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Abstract: Deep learning has become the preferred method for automated object detection, but the
accurate detection of small objects remains a challenge due to the lack of distinctive appearance
features. Most deep learning-based detectors do not exploit the temporal information that is available
in video, even though this context is often essential when the signal-to-noise ratio is low. In addition,
model development choices, such as the loss function, are typically designed around medium-sized
objects. Moreover, most datasets that are acquired for the development of small object detectors are
task-specific and lack diversity, and the smallest objects are often not well annotated. In this study,
we address the aforementioned challenges and create a deep learning-based pipeline for versatile
small object detection. With an in-house dataset consisting of civilian and military objects, we achieve
a substantial improvement in YOLOv8 (baseline mAP = 0.465) by leveraging the temporal context
in video and data augmentations specifically tailored to small objects (mAP = 0.839). We also show
the benefit of having a carefully curated dataset in comparison with public datasets and find that a
model trained on a diverse dataset outperforms environment-specific models. Our findings indicate
that small objects can be detected accurately in a wide range of environments while leveraging the
speed of the YOLO architecture.

Keywords: small object detection; YOLO; temporal object detection

1. Introduction

Automated object detection is increasingly relevant within various domains, including
robotics [1], security [2], and defense [3]. Compared to a human operator, automated
systems can improve detection speed, accuracy, and consistency. This automation hugely
increases scalability and thus allows for new capabilities, including the constant monitoring
of large areas, such as territorial boundaries or an extended battlefield. For defense and
security applications, early detection of objects of interest is beneficial, since this trans-
lates to more time for analysis and response. Distant objects will typically only cover a
small number of pixels in video and have a low signal-to-noise ratio, increasing detection
difficulty [4].

In recent years, deep learning [5] has become the method of choice for various image
analysis tasks, including semantic segmentation [6], classification [7], and object detec-
tion [8]. However, small object detection (SOD) remains an open challenge [4,9]. For
example, most deep learning-based detectors do not exploit the temporal information that
is available in video, even though this context is often essential when the signal-to-noise
ratio is low. In addition, methods are typically designed around medium-sized objects,
making use of intersection over union (IoU)-based losses, which are suboptimal for small
objects [10]. Furthermore, datasets for the development of small object detectors are still
limited in size and quality. They lack diversity and are typically task-specific, and the
smallest objects are often not well annotated, if at all.

In this study, we address the aforementioned challenges, focusing on the detector
model design and the use of temporal context and high-quality data to develop a high-
performing small object detector that can be applied in a wide variety of environments
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and circumstances. We build upon the latest developments in the YOLO (You Only Look
Once) [11] architecture, using YOLOv8 [12] with an extension for temporal inputs, similar
to Corsel et al. [13]. We optimize a training pipeline for SOD by using bounding box
augmentations and introduce a mosaicking augmentation method that carefully balances
the foreground and background. Our final contribution is an investigation into the effect of
having a carefully curated dataset that contains a diverse set of challenging small object
examples. An evaluation is performed on a separate dataset with small objects, including
those in naval, land, and military environments.

2. Related Work
2.1. Object Detection and YOLOv8

Over the past decade, numerous deep learning architectures for object detection have
been introduced, such as R-CNN [14], YOLO [11], DETR [15], GLIP [16], and Grounding
DINO [17]. Among these, YOLO and its variants have gained significant popularity due
to their robust detection capabilities coupled with real-time performance. YOLOv8 [12]
further improves on the previous versions with an anchor-free detection system, optimized
convolutional layers, and advanced data augmentations, including mosaicking.

Similar to most object detectors, YOLOv8 extracts appearance (or spatial) features
using only a single frame as input, discarding key temporal information. In contrast, prior
to advances in deep learning, most traditional SOD methods used temporal information to
detect changes and, in this way, infer object locations [18]. These methods rely on either
per-pixel background intensity modeling [19] or direct frame subtraction [20,21].

2.2. Temporal Information and Deep Learning

The integration of temporal information into deep learning-based object detection
has been shown to be promising. Heslinga et al. [4] showed that leveraging temporal
information improves deep learning-based object detection, especially for small (5 to
15 pixels) and very small (<5 pixels) objects.

Recent research has increasingly focused on combining appearance and temporal
features within deep learning models. For instance, long short-term memory (LSTM)
networks have been used to detect moving vehicles in video streams [22] and various objects
within the ImageNet VID benchmark dataset [23,24]. For the same dataset, Zhu et al. [25]
obtained good detection performance by aggregating nearby features along motion paths
extracted with convolutional neural networks (CNNs). Bosquet et al. [26] proposed a
spatio-temporal CNN, achieving promising results for SOD.

More recently, the authors of STARNet [27] significantly enhanced SOD in video by
leveraging spatio-temporal features, specifically through the use of a novel GCRU cell
for feature propagation. Their approach demonstrates superior accuracy and efficiency
compared to existing methods when implemented on embedded devices. He et al. [28]
introduced TransVOD, incorporating temporal information into detection transformers [15]
for object detection in video. Zhou et al. [29] further improved this with high performance
on the ImageNet VID dataset. However, it is important to note that TransVOD was not
specifically designed or tested for the detection of small objects.

2.3. Temporal Features in YOLO for Small Object Detection

Researchers have incorporated temporal context to further improve the performance
of YOLO architectures. Luesuttiviboon et al. [30] enhanced YOLOv2 by using information
from preceding frames to improve the contrast between moving targets and the background,
leading to better drone detection. Alqaysi et al. [31] employed an ensemble of YOLOv4
models for bird detection in grayscale videos. The best-performing model of the ensemble
used a stack of three frames to incorporate temporal information. Corsel et al. [13] presented
a similar approach by developing architectural variants of YOLOv5 that allowed for the
input of a stacked sequence of frames. These variants showed high potential for SOD. One
of the proposed models, Temporal-YOLO [13], is used in this study.
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2.4. Challenges in Small Object Detection

SOD presents unique challenges, primarily due to the difficulty in extracting accurate
features from limited visual data and the scarcity of large-scale datasets specifically for
small objects. Cheng et al. [32] provide an extensive overview of these challenges and of
techniques developed to address them. However, their work does not focus on the use of
temporal information.

One of the major challenges highlighted by Cheng et al. [32] is the smaller ratio of
target (foreground) pixels to background pixels compared to standard object detection
tasks, known as foreground–background imbalance.

Existing solutions address this challenge either through data augmentation strategies,
to introduce additional small objects into the training set, or by adapting the loss function
to place additional emphasis on small objects.

Dense object detectors like CenterNet [33] and FCOS [34], which predict objects at ev-
ery pixel or grid point without predefined anchor boxes, have shown improved capabilities
in detecting small or densely packed objects. This aligns with the challenges outlined by
Cheng et al. [32], who emphasize that traditional object detection models struggle with
low-quality feature representations and inadequate sampling for small objects. CenterNet,
for instance, represents objects as points, predicting their centers and sizes, a concept
further advanced by Zhou et al. with CenterTrack [35]. Recently, Poplavski et al. [36] won
the Airborne Object Tracking (AOT) Challenge by building on these principles.

Another challenge in SOD is the sensitivity to minor deviations in the prediction of
the bounding box. This leads to a significant drop in IoU compared to medium-sized or
large objects [32]. This sensitivity arises because small offsets in bounding box coordinates
can disproportionately affect the IoU score, particularly when the object’s surface area is
minimal. These errors can stem from both model predictions and annotation inaccuracies,
considering the difficulties in the precise annotation of small objects. To address this,
advanced loss functions like Complete IoU (CIoU) [37] and its variants, including Soft-
CIoU [38] and Wise-CIoU [39], and its combination with the Normalized Wasserstein
Distance (NWD) [40] have been developed. Zhang et al. [41] used Generalized IoU (GIoU)
as part of a combined CIoU loss in YOLOv5, where GIoU also focuses on non-overlapping
areas in addition to the overlapping regions. While YOLOv8’s [12] IoU-based loss function
has been optimized for small objects [10], issues remain for very small, moving targets.
Instead of further modifying the loss function, we propose a technique to augment the
bounding boxes.

2.5. Datasets for Small Object Detection

In object detection research, datasets play a critical role, alongside advancements in
model architecture and training methodologies. The MS COCO dataset has become the
standard for training most object detectors, including YOLO [12] and Centernet [33]. The
ImageNet VID benchmark [23,24] dataset is commonly used for video object detectors.

In the domain of video-based SOD, however, identifying a widely accepted baseline
dataset is challenging. Unfortunately, many popular datasets such as UAV123 [42], VIRAT-
ground [43], Visdrone [44], and small90 and small112 [45] fail to provide sufficient examples
of objects with an area of under 100 pixels. Even though these very small objects may be
present in the video material, they are often not annotated. Additionally, the sequences in
these datasets almost never have moving background elements, such as moving vegetation.

While typical video datasets still have shortcomings for SOD, several domain-specific
video datasets exist that do sufficiently address very small objects. Some notable exam-
ples are the AOT dataset [46] from the previously mentioned Airborne Object Tracking
Challenge and the Video Satellite Objects (VISO) dataset [47]. These datasets provide
high-quality annotations for very small objects but exclude annotations for objects that are
not relevant to their application.
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3. Methods

As previously described, current deep learning methods still have various shortcom-
ings. They do not exploit motion information, rely on IoU losses during training, and do not
compensate for foreground–background imbalance in the training data. Several techniques
are proposed to remedy these issues, which will be described in the coming sections.

3.1. Temporal-YOLOv8

Accurate and fast small object detection is crucial for timely decision making in
defense and security applications. The YOLOv8 architecture is well suited to fulfilling these
requirements, making it an excellent starting point. However, standard YOLO models are
not inherently designed to utilize information from multiple frames, which limits their
ability to detect small moving objects.

To exploit multi-frame context for YOLO architectures, Corsel et al. proposed the
Temporal-YOLO (T-YOLO) concept [13], visualized in Figure 1. By default, YOLO models
are trained using colored (RGB) images. However, these three channels can also be used
to insert grayscale frames from three different time steps. In this way, YOLOv8 can be
used with multi-frame inputs and exploit motion cues without requiring modifications
to the underlying architecture. As such, Temporal-YOLOv8 has the same computational
requirements as standard YOLOv8.

Figure 1. An illustration of the T-YOLO concept. Instead of using a single video frame as input,
multiple frames are stacked from different time steps. In this example, the RGB channels are replaced
with three gray frames. However, by slightly altering the input layer of the YOLO model, the number
of frames stacked can be extended, enabling Color-T-YOLO and Manyframe-YOLO. This combined
3-channel image is provided to the model, allowing temporal context to be exploited. Assuming
a 30-frames-per-second (FPS) source video, around 15 frames are sampled before and after the
current frame.

3.1.1. Variants

Earlier work has shown that YOLO detection results improve when inputs for the
model are adapted to provide more (temporal) context [13]. In this study, the number of
input channels for the first convolution layer is extended to further increase the available
information for the model. The first strategy, Color-T-YOLO, fills 9 channels with the RGB
channels from 3 video frames so that both temporal and color information can be exploited
by the network. With the second strategy, Manyframe-YOLO, the number of stacked frames
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is extended to 11 grayscale frames so that more advanced motion analysis can emerge
from training.

3.2. Balanced Mosaicking

During the training of object detection models, various imbalances may occur that
influence the effectiveness of the training process [48]. For SOD, foreground–background
imbalance can have a particularly high impact, as small objects may only occupy a tiny
fraction of an image.

An intuitive solution would be to use smaller crops around annotated objects instead
of using the full-resolution frame to obtain a more balanced foreground-to-background
ratio. However, this approach may reduce the variation in backgrounds present in the
dataset, as a large portion is never shown to the network. While it is important that the
model learns to recognize tiny objects, it should also be exposed to a wide variety of
misleading and intricate background patterns. These patterns may include movement,
such as wind manipulating vegetation, blowing sand, and waves in the ocean. Similarly,
static backgrounds with high-frequency patterns such as forests can pose a challenge for
SOD, as they may substantially diminish contrast with small objects.

To rectify the imbalance problem without sacrificing background data, we propose
balanced mosaicking. Figure 2 provides an overview of the technique and depicts how
samples for the mosaic are produced from samples out of the training dataset. Balanced
mosaicking leverages crops of various sizes (420 × 420, 750 × 750, and 1920 × 1920) to aid
the model in discerning both foreground objects and intricate background patterns. By
incorporating diverse crop sizes, the model gains exposure to a wider range of spatial
contexts, thereby enhancing its ability to accurately detect objects while retaining crucial
information about challenging backgrounds. In Figure 3, a traditional mosaicking technique
and the proposed strategy of balanced mosaicking are illustrated. The comparison reveals
how the mosaicking approach can put more emphasis on the target objects rather than
the background.

Figure 2. An overview of dataset preprocessing. The images are first blurred with a box blur to
prevent aliasing effects. The kernel size of this blur is determined by the downscaling factor, for
which the mapping is listed in Table 1. The downscaling factor itself is determined based on the
size of the annotated small objects, i.e., the bounding box sizes, and the target resolution for the
mosaicking composition. After blurring and downscaling, the images are padded and cropped to
fully fit in the balanced mosaicking composition, for which an example is shown in Figure 3b.



Sensors 2024, 24, 7387 6 of 18

(a) (b)
Figure 3. A comparison of mosaicking techniques on the Airborne Object Tracking (AOT) dataset [46].
The red annotations indicate the presence of a small object. (a) The built-in mosaicking in YOLOv8
with default settings. (b) Balanced mosaicking, where crops with varying sizes are used.

Table 1. Mapping of scaling factor to kernel size.

Scaling Factor [Range] Kernel Size [Pixels]

0–0.15 13
0.15–0.25 11
0.25–0.50 7
0.50–0.90 3
0.9–1.0 no blur

In addition to cropping, downscaling is another integral component of balanced
mosaicking, as it helps to further reduce object sizes in the dataset. However, excessive
downscaling can remove all evidence of an object’s presence. To prevent this, the scaling
factor is constrained so that no object’s bounding box width or height is reduced below
10 × 10 pixels. (Objects in the dataset typically have bounding boxes larger than the object
itself, so a minimum size of 10 × 10 pixels leads to sufficiently small objects.) Additionally,
images that contain objects with bounding boxes already smaller than 10 × 10 pixels are
excluded from further downscaling to ensure their features remain detectable.

Secondly, the scaling factor is constrained by the crop size required for the mosaic,
ensuring that the image resolution does not drop below the target resolution. This ap-
proach naturally adjusts the downscaling factor based on the size of the crops: smaller
crops (420 × 420 pixels) typically contain smaller, more difficult objects, while larger crops
(1920 × 1920 pixels) include more background. If necessary, padding and cropping are
applied to ensure that the cropped image fits the target resolution.

Aliasing effects can be introduced when an image is downscaled with a large factor
and greatly reduced in size [49]. These effects manifest as sharp edges that would rarely be
present for distant objects in real life. To enhance realism in the downscaled images and
mitigate these aliasing effects, a box blur is applied before the downscaling process. The
kernel size of the box blur depends on the selected scaling factor, as listed in Table 1.

3.3. Bounding Box Augmentations

The loss for YOLOv8 models is, to a large extent, determined by the Distance IoU
(DIoU) loss, defined as

LDIoU = 1 − IoU +
ρ2(b, bgt)

c2 (1)
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where b and bgt denote the central points of the predicted and ground-truth bounding
boxes, ρ(·) is the Euclidean distance, and c is the diagonal length of the smallest enclosing
box covering the two boxes [37]. Due to the second term in Equation (1), which is
based on the distance between centers, a loss gradient can be expected, even if the
predicted and ground-truth bounding boxes do not overlap. By normalizing the loss
with c2, the gradients are prevented from exploding at larger distances. However, this
normalization reduces its effectiveness for SOD, as even slight deviations can saturate
this loss component, resulting in very small gradients. Furthermore, as described,
the YOLOv8 model’s IoU-based loss function can disproportionately penalize errors
for small objects due to their small surface areas. As a result, both loss components
discourage the model from detecting small objects, since slight errors in its predictions
can lead to large penalties. To address this issue, bounding boxes with a width or
height below 15 pixels are scaled to ensure that both dimensions are at least 15 pixels.
Note that this scaling step differs from the downscaling described in Section 3.2. While
downscaling reduces the size of the entire image—affecting both the object and its
bounding box—this bounding box scaling is a separate augmentation. It adjusts only the
bounding box dimensions without altering the image itself.

3.4. Metrics

Common metrics to evaluate object detectors include recall, precision, and mean aver-
age precision (mAP), considering an IoU overlap of at least 50% [9,50]. To make these metrics
more suitable as indicators of SOD quality, we propose several modifications. Following
the same reasoning outlined in Section 3.3, we consider a detection accurate if only a very
small part of the bounding box overlaps with the annotation. To achieve this, we choose an
IoU threshold of 1% instead of 50%. This approach still effectively measures detection per-
formance, as the bounding boxes remain small compared to the entire frame. Furthermore,
we adapt the evaluation in such a way that multiple detections within a single annotation
are both accepted as correct and do not produce false positives. Conversely, one detection
overlapping multiple annotations does not produce false negatives. This is illustrated in
Figure 4.

Figure 4. Our metric considers these examples correct, while typical object detection metrics will
flag these as either a false positive or a false negative. Left: a single detection covering multiple
annotations does not result in a false negative. Right: multiple detections within a single annotation
do not produce a false positive.

With this more lenient approach, a deeper insight can be obtained into the model’s
ability to direct an operator’s attention to interesting image regions rather than the model’s
ability to be highly precise in its predictions. To ensure a fair comparison in the ablation
study (Section 4.2), particularly for models without the guaranteed minimum bounding
box size discussed in Section 3.3, we scale up detections smaller than 15 × 15 to at least
15 × 15 during evaluation.
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4. Experiments and Results

Two sets of experiments were conducted, for which the setup and results will be
described in the next sections. To demonstrate the impact of each element in our pipeline for
SOD, an ablation study was performed. In addition to the efficacy of the pipeline, another
study was performed in which the effect of dataset variations was measured. Through this
experiment, the model’s capacity to generalize to a diverse set of circumstances was tested.

4.1. Datasets

Curating high-quality datasets is perhaps the most challenging aspect of deep
learning-based moving object detection, which might be the reason why multi-frame
small object detection approaches are not common yet. Most of today’s small object
datasets are built using single images, which makes them unsuitable for detection with
temporal features. While video datasets are growing in popularity, most available
options at the time of writing are unsuitable for a generic deep learning small object
detector. A lot of datasets only consider objects from a particular minimum size, while
others are designed around a specific target class and ignore objects that are not valuable
for their intended application. This leads to lower recall for tiny objects, as the amount
of visual information may be insufficient to classify different targets. Public datasets also
rarely feature challenging weather conditions such as wind and rain. Exposure to these
situations is crucial for ensuring the model remains reliable under difficult conditions.
Due to all of these factors, training models on public datasets often yields suboptimal
performance in real-world applications.

To train a model that can add operational value, a dataset is required that includes a
wide variety of targets and circumstances. We assembled an in-house specialized dataset
named Nano-VID, which provides annotation for all moving objects captured in a wide
variety of different contexts. An overview of the considered dataset characteristics is pro-
vided in Table 2. Introducing diversity in environments, targets, cameras, and viewpoints
within the dataset helps prevent model overfitting and enhances its versatility. In total, the
training set contains 3968 annotated frames with 12,503 annotated objects, while the test
set contains 388 frames with 887 annotated objects. The distribution of object sizes in the
training and test sets after processing is depicted in Figure 5. The applied processing is
described in detail in Section 3.2. Notably, the 0–15 px size category has fewer samples
than the other categories. This can be attributed to the lack of emphasis during annotation
on perfectly fitting bounding box sizes, leading to tiny objects typically receiving a larger
bounding box. As such, although the frequency of each size category is not completely
equal, small objects are sufficiently well represented in both training and test sets.
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Figure 5. Frequency of bounding box areas found in the dataset after the processing shown in Figure 2
is applied.
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Table 2. The different characteristics that were considered while assembling the datasets.

Environments Forest, Desert, Plains, Urban, Port, Sea
Targets Persons, Ships, Civilian and Military Vehicles, Birds, Dogs
Cameras Visual and Infrared
Conditions Strong Winds, Calm Winds, Rain, Sunny, Overcast
Viewpoints Ground, Tower, Drone (20 m)

Enhanced Annotation

Creating accurate annotations for very small objects is challenging because these
objects are difficult for annotators themselves to perceive using conventional techniques.
To improve visibility for small objects, an image enhancement method is employed that
amplifies detected frame differences in a colored overlay for the annotator, as depicted in
Figure 6. This enhancement allowed the extension of the datasets with many tiny objects
that would otherwise have been left unannotated. Moreover, in instances where there is
ambiguity about the existence of an object at a specific location, the uncertain object and the
surrounding area are masked in black by the annotator. To further simplify the annotation
process and ensure that the detector is suitable for a wide variety of use cases, we do not
annotate class labels and refrain from classification during detector training.

Figure 6. Image enhancement during annotation allows the discovery of additional tiny objects in
the dataset that could otherwise easily be missed. Left: the original image, where the small objects
are barely visible and thus very difficult to annotate. Right: the colored overlay based on frame
differences, highlighting the small objects and facilitating more accurate annotation.

4.2. Ablation Study

First, we executed an ablation study, where we trained our model using the optimal hy-
perparameters and then removed our techniques one by one to measure their contribution
to the evaluation metrics. The ablation experiments are summarized in Table 3.

Several variations of the YOLOv8 architecture exist that offer different trade-offs
between parameter count and detection performance on the MS-COCO dataset [12]. For
our experiment, pretrained weights from the m variant of the YOLOv8 model were used for
initialization, as preliminary experiments have shown that bigger models do not produce
better detection quality on the Nano-VID dataset. Models were trained for 70 epochs using
the automatic learning rate scheduler developed by Ultralytics [12] alongside the default
Adam optimizer [51]. Used augmentations include Contrast Limited Adaptive Histogram
Equalization (CLAHE) (p = 10%), random scaling (p = 10%, scale = 10%), and random
cropping. For training and testing, the respective sets from the Nano-VID dataset described
in Section 4.1 were used. Finally, to consider the variance between repeated experiments,
each model was trained three times. However, the precision–recall curves for this study
are based on the first run for each model. The mAP scores are reported in Table 4. The
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highest mAP score of 0.839 is achieved by the proposed model, while the lowest score
of 0.465 is achieved by the Default-YOLO model. The precision–recall curves for each
variation of the model are depicted in Figure 7 and show that the proposed model achieves
the highest precision for every available recall setpoint. In fact, the same order mAP scores
hold for most recall data points, as seen in Table 4. Figure 8 depicts precision–recall curves
for dataloader variations. As the differences are more nuanced for this experiment, we
have cropped the axes around a higher precision and recall area. The No-Mosaic model
produces a curve that is well below that of the proposed model. While the Crop-Mosaic
model produces similar precision values, it does have a slightly higher maximum attainable
recall compared to the proposed model.

Table 3. The executed experiments in the ablation study. The precision–recall curve is computed for
each variation of the model settings and used dataloaders.

Model Variations

Experiment Description

Proposed
Model trained using our suggested, optimally performing
hyperparameters.

Manyframe-YOLO
The second model variant described in Section 3.1.1, with
11 input channels for the luminance data of 11 video frames.

No-BBox-Clip
Model trained without the bounding box augmentation,
which clips the bounding boxes to at least 15 × 15, as
described in Section 3.3.

Color-T-YOLO
The first model variant described in Section 3.1.1, with
9 input channels for 3 color channels of 3 video frames.

Singleframe-YOLO
Model trained using regular settings with 3 channels
for one RGB frame as input but with balanced mosaicking
and bounding box augmentations.

Default-YOLO
Model trained using one RGB frame as input without
the data augmentation techniques presented in this work.

Dataloader variations

Experiment Description

Proposed
Model trained using the dataloader based on
balanced mosaicking, as described in Section 3.2.

Crop-Mosaic Model trained using regular mosaicking, with cropping.
No-Mosaic Model trained using only full-resolution frames.

Table 4. Evaluation mean average precision (mAP) scores for the various configurations in the
ablation experiment.

Experiment mAP [std]

Proposed 0.839 [0.001]
Manyframe-YOLO 0.781 [0.001]
Color-T-YOLO 0.743 [0.001]
No-BBox-Clip 0.673 [0.003]
Singleframe-YOLO 0.583 [0.001]
Default-YOLO 0.465 [0.002]

Crop-Mosaic 0.837 [0.002]
No-Mosaic 0.770 [0.001]
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Figure 7. The precision–recall curves computed for each YOLOv8 variant in the ablation study based
on the complete test set. For a description of each experiment, refer to Table 3.
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Figure 8. The precision–recall curves computed for each dataloader variation in the ablation study
based on the complete test set. For a description of each experiment, refer to Table 3.

4.3. Dataset Impact Study

In this section, the capacity of the proposed model to generalize to a diverse set
of circumstances is analyzed. Firstly, we execute a specificity study to evaluate quality
differences between models trained on either a general-purpose or domain-specific dataset.
With another experiment, we analyze the performance of models trained on publicly
available datasets, both exclusively and in combination with Nano-VID.

4.3.1. Specificity vs. Generalization

Each environment and viewpoint may present unique challenges for small object
detection due to variations in object scale, context, and environmental conditions. Models
that have been optimized for a particular environment are expected to outperform general-
purpose models when applied to that environment. This is due to their ability to capture
and optimize for the unique characteristics and constraints of the specific context, which
may lead to improved accuracy. However, a diverse dataset that represents a target use case
well can often be difficult to obtain, especially for small objects. In addition, developing
a specialized model for each new use case may be impractical for many applications.
Therefore, a generic model adapted to multiple use cases is preferable, provided that its
detection accuracy can compete with that of the specifically trained model.

To evaluate the viability of this general-purpose approach, we split the dataset into
subsets that represent either a Ground, Maritime, or Air-to-Ground domain. Subsequently,
we conducted an experiment comparing models trained using only data from a specific
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domain against a generic model trained on the complete dataset. For each domain, we
also extracted the corresponding test set from the Nano-VID dataset and evaluated both
the specifically trained and generic models. The mAP scores for each model and domain
are visualized in Figure 9. The bar plot indicates that, for each domain, the generic model
either slightly outperforms or performs on par with the specifically trained model.

Ground Maritime Air-to-ground

Test Set

0.0

0.2

0.4

0.6

0.8
m

A
P

Specific

Diverse

Figure 9. mAP scores from the specificity study. Each group of bars represents the results on a subset
of the test set, while the color indicates which model was used for evaluation. The Diverse model
was trained on the complete training dataset, while the Specific model was trained only on training
data from the test domain.

4.3.2. Public Datasets

In Section 4.1, we mention the lack of thorough annotation of small moving ob-
jects in public datasets and propose an enhanced annotation method to improve this.
However, exploiting public datasets remains an attractive proposition, as annotating all
small moving objects still requires a considerable amount of effort. Although objects in
these datasets are large, the preprocessing techniques introduced in balanced mosaicking
(Section 3.2) could make these datasets suitable for SOD. To evaluate this approach, we
assess the performance of our proposed model, trained on public datasets, when applied
to Nano-VID.

For this experiment, we used two large-scale public datasets: the VIRAT-Ground
Dataset [43], a dataset specifically designed for event recognition in surveillance videos,
and the VisDrone-VID dataset [44], a dataset focused on drone-captured imagery. From
each dataset, 2500 samples were extracted to be used during training. While the quality of
these public datasets for SOD is possibly lower (e.g., increased label noise), they do offer
a large amount of annotated bounding boxes to learn from, and thus, model performance
could improve. To explore the effectiveness of different configurations, two experiments
were performed in which models were trained based solely on a public dataset and on a
combination of the public dataset and Nano-VID. For the mixed experiment, the training
dataloader sampled around 80% from Nano-VID and 20% from the public dataset. To
introduce more small objects, the data preprocessing steps discussed in Section 3.2 were
applied. Figure 10 presents a bar plot comparing the mAP scores using the VIRAT-
Ground and the Visdrone datasets. The highest mAP score is obtained when public
data is omitted from the training data, while training solely on either VIRAT-Ground or
Visdrone leads to the lowest mAP scores.
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Figure 10. mAP scores from the public dataset study. Each bar represents the result on the Nano-VID
test set based on the training set given on the x-axis.

4.4. Detection Characteristics

Figure 11 contains a grid of crops containing example detections from the proposed
model, intended to demonstrate its detection capacity for small objects. The targets dis-
played in the grid include distant people, drones, and vehicles, with some scenes captured
in windy conditions. Many of the depicted targets are barely visible in a single frame,
making detection challenging, even for the human eye. Yet, the model is able to detect
them by exploiting movement. The detections in the grid also contain a confidence level
attributed to each detection. Closer examination reveals that objects in front of or partially
occluded by vegetation (such as column 0, row 4 or column 5, row 4) sometimes yield
lower confidence scores compared to other detections.

Figure 11. Example detections from the proposed Temporal-YOLOv8 model. These crops have
been resized to four times their original size. The value drawn in each bounding box refers to the
confidence of the prediction.
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5. Discussion

In this work, we proposed various methods to improve SOD performance with deep
learning models. Firstly, we introduced the Temporal-YOLOv8 model, which captures the
temporal context required to detect very small objects with few spatial cues. Secondly, we
proposed a bounding box augmentation to improve the effectiveness of IoU-based loss
functions for small objects. Thirdly, we incorporated balanced mosaicking to compensate
for the imbalance between foreground and background samples in the dataset. Finally, we
introduced enhanced annotation and scaling techniques to build Nano-VID: a video small
object detection dataset with diligent annotation of all relevant tiny objects.

5.1. Ablation Study

By incorporating temporal context into the YOLOv8 model and applying specialized
data augmentations for small objects, we increased the mAP scores on the Nano-VID
test set from 0.465 to 0.839. The technique with the highest impact on the mAP score is
temporal object detection, as the multi-frame model achieved a considerably higher score
(mAP = 0.839) compared to the single-frame method (mAP = 0.583). The precision–recall
curve in Figure 7 reveals that the multi-frame model not only detects more objects but also
detects them with higher precision. As such, we conclude that multi-frame methods out-
perform single-frame methods, despite potential background movement, such as moving
trees, plants, and waves.

In addition to the improvements from multi-frame detection, the results also reflect
benefits from the various training adaptations. Notably, taking away bounding box aug-
mentations led to a substantial 0.166-point drop in mAP, underscoring the importance of
adapting the loss strategy for smaller bounding boxes. Additionally, favorable scores are
also shown for balanced mosaicking, which we proposed as a method to avoid the effects
of foreground–background imbalances. The benefit of balanced mosaicking becomes clear
in the comparison between the proposed model and the No-Mosaic model. The No-Mosaic
variant only employed full-resolution frames during training and thus contains the largest
skew between the foreground and background. As evident from Figure 7, the maximum
attainable recall is reduced for the No-Mosaic model, leading to a reduction in mAP from
0.839 to 0.770.

To compare the balanced mosaicking strategy with a simpler solution to foreground–
background imbalance, we also tested the Crop-Mosaic model. This model uses crops
centered around targets to compensate for the imbalance, but it sacrifices background
examples in the process. As a result, we expected the Crop-Mosaic model to show reduced
precision compared to balanced mosaicking. Supporting this hypothesis, the results show
that the precision around the F1-point was considerably lower for the Crop-Mosaic model,
as illustrated in Figure 7. However, the difference in mAP scores between balanced mo-
saicking (0.839) and fixed-size cropping (0.836) remains marginal. This can be attributed
to a slightly better foreground–background ratio for the Crop-Mosaic model, giving it a
slightly higher maximum attainable recall compared to the proposed model.

The Color-T-YOLO and Manyframe-YOLO models, which extend the Temporal-
YOLOv8 model with additional input channels, were also evaluated in the ablation study.
These techniques led to mAP scores of 0.743 for Color-T-YOLO and 0.781 for Manyframe-
YOLO. This reduction in mAP can be attributed to several factors. Firstly, the absence of
pretrained weights for the initial convolution layer hindered effective initialization of the
training process. Secondly, the training dataset may have lacked a sufficient number of
samples where these additional features could be exploited effectively. Lastly, the extra
input channels might not have provided substantial relevant information from which
useful features could be extracted, thereby contributing to the overall degradation in
model performance.

With the ablation study, we limited the scope of our evaluation to variants of the YOLO
model due to a number of factors. Firstly, there is a lack of well-established benchmark
datasets available that are suitable for our use case. Additionally, in earlier work [4],
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we evaluated several small object detector approaches and found that Temporal-YOLO
performed favorably. Finally, YOLOv8 offers strong performance, detection accuracy, and
ease of use, making it a practical choice.

Dataset Impact Study

Two experiments aimed at establishing guiding principles for small object datasets
were performed in the dataset impact study. Ideally, detectors should be able to adapt to
new domains without sacrificing quality for known environments. As such, this capability
was evaluated by comparing the performance of a generic model compared to environment-
specific models. As evident from Figure 9, the generic model outperformed or matched the
quality of the environment-specific model consistently. We conclude that a single versatile
small object detector can be deployed for multiple circumstances, removing the need for
specifically trained variants. Additionally, out-of-domain data may improve performance,
motivating the development of an approach in which datasets are combined. However,
with the public dataset experiments, we show the need for high-quality small object data,
as the introduction of larger objects and/or small objects without accurate annotations
clearly diminished performance, even when used in combination with Nano-VID.

5.2. Future Work

While the current iteration of the model performs robustly in various circumstances,
there are a few areas in which improvements can still be made. We observe that when
objects are fully static, the multi-frame model often performs slightly worse compared to
single-frame models. It is likely that the model learns to rely on motion information for
small objects during training since most objects are moving. Consequently, movement
becomes a dominant feature for small objects, which appears to hinder the recall for static
small objects during evaluation.

In addition to static objects, the model shows a slight bias against highly vegetated
areas. While it can detect some vehicles when partially occluded by vegetation, person
detection behind or near moving vegetation is not yet robust. This can be attributed to a
lack of representative data, since the model frequently observes moving vegetation labeled
as background during training, whereas examples of partially occluded persons are rare.

Both issues, static objects and vegetation, may be resolved by augmenting the dataset to
prevent these biases and do not necessarily indicate a problem with the model’s architecture
or the training approach. Nevertheless, these challenges remain interesting topics for
future research.

The focus of this study is on the detection of small objects. However, operational use
cases may require the detection of both small and large objects. For instance, in a military
context, it can be crucial to detect both small objects, such as distant drones, and larger
objects, such as vehicles or aircraft, for comprehensive situational awareness. To achieve
optimal performance for such a combined detector based on temporal YOLO, balanced
sampling across various size categories could be considered.

In this study, we utilize a custom-collected dataset in addition to two publicly available
datasets, all of which contain only stationary-recorded videos. For many use cases, however,
especially in a military context, videos will in fact be captured from moving platforms, such
as flying drones or driving ground vehicles. In this case, the current setup for temporal
YOLO will probably not perform as well, and motion compensation techniques should
be explored.

Finally, in this study, we only focused on detection. However, classification could be rel-
evant in many real-world applications, for instance, to distinguish drones from birds. Small
objects often lack detailed features, making it difficult to classify them accurately solely
based on appearance information. One way to solve this is by incorporating the tracking
information, since different object classes will likely exhibit different movement patterns.
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6. Conclusions

In this study, we introduced temporal context, augmentation methods, and sampling
techniques that effectively transform YOLO into a state-of-the-art detector for very small
objects. Our findings emphasize the importance of diverse and high-quality datasets
to achieve success in SOD. Additionally, our results demonstrate that SOD models are
generalizable across various environments and conditions and offer robustness to back-
ground motion. Figure 11 illustrates that distant and difficult-to-perceive objects can be
detected using the proposed Temporal-YOLOv8 model, benefiting from bounding box
augmentations, balanced mosaicking, and the Nano-VID dataset. Whereas typical object
detectors only provide reliable detections when targets are already obvious to humans,
the Temporal-YOLOv8 model detects objects hardly perceivable by the human eye. These
features make Temporal-YOLOv8 a strong candidate for defense and security applications
requiring fully automated processing, early detection, and timely intervention.
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