the KITTI 2015 dataset is used as an example
here. The AKC-Stereo network proposed in this article outperforms IGEV-Stereo [35]
and CREStereo [33] by 5.6% and 11.24% on the D1-all metric in KITTI 2015 dataset [38],
respectively. In the qualitative test, the AKC-Stereo in this article performs more excellently
in light reflection regions and thin-structure regions, and also demonstrates better cross-
dataset generalization ability. As shown in Figure 1, the accuracy of AKC-Stereo in this
article is better than that of the basic network IGEV-Stereo. In Figure 1a, it can be seen
that AKC- Stereo achieves a smaller EPE (that is, 0.52) using only 12 GRU iterations than
IGEV-Stereo using 28 GRU iterations (that is, 0.56 EPE). In Figure 1b, it can be observed
that AKC-Stereo also improves significantly for small batch training, which also helps the
network to converge faster and reduce the footprint during training.
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Figure 1. (a) shows the performance comparison between the AKC-Stereo network proposed in
this article and the base network on the KITTI 2015 dataset with the change in the number of
iterations; num_steps is set to 20,000, the abscissa is the number of iterations, and the ordinate is
the EPE endpoint error data. In the figure, the orange part represents the performance of the base
network, namely IGEV-Stereo, as the number of iterations changes, and the blue part represents the
performance of the AKC-Stereo network as the number of iterations changes. (b) shows the effect of
smaller batch size on the performance of the AKC-Stereo network proposed in this article (orange
lines), RAFT-Stereo (green lines), and IGEV-Stereo (yellow lines) on the KITTI 2015 dataset with
equal training rounds. The abscissa is the batch size number, and the ordinate is the EPE endpoint
error data.

2. Materials and Methods

In this section, the structure of AKC-Stereo is described in detail (as shown in Figure 2),
which consists of an adaptive multi-scale feature extractor KAP based on kernel-normalized
convolutional layers, a matching attention MAR module that combines disparity and
epipolar self-attention information, a GRU update algorithm based on kernel convolution,
and other basic modules.
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Figure 2. The overall structure diagram of the proposed AKC-Stereo. AKC-Stereo first constructs
a multi-scale adaptive feature extractor (KAP), then computes the matching correlation volume by
grouping correlation method, and then preliminarily refines it using the matching attention (MAR)
module. Finally, the refined correlation volume is fused with the context-encoded features obtained
through residual blocks, and the combined data are fed into the GRU iteration for further optimization
through iterative updates.
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2.1. Feature Extractor

The feature extractor consists of two parts: the context encoder, which extracts multi-
scale contextual features, and the feature encoder applied to the left and right images.

The context encoder is based on IGEV-Stereo [35] and is composed of a series of
residual blocks and downsampling layers. It generates multi-scale contextual features
at 1/4, 1/8, and 1/16 resolutions of the input images, which have 128 channels. These
contextual features are used to initialize the hidden state of the update operators and are
injected into the GRU update operators during each iteration.

For the feature encoder, this paper was inspired by the success of the spatial pyramid
pooling method in image segmentation technology [39]. By using dilated convolutions,
multiple parallel convolutional layers with different dilation rates are employed to extract
features, which are further processed and fused to produce the final result. This method
allows the combination of semantic information with different receptive field sizes without
sacrificing resolution (i.e., no downsampling), improving the precision of feature extraction.
However, the superposition of dilated convolutions is not friendly to the disparity estima-
tion task of dense pixels such as stereo matching, which will lose many pixel-level details
of the object. To address this issue, this paper combines kernel convolution normalization
and adaptive offset to create a variant of this approach, namely the KAP module, which
will be described in detail in the following sections.

2.1.1. Adaptive Offset

Aiming at the problem that the dilated convolution will lose the dense features of the
object, in order to obtain dense global contextual information and establish dependency
between pixels, this paper extends the deformable convolutions [40] to multi-scale pyramid
pooling layers. By utilizing learnable offset to create adaptive search windows for multi-
scale feature extraction, we achieved adaptive sampling of the input feature maps without
increasing memory and computational costs. This enables the network to dynamically
adjust the receptive field according to the shape and orientation of objects, thereby capturing
more relevant and discriminative features. Figure 3 shows how offset changes the formation
of feature extraction boxes.
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Figure 3. (a) shows the sampling search window with a normal dilation rate of 3 for feature extraction;
(b) shows the positions where the sampling points should be shifted after adding offsets; (c) illustrates
the more precise sampling search window obtained after the offsets are applied.

In feature extraction, h(pi) represents the weight associated with each pixel pi; the
mapping relationship of any point p0 in the feature map y relative to point pi in the original
image x can be expressed by Equation (1):

y(p0) = ∑pi∈y h(pi)·x(p0 − pi) (1)

After applying an offset ∆p to the convolution, the mapping relationship is trans-
formed into Equation (2):

y(p0) = ∑pi∈y h(pi)·x(−pi + ∆p) (2)
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Firstly, this paper uses four parallel adaptive convolutional layers with different
dilation rates (1, 3, 4, and 5) to generate more refined and comprehensive multi-scale
features. Then, the extracted feature maps containing features of different scales are fused.
In order to save computational cost and not lose information, only three of the feature maps
obtained by convolution layers with different sampling rates were selected each time for
fusion, that is, the feature maps obtained by adaptive convolution layers with expansion
rates of 3, 4, and 5 are linked in block1. And they are normalized by kernel normalized
convolution. In block 2, the feature maps obtained by linking adaptive convolutional layers
with dilation rates of 1, 4, and 5 are also normalized using kernel normalization convolution.
After that, the same process is applied to block3 and block4, using convolutional layers
with dilation rates of (1, 3, 5) and (1, 3, 4), respectively. Finally, after normalization, we
obtain a total of 4 blocks, which are eventually combined through residual cascading to
produce the final feature map, as illustrated in Figure 4. Among them, the adaptive offset
also undergoes end-to-end learning during the training process, ensuring that the network
optimally adapts to the shape and scale of the target objects, thereby producing more
accurate and detailed feature maps.
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Figure 4. The figure illustrates some adaptive search windows with varying dilation rates for a
3 × 3 convolutional kernel. Specifically, (a) shows the adaptive search window with a dilation rate
of 1; (b) displays the adaptive search window with a dilation rate of 3; (c) presents the adaptive
search window with a dilation rate of 4; and (e) shows the fusion of features into four feature
maps, respectively, by taking three layers of (a–c), three layers of (b–d), three layers of (a,b,d), and
three layers of (a,c,d), and then the residual connection operation is performed to obtain the final
feature map.

2.1.2. Kernel Normalized Convolutional Feature Fusion

Through a large number of experiments, it is found that in the final multi-scale
feature fusion of the feature extraction stage, the effectiveness of BatchNorm [41] will
be greatly reduced when only small batch data can be used for input training if the
environment memory is limited. In this regard, we refer to kernel-normalized convolution
(KernelNorm) [37] instead of BatchNorm. Kernel normalization first applies random
dropout [42] to the normalization units to obtain dropout units, and then normalizes
the original normalization units by calculating the average value and variance of the
dropout units. Its hyperparameters include kernel size k, stride s, padding d, and dropout
probability p.

U′ = Dp(U) (3)

Û =
U − µu′√
σ2

u′ + ϵ
(4)
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In Equations (3) and (4), Dp represents the dropout operation; U stands for the old
normalization unit; U′ signifies the dropout units; µu′ and σ2

u′ correspond to the average
value and variance of the dropout units; and Û is the new normalization unit.

Applying kernel normalization to the backend of each block ensures that the computa-
tion results do not depend on the statistical information of the entire batch. This approach
emphasizes local information over global information within the feature space and reduces
the dependency of multi-scale feature extraction on batch size, which is crucial for stereo
matching tasks involving images under different scales and conditions. Moreover, by
normalizing through kernel normalized convolution, the model is less prone to overfitting
on specific scales or features, enhancing its generalization capabilities to unseen data. The
specific network structure of the KAP module is illustrated in Figure 5.
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2.2. Matching Attention

In the stage of calculating matching cost, there are three main steps: constructing
the initial cost volume, generating matching attention weights, and feeding the final
cost volume into the GRU-based update operator for further iterative refinement and
optimization of the disparity map.

Usually, the construction of the initial cost volume is calculated using the group
correlation method [28], that is, the channels of the left and right feature matrices are
uniformly grouped along the channel dimension at a disparity level according to the vector
inner product. Then, their inner product is calculated group by group, and the average
value is calculated on the dimension of dim = 2 to obtain a three-dimensional matrix. When
all disparity levels are traversed, the resulting matrices are split and concatenated to obtain
the grouped correlation cost volume (group-corr volume).

If there are Nc channels in common, dividing them into Ng groups, the g-th feature

groups f g
l and f g

r are composed of the
{

g Nc
Ng

, g Nc
Ng

+ 1, . . . , g Nc
Ng

+
(

Nc
Ng

− 1
)}

channels of
the original features fl and fr, and the correlation of all feature groups g and all disparity
levels d can be expressed by Equation (5).

Ccor(d, x, y, g) =
1

Nc/Ng

〈
f g
l (x, y), f g

r (x − d, y)
〉

(5)

This paper believes that the traditional approach of connecting two correlation vol-
umes and performing regularized correlation volume computation is insufficient to fully
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utilize the advantages of two image samples. To obtain a more reliable correlation volume,
the initial correlation volume is filtered to emphasize useful information and suppress
irrelevant information. This paper proposes a novel hybrid matching attention method
to preliminarily refine the initial correlation volume. This method applies criss-cross at-
tention [43] (as shown in Figure 6) to traverse the initial 3D correlation volume from both
the disparity and epipolar-line directions, and performs preliminary optimization on it.
This method reduces the number of iterations and improves accuracy for the next GRU
iteration, enhancing pixel-level representation while reducing computational complexity
and memory usage.
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As shown in Figure 6, firstly for each disparity level di(i ∈ [dmin, dmax]), we extract the
Wdi

× Hdi
plane and apply the criss-cross attention mechanism [43] to traverse it. For any

spatial position Qwn ,hm within it, we calculate the correlation weights Awn ,hm for positions
Qwn ,h and Qw,hm , which align in a cross shape centered at Qwn ,hm . Thus, Awn ,hm contains the
mutual mapping information of Qwn ,hm corresponding to any point in this cross-position
relationship. Then, the above operation is repeated once, ensuring that for any other
spatial position Kwa ,hb

, the correlation weights Aw,h corresponding to Qwn ,hm can always be
computed. At this point, after refining via attention, the plane obtains the disparity-level
attention described by Equation (6).

Φ′
Wdi

×Hdi
= ∑

wn ,hm∈Wdi
,Hdi

(Aw,hQwn ,hm + ΦWdi
×Hdi

) (6)

Then, the epipolar-level attention correlation weights Aw,d are computed for any
spatial position Qwn ,hm . Considering that binocular images typically consist of left and right
images, based on the epipolar constraints of epipolar geometry, the WHx × dHx plane within
Hx(x ∈ [Hmin, Hmax]) is extracted. By repeating the above operation, the epipolar-level
attention Equation (7) can be obtained.

Ψ′
WHx×dHx

= ∑
wn ,dm∈WHx ,dHx

(Aw,dQwn ,dm + ΨWHx×dHx
) (7)
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Finally, by integrating the two aforementioned layers of attention mechanisms, the
matching attention formula can be derived as Equation (8).

ΩH×W×D = σ
(

Ψ′
WHx×dHx

(Φ′
Wdi

×Hdi
) + Φ′

Wdi
×Hdi

(Ψ′
WHx×dHx

)
)

(8)

Hence, the final correlation can be expressed as Equation (9).

Cmar(d, x, y, g) =
1

Nc/Ng

〈
f g
l (x, y)·ΩH×W×D, f g

r (x − d, y)·ΩH×W×D

〉
(9)

Through the matching attention mechanism that combines the self-attention informa-
tion of both parallax and epipolar directions, the correlation volume is preliminarily refined,
and the result is input into the GRU-based update operator for further iterative disparity
map optimization, which can make the network more effectively learn different features of
the input data while taking into account the interdependence between the channel and the
global information. It not only effectively utilizes the effective geometric information of the
binocular images and improves the generalization ability of the network, but also greatly
reduces the difficulty of the network to find the correct matching points in the search space.

2.3. Kernel Convolution-Based GRU Iterative Update Operator

According to the baseline network, the disparity update uses a sequence of gated
recurrent units (GRUs) to combine all the previously acquired data. Starting from an
initial starting point d0 = 0, the update operator predicts a sequence of disparity fields
{d1, . . ., dN}. Each iteration, it produces an update direction ∆d, which is applied to the
current estimate: dk+1 = ∆d + dk+1. The update operator takes disparity, correlation, and
potential hidden states as input and outputs an update ∆d and the updated hidden state.
Mimicking the steps of the optimization algorithm, each iteration uses the current disparity
estimate to index the correlation volume, producing a set of correlation features, and then
the GRU updates the hidden state, and the new hidden state is then used to predict the
disparity update.

The traditional GRU is well suited for handling sequential data but has certain limita-
tions in directly capturing spatial dependencies. To address this, this paper adopts a GRU
based on kernel convolution [37] as the iterative update operator within the main network
framework. The GRU retrieves features from the stereo matching cost volume obtained
earlier, and regresses iterative disparity updates.

First, the soft argmin function is used to regress the matching correlation volume to
the initial disparity. The disparity is then updated through three GRU iterative update
layers, each containing three kernel convolution layers. The activation function used is the
sigmoid function, which connects and injects correlation, disparity, and contextual features
into the GRU. The hidden state is then updated, and the new hidden state is used to predict
the disparity update. During training, all stages of disparity iterative updates share the
same weights, eliminating the need for fine-tuning.

The input-to-hidden and hidden-to-hidden transformations in the GRU make use
of kernel convolutions, ensuring that spatial information is preserved and propagated
efficiently through recurrent connections. By integrating kernel convolutions into the GRU,
the network can process both spatial and temporal information, enabling the GRU to
consider a wider range of contextual information around each pixel, facilitating the fusion
of local and global information and providing a more comprehensive understanding of the
feature space, especially in challenging regions such as thin structures and highly reflective
regions. It enhances the network’s ability to calculate the scene structure of larger areas.

2.4. Loss Function

Since smooth loss is considered robust to disparity discontinuities and outliers, we
use smooth loss as our training loss function. The smooth L1 loss is computed between
the predicted values and ground truth over the entire prediction sequence, using an
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exponentially weighted L1 distance similar to IGEV [32] as the loss function. For all
predicted disparities di{d1, . . . , dN}, given ground truth disparities dgt, the loss function L
is defined as Equations (10) and (11).

Lcor = SmoothL1

(
d0 − dgt

)
(10)

L = Lcor + ∑N
i=1 γ

N−i∣∣di − dgt |1, γ = 0.9 (11)

3. Results
3.1. Implementation Details and Evaluation Metrics

In this experiment, the system used is Ubuntu 20.04 with an NVIDIA RTX 3090 GPU,
32 GB of memory, CUDA 11.2, and Python 3.9. Images are randomly cropped to 320 × 736
and trained using the same data augmentation methods as in [15]. During training, the
network was trained for 20 k steps with a batch size of 2, using a single-cycle learning rate
schedule with a learning rate of 0.0002, and 16 update iterations were employed.

Generally, the performance evaluation metrics used in stereo matching tasks are EPE,
D1, and D1-BG [44]. In addition, we added the size of the model parameters as well as the
computation time to the evaluation metrics, counting convolutional layers, fully connected
layers, and other layers with parameters in the network structure.

EPE refers to the pixel-level average Euclidean distance between the predicted depth
map and the true depth map, which reflects the disparity estimation error information of
all pixels of the whole image. It is calculated as shown in Equation (12).

EPE =

√{(
x{pred} − x{true}

)2
+

(
y{pred} − y{true}

)2
}

(12)

Both D1 and D1-BG are the percentage of erroneous pixels over all pixels. Generally,
when the absolute disparity error of a pixel is greater than three pixels, the pixel is labeled
as an error pixel. This index reflects the proportion of erroneous pixels in the whole
image [45]. D1 is the proportion of incorrectly predicted pixels in the whole region and
D1-BG is the proportion of incorrectly predicted pixels only in the background region; these
are calculated by Equations (13) and (14), respectively.

D1 =
1
N ∑{N}

{i=1}

{∣∣∣D{pred}(i) − D{true}(i)

∣∣∣ > 3
}

(13)

D1 − BG =
1
N

{N}

∑
{i=1}

{∣∣∣D{pred−bg}(i) − D{true−bg}(i)

∣∣∣ > 3
}

(14)

3.2. Datasets

This paper evaluates the proposed AKC-Stereo on several public datasets, including
Sceneflow [2], ETH3D [46], Middlebury [47], KITTI-2012 [48], and KITTI-2015 [38]. Com-
pared with the basic IGEV-Stereo method [32], AKC-Stereo improves the accuracy and also
makes the network perform better in highly reflective areas and thin-structure areas.

Sceneflow [2] is a large-scale synthetic dataset that contains comprehensive data of
more than 35,000 stereo image pairs, and contains the real values of disparity, optical flow,
and scene flow. It is suitable for training convolutional networks and can also be used for
the evaluation of other methods, and the image size is 540 × 960.

KITTI 2012 [48] and KITTI 2015 [38] are two datasets widely used in the field of
autonomous driving, composed of data from real driving scenes. They provide sparse
ground truth disparity values obtained using LiDAR, for the evaluation of tasks such as
stereo matching and optical flow. The KITTI 2012 dataset contains 194 training image pairs
and 195 testing image pairs, with an image resolution of 1226 × 370. Compared to the 2012
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version, the KITTI 2015 dataset includes more dynamic scenes and consists of 200 training
image pairs and 200 testing image pairs.

Middlebury 2014 [47] is an indoor dataset that offers 23 pairs of high-resolution images
captured under different lighting conditions.

ETH3D [46] is a grayscale dataset consisting of 27 pairs of monochrome stereo im-
ages. It provides disparity samples obtained by laser scanning, covering both indoor and
outdoor scenes.

3.3. Ablation Experiment

Ablation studies play a crucial role in interpreting the effectiveness of different com-
ponents and strategies in the ever-changing deep stereo matching field [49]. In order to
verify the effectiveness of integrating the matching attention mechanism and the adaptive
multi-scale feature extraction module into the proposed network, this paper designs abla-
tion experiments on the KITTI 2015 dataset. For all models in these experiments, it is set to
16 times in the number of iterative update operators. Using IGEV-Stereo as the backbone,
this paper separately incorporated the adaptive multi-scale feature extraction module
(KAP) and the matching attention mechanism (MAR) to validate their effects on improving
the model’s performance. As shown in Table 1, both the proposed adaptive spatial pyramid
pooling layer (KAP) and the matching attention mechanism (MAR) significantly enhance
prediction accuracy. By fully considering the spatial correlation between pixels and the
geometric relationships in stereo images, the initial disparity fed into the iterative update
network becomes more precise and substantially reduces prediction error.

Table 1. The table presents the results of the ablation study of the proposed AKC-Stereo on the
KITTI2015 dataset. KAP denotes the adaptive multi-scale feature extraction module, and MAR refers
to the matching attention mechanism. The baseline is IGEV-Stereo, and num_steps is set to 20,000.

Model EPE (px) D1-All (%) Time (s) Params (M)

Baseline 0.57 1.90 0.34 12.60
KAP 0.50 1.62 0.45 13.22
MAR 0.47 1.64 0.48 13.21

Full Model 0.42 1.52 0.52 13.60

3.4. Benchmark Evaluation

The proposed AKC-Stereo is compared with the state-of-the-art stereo matching
methods published by KITTI 2012 and 2015. On the Sceneflow dataset, the EPE of the AKC-
Stereo reaches 0.45, which is more accurate than most recent networks, and 0.02 higher
than IGEV-Stereo. Detailed quantitative comparisons are provided in Table 2.

Table 2. Quantitative evaluation on Sceneflow dataset. Bold: best.

Model PSMNet [50] GwcNet [28] AANet [25] LEAStereo [13] ACVNet [29] IGEV-Stereo [35] Ours

EPE(px) 1.09 0.76 0.87 0.78 0.48 0.47 0.45

Figure 7 shows the visual comparison between the computational results of the AKC-
Stereo network proposed in this paper and IGEV-Stereo on the Middlebury dataset, where
the proposed method is more robust to detailed regions and regions with a background.

In this paper, we conducted a quantitative evaluation of our network on the KITTI
2012 and KITTI 2015 datasets, as shown in Table 3. Compared to most state-of-the-art
algorithms in recent years, the AKC-Stereo network proposed in this paper achieved
superior performance on many metrics for both the KITTI 2012 and 2015 datasets. For the
KITTI 2012 dataset, for the 3-all error metric, the proposed network outperformed IGEV-
Stereo and CREStereo by 9.59% and 8.33%, respectively. In the KITTI 2015 comparison, the
proposed network exceeded IGEV-Stereo and CREStereo by 5.6% and 11.24%, respectively,
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for the D1-all metric. It is evident that the proposed algorithm has shown significant
improvements after optimization. However, it is slightly deficient in speed, which is exactly
the area we will continue to improve in the next step.
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Figure 7. Qualitative results for Middlebury. The first column shows the original images (left images)
in the dataset, and the second and third columns show the results of IGEV-Stereo and the AKC-Stereo
network proposed in this article, respectively. The proposed network exhibits better results for
detailed parts as well as regions with a background.

Table 3. Quantitative evaluation on KITTI 2012 and KITTI 2015. The AKC-Stereo network proposed
in this paper runs 16 updates at inference. Bold: best.

KITTI 2012 KITTI 2015
Runtime (s)

Model 3-noc (%) 3-all (%) EPE (px)
noc

EPE (px)
all D1-bg (%) D1-fg (%) D1-all (%)

PSMNet [50] 1.49 1.89 0.5 0.6 1.86 4.62 2.32 0.41
GwcNet [28] 1.32 1.70 0.5 0.5 1.74 3.93 2.11 0.32
CFNet [51] 1.23 1.58 0.4 0.5 1.54 3.56 1.88 0.18

ACVNet [29] 1.13 1.47 0.4 0.5 1.37 3.07 1.65 0.20
LEAStereo [13] 1.13 1.45 0.5 0.5 1.40 2.91 1.65 0.30

NMRF [52] 1.01 1.35 0.4 0.4 1.28 3.13 1.59 0.09
DMIO [53] 1.14 1.48 0.4 0.4 1.45 2.61 1.64 —

CREStereo [33] 1.14 1.46 0.4 0.5 1.45 2.86 1.69 0.41
RAFT-Stereo [15] 1.30 1.66 0.4 0.5 1.58 3.05 1.82 0.38
IGEV-Stereo [35] 1.12 1.44 0.4 0.4 1.38 2.67 1.59 0.18

Ours 1.03 1.32 0.4 0.4 1.23 2.48 1.50 0.52

Figure 8 shows the qualitative comparison results of the proposed network in the 2015
KITTI dataset, both after 50 k steps of training under the condition of batch size 2. It can
be seen that the AKC-Stereo network performs very well in regions with light reflection
regions and thin structures, with sharper contours and edges.
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Figure 8. Qualitative results on the KITTI2015 dataset. The first column shows the left image of
the original image in the dataset, the second column shows the operation results of the baseline
IGEV-Stereo, and the third column shows the operation results of the AKC-Stereo network. From
the direction indicated by the arrow, it can be seen that the AKC-Stereo network proposed in this
article performs exceptionally well in areas with high light reflection such as signs and areas with
thin structures such as railing.

3.5. Generalization Experiment

Since the real world is never a perfect dataset with balanced class distribution, no
noise, no outliers, and uniform data distribution, the ability to generalize is therefore
essential for a network to be able to adapt to new and unknown situations, rather than just
performing well on the training data. The strength of the generalization ability directly
reflects whether the patterns learned by the model are universal and applicable to a broader
range of situations.

In this section, the generalization ability of the AKC-Stereo network proposed in
this paper for unknown scenarios will be studied. The Sceneflow dataset is large and
contains images under a variety of scenes and lighting conditions, while the Middlebury
and ETH3D datasets are synthetic datasets and real scene datasets, respectively, which can
more widely reflect complex situations in the real world. At present, most networks choose
to use the Middlebury and ETH3D datasets for generalization ability testing. Therefore, in
order to better compare with other advanced network models, the AKC-Stereo network
model is also trained on Sceneflow, and directly evaluated on the training sets of Middle-
bury2014 and ETH3D. The quantitative results are shown in Table 4, and it can be seen
that the proposed network achieves better results with more stable performance under the
same settings.
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Table 4. Generalization experiments. All models are trained on Sceneflow. The 2-pixel error rate is
used for Middlebury 2014, and the 1-pixel error rate for ETH3D.

Model
Middlebury2014

ETH3D
Half Quater

PSM [50] 25.8 14.2 23.8
GwcNet [28] 18.1 — 9.0
DSMNet [54] 13.8 8.1 6.2

RAFT-Stereo [15] 8.7 7.3 3.2
IGEV-Stereo [35] 7.1 6.2 3.6

Ours 6.4 5.8 3.3

4. Discussion and Conclusions

This paper proposes a novel adaptive kernel convolution stereo matching recurrent
network for stereo matching. This network incorporates an adaptive multi-scale feature ex-
traction module (KAP) and a new matching attention module (MAR) to perform multi-scale
feature extraction and obtain a more reliable correlation volume. Through the KAP mod-
ule, the learnable offset is used to form an adaptive search window to extract multi-scale
image features, and the multi-scale features are fused by kernel convolution normalization.
Through the new matching attention MAR module, the initial correlation volume is initially
refined by self-attention in the two directions of disparity and epipolar line, which provides
a more accurate basis for the subsequent GRU iterative update to calculate disparity.

The accuracy of the improved network AKC-Stereo is better than that of the basic
network IGEV-Stereo. It outperforms most advanced algorithms developed in recent years
across various metrics, particularly excelling in handling pathological regions in images,
such as highly reflective surfaces and thin structures. Although the method proposed in
this paper has some shortcomings in calculation speed, this is precisely the direction of
further research and improvement in the next step.
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