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Abstract: As the interface between frozen and unfrozen soil, the ice front is not only a spatial location
concept, but also a potentially dangerous interface where the mechanical properties of soil could
change abruptly. Accurately identifying its spatial position is essential for the safe and efficient
execution of large-scale frozen soil engineering projects. Electrical capacitance tomography (ECT)
is a promising method for the visualization of frozen soil due to its non-invasive nature, low cast,
and rapid response. This paper presents the design and optimization of a mobile circular capacitance
sensor (MCCS). The MCCS was used to measure frozen soil samples along the depth direction to
obtain moisture distribution and three-dimensional images of the ice front. Finally, the experimental
results were compared with the simulation results from COMSOL Multiphysics to analyze the
deviations. It was found that the fuzzy optimization design based on multi-criteria orthogonal
experiments makes the MCCS meet various performance requirements. The average permittivity
distribution was proposed to reflect moisture distribution along the depth direction and showed
good correlation. Three-dimensional reconstructed images could provide the precise position of the
ice front. The simulation results indicate that the MCCS has a low deviation margin in identifying the
position of the ice front.

Keywords: ice front; moisture distribution; frozen soil; electrical capacitance tomography;
three-dimensional reconstruction

1. Introduction

Seasonal frozen areas are widely distributed, covering 53% of the world’s land sur-
face [1–3]. The frost heave and thaw settlement of frozen soil caused by seasonal tempera-
ture fluctuations endanger the safety of various engineering facilities in seasonally frozen
areas. Current studies have found that phase transitions and the migration of internal
moisture during the freeze–thaw process, along with the movement of the freezing–melting
boundary (the ice front), are the main triggers of engineering failures in seasonally frozen
regions [4]. Thus, accurately identifying the location of the ice front in frozen soil and
understanding the internal moisture distribution is crucial for disaster prevention and
reduction in seasonally frozen areas.

Currently, various measurement techniques, including ground-penetrating radar [5],
CT techniques [6,7], the electric resistance measuring method [8], and portable nuclear
magnetic resonance detectors [9], can be used to measure the composition distribution of
frozen soil and monitor the movement of the freezing boundary. Bittelli et al. used dielectric
spectroscopy to estimate the ice content in frozen porous media and derived the volume
fractions of different phases in the medium based on the volume and dielectric constant of
each phase [10]. Kunio et al. simultaneously measured the liquid water content and relative
permittivity of various unsaturated soils at above-zero and subzero temperatures by using
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pulsed nuclear magnetic resonance (NMR) and time-domain reflectometry (TDR) [11].
Wen et al. used an NMR technique and thermal resistor temperature probe to characterize
unfrozen water content and soil matric potential [12]. Generally, it is hard to achieve real-
time and non-invasive measurements on the freezing interface of the frozen soil. Given the
complexity and nature of the issue, finding a reliable approach to measure the composition
distribution and monitor the movement of the freezing interface is still a critical challenge.

Electrical capacitance tomography (ECT) is one of the techniques employed in indus-
trial process tomography (IPT), which can be used to evaluate the spatial distribution of
permittivity based on current and voltage conditions along the boundaries of a specified
region [13]. The measurement principle of ECT is based on the fact that the capacitance of a
capacitor is a function of the permittivity (ε) of the medium between the electrode plates
over the entire sensing space [14,15]. To inversely calculate the relative permittivity, the
measured capacitance values are processed using an appropriate image reconstruction al-
gorithm [16,17]. Electrical capacitance tomography has the advantages of a rapid response,
low cost, non-intrusiveness, and robustness in harsh environments [18,19]. Compared
to previous moisture detection methods in frozen soil, the ECT has great potential for
evaluating moisture distribution and identifying ice fronts inside frozen soil due to its high
sensitivity to water [20–22].

The objective of this paper is to design and optimize a mobile circular capacitance
sensor (MCCS). This is employed in frozen soil testing to obtain the moisture distribution
and the position of the ice front. Finally, the MCCS’s measurement indexes are validated
based on the finite element simulation results. The research is divided into four goals: (a) to
optimize MCCS’s structural parameters based on fuzzy optimization design; (b) to evaluate
the moisture distribution along the height of the specimen based on the two proposed
indexes; (c) to reconstruct the 3D ice front image via trilinear interpolation; (d) to obtain the
simulated unfrozen moisture content to verify the MCCS’s evaluation index.

2. ECT Principle

The basic principle of the CCS used in this study is based on the fringe effect [23]. One
of the electrodes of the CCS is applied to an AC or DC voltage as the excitation electrode,
generating an electric field between the other electrodes, which are kept at zero potential
and serve as the detectors. The capacitance between the excitation and the detection
electrodes varies with the permittivity changes due to the different material distributions
inside the sensor [24].

The essence of the ECT imaging problem is the need to solve two major mathematical
problems, forward and inverse [16], as shown in Figure 1. The forward problem can be ex-
plained as follows: the sensor structure, medium distribution, and electrode measurement
strategy are set up to solve the electrical field and potential distribution in the measure-
ment field and obtain the sensitivity matrix. The inverse problem inversely calculates
the medium distribution using image reconstruction algorithms based on the measured
capacitance data and forward solution. Thus, the key to the forward problem is to solve
the capacitance value of the medium distribution based on the set condition.
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The following Maxwell equations represent the macroscopic electromagnetic field in
the array capacitive sensor [25]: 

∇× H = J + ∂D
∂t

∇× E = − ∂B
∂t

∇·B = 0
∇·D = ρ

(1)

where H is the magnetic field intensity, E is the electric field intensity, B is the magnetic
induction intensity, D is the electric flux density, J is the current density, and ρ is the
charge density.

The operating frequency of the excitation electrode is in the low-frequency range,
which corresponds to the electrostatic field condition, and the basic equation of the electro-
static field is obtained: 

D = εE
∇·D = 0
E = −∇ϕ
∇× E = 0

(2)

where ε is the permittivity and ϕ is the electric potential.
According to the above equations, the mathematical model of the ECT system is

derived as the Poisson equation:
∇·(ε·∇ϕ) = 0 (3)

Based on the Gauss formula, the capacitance between the i and j electrode pairs of the
forward problem is as follows:

Ci,j =
Q
V

=
1
V

x

Γ
ε(x, y)∇Φ(x, y)dΓ (4)

where ε(x, y) is the permittivity distribution in the sensing field; V is the potential difference
between the two electrodes forming the capacitance; Φ(x, y) is the potential distribution; Γ
is the electrode surface. Equation (4) can be written in the following form:

C =
x

Γ

ε(x, y)·S(x, y, ε(x, y))dxdy (5)

where S(x, y, ε(x, y)) is the sensitivity matrix. The sensitivity matrix reflects the sensitivity
of the capacitance values between electrodes to changes in the permittivity in the sensing
field. The permittivity distribution ε(x, y) is inverted by the capacitance value and the
sensitivity matrix using an image reconstruction algorithm to characterize the moisture
distribution of frozen soil.

3. Material and Methods
3.1. Fuzzy Satisfaction Evaluation Method

The evaluation indexes for circular capacitive sensors are typically associated with the
capacitance measurements and sensitivity field distribution. This paper chooses capacitive
dynamic range and the uniformity of sensitivity distribution as the two indicators for as-
sessing MCCS performance, both of which can be calculated using COMSOL Multiphysics.
The capacitive dynamic range (Rc) is defined as the ratio of the maximum capacitance
(Cmax) measured under full-field conditions to the minimum capacitance (Cmin) measured
in a null field, as indicated in Equation (6). The capacitive dynamic range should not be
excessively high to minimize noise interference.

Rc =
Cmax

Cmin
(6)
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Non-uniform sensitivity can severely impact image quality. In the MCCS system,
the arrangement of electrode plates is symmetrical, and the sensitivity field distribution
(Si,j) between any two plates remains consistent upon rotation. Therefore, only half of the
number of electrode plates needs to be considered in the sensitivity distribution, with the
calculation formula as shown in Equation (7).

Savg
i,j =

1
n

n
∑

e=1
Si,j(k)

Sdev
i,j =

{
1

n − 1

n
∑

e=1

[
Si,j(k)− Savg

i,j

]2
}1/2

D =
2
P

 ∑
i=1

2
P
+1

∑
j=2

∣∣∣∣∣ Sdev
i,j

Savg
i,j

∣∣∣∣∣


(7)

where Savg
i,j is the average sensitivity; Sdev

i,j is the standard deviation of n micro-elements
in the measured area; D is defined as the sensitivity distribution coefficient; P is the
number of the electrode plates. A smaller value of D indicates a more uniform distribution
of sensitivity.

Due to the numerous optimization indicators involved in ECT sensors, there may
be conflicts among these indicators. When one indicator is optimal, the others are not
necessarily optimal. To alleviate the conflicts between indicators, a reasonable combination
of multiple indicators is necessary, followed by an experimental evaluation of the influenc-
ing factors. This paper employs the multi-index orthogonal experimental fuzzy analysis
method proposed by Ji [26], establishing satisfaction levels regarding the indicators and
their corresponding membership functions based on the concepts of fuzzy mathematics.
The satisfaction function is defined to characterize the degree of acceptance, utilizing the
existing normal distribution function to create the satisfaction function for evaluation
indicators. These can be categorized into large-type, small-type, and intermediate-type
indicators, with each influencing the overall evaluation results in distinct directions. Both
Rc and D are small-type indicators, and Equation (8) is used for calculation:

µAj

(
xi,j

)
=

{
1, xi,j < a

e−k(xi,j−a)2
, xi,j ≥ 0

(8)

where k relates the index value obtained from the experiment and the satisfaction level. In
this paper, k is determined using an empirical method. In order to enhance the rationality
and effectiveness of the comprehensive satisfaction function for the indicators, this paper
employs a weighted arithmetic mean approach to develop the comprehensive satisfaction
function, as shown in Equation (9).

FSI
(

xi,j
)
=

1
2

e−0.000756x2
i,1 +

1
2

e−0.00582x2
i,2 (9)

where FSI is defined as the fuzzy satisfaction index.

3.2. Specimen Preparation and Test Method
3.2.1. Material and Sample Preparation

The loess used was sourced from a subgrade construction project in a seasonally frozen
region of China. The compaction testing was conducted according to ASTM D1557 [27].
Figure 2 presents the results of the compaction test. The maximum dry density is 1.746 g/cm3,
with an optimal moisture content of 16.28%. Based on the optimal moisture content, the
initial moisture content of the samples was set at 10%, 15%, and 20%. The prepared soil
sample measured 10 cm in diameter and 16 cm in height. After preparation, the surface
of the sample was wrapped with waterproof and insulating layers, made of polyethylene
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and polyester foam, to prevent moisture and heat exchange between the sample and its
surroundings. The samples were subjected to a constant temperature of +2 ◦C for 24 h prior
to the initiation of freezing.
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3.2.2. Testing Methods

After the sample was prepared, capacitance values were collected every 1 cm along
the depth using optimized MCCS, and these values were regarded as the full field. The
control samples were fully dried, and capacitance values were also collected to represent
the empty field. A multifunctional freeze–thaw testing machine was used for unidirectional
freezing of the soil samples. The top temperature was set to −10 ◦C and the bottom to 2 ◦C,
simulating unidirectional freezing in natural soil conditions. After freezing for 24 h, the
sample was removed, and measurements were taken along the depth using MCCS, with
the results considered as the measured field. After capacitance testing, the sample could be
sliced at 1 cm intervals along the height, and the moisture content of each slice could be
measured using the oven-drying method. For capacitance measurement, a high-sensitivity
ECT system based on a commercial precision LCR meter (VICTOR 4090A) (Shenzhen
Yisheng Victory Technology Co., Ltd., Shen Zhen, China) was employed. The excitation
voltage was set at 2V while the frequency of data acquisition was 100 kHz. Figure 3 displays
the whole experimental procedure.
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3.2.3. Characterization Parameters Based on Capacitance Data

The sum of capacitance values (Cs) can be used to visually represent the moisture
content across different layers of the frozen soil sample. However, the total capacitance
value does not reflect the distribution of dielectric material across the cross-section, leading
to considerable error. The average dielectric constant distribution (εm) is introduced as an
indicator to evaluate moisture migration in frozen soil due to the substantial difference
between the dielectric constants of frozen and unfrozen soil. Using the sensitivity matrix
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derived from prior simulations and the Landweber algorithm, the normalized dielectric
constant distribution of a specific cross-section of emulsified asphalt can be calculated.

εm =
1
n

n

∑
i=1

εi (10)

where εi represents the normalized dielectric constant of the i-th pixel.

3.3. Finite Element Method

Since MCCS primarily functions to detect the ice front in frozen soil, a two-dimensional
thermal–hydraulic coupling model was established in COMSOL Multiphysics.

Step 1. Derivation of the mathematical model. According to Fourier’s law, latent heat
from phase changes is treated as a heat source, and the differential equation for thermal
conduction in frozen soil is given by Equation (11) [28–30].

ρC(θ)
∂T
∂t

= λ(θ)∇2T + L·ρi
∂θi
∂t

(11)

where T is the transient temperature of the soil (◦C); t is time (s); θ is water content (%); C(q)
represents the volume heat capacity of soil (J/m3); λ(θ) is thermal conductivity (W·m−1 K−1);
θi is ice content (%); ρ and ρi are the density of water and ice (kg/m3), respectively; L is
the latent heat of the phase change (kJ/kg). Using Darcy’s law and the principle of mass
conservation as the foundation, a water migration control equation is established [30–32].

∂θu

∂t
+

ρi
ρw

·∂θi
∂t

= ∇
[
D(θu)∇θu + kg(θu)

]
(12)

where θu is the volumetric content of unfrozen water (%); kg(θu) represents the permeability
coefficient of unsaturated soil in the gravity direction (m/s); D(θu) is the water diffusion
coefficient (m2/s). the solid–liquid ratio (Bi) is introduced to solve the hydrothermal
coupling equations simultaneously [21]. The volumetric ice content of ice is expressed
as follows:

θi = Bi(T)·θu (13)

Step 2. Establishment of the numerical simulation model. The geometric model was
constructed, and Equations (11) and (12) were transformed into the coefficient form of
partial differential equations in COMSOL Multiphysics.{

ρC(θ) ∂T
∂t +∇·(−λ(θ)∇T) = L·ρi

∂θi
∂t

∂θu
∂t +∇·

(
−D(θu)∇θu − kg(θu)

)
+ ρi

ρw
· ∂θi

∂t = 0
(14)

Step 3. Numerical calculation and export of results. Boundary conditions were set
to match the experimental conditions, and the calculated moisture distribution results
were exported.

4. Results and Discussion
4.1. Optimization Results of MCCS

Due to the large number of parameters involved in sensor optimization and the
complex influence of external factors on certain parameters, it is essential to select relatively
independent parameters for structural optimization. The structural parameters of MCCS
primarily include the number of electrode plates, electrode opening angle coverage, plate
width, and grounding shield radius. For a problem with a factor of 4 and a level of 3, all
experiments must be performed 81 times. The orthogonal design method was employed to
solve this problem, reducing the number of experiments required for the MCCS to nine
using a three-level orthogonal table. Table 1 presents the orthogonal design layout.
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Table 1. Orthogonal experimental design.

Level A. Electrode
Plates Number

B. Electrode
Opening Angle
Coverage (%)

C. Plate Width
(mm)

D. Grounding
Shield Radius

(mm)

1 8 60 6 58
2 12 70 8 63
3 16 80 10 68

The capacitive dynamic range (Rc), sensitivity distribution coefficient (D), and fuzzy
satisfaction index (FSI) were selected as optimization indexes. Orthogonal experiment re-
sults are shown in Table 2. It was found that Rc and D cannot be optimized simultaneously,
indicating that a conflict will occur when they are both chosen as optimization objectives.

Table 2. Optimization indexes results of orthogonal tests.

Experiment Structural Parameters Optimization Indexes

Group A. Electrode
Plates Number

B. Electrode
Opening Angle
Coverage (%)

C. Plate Width
(mm)

D. Grounding
Shield Radius

(mm)
Rc D FSI

1 8 60 0.6 58 12.453 4.645 0.886
2 8 70 1.0 68 13.282 5.498 0.857
3 8 80 0.8 63 16.907 5.994 0.808
4 12 60 1.0 68 12.758 4.542 0.886
5 12 70 0.8 63 14.089 4.676 0.871
6 12 80 0.6 58 15.330 4.765 0.856
7 16 60 0.8 63 21.668 5.335 0.774
8 16 70 0.6 58 29.150 5.953 0.670
9 16 80 1.0 68 18.876 4.752 0.820

The range analysis of the orthogonal test results is shown in Table 3, where RR
represents the range of the optimization indicator for Rc, RD represents the range for D,
and R represents the range for the FSI. A can be used to indicate the number of electrode
plates, B to indicate the electrode opening angle coverage, C to indicate the plate width, and
D to indicate the grounding shield radius. For example, A1B2C3D4 indicates the optimal
combination, where the first set of electrode plate numbers, the second set of electrode
opening angle coverages, the third set of plate widths, and the fourth set of the grounding
shield radius are selected for a specific function. When the optimization indicator is Rc,
range analysis shows that the order of influence of the parameters on Rc is A > D > B > C,
and the optimal result is A2B1C3D3. For the optimization indicator D, range analysis
determines the influence order on D as A > D > B > C, resulting in the optimal combination
A2B3C3D1. The influence order of factors in the two optimization results is the same, but
the corresponding level of each factor cannot be identical. With FSI as the optimization
indicator, range analysis reveals that the order of influence of the parameters on Rc is
A > D > B > C and the optimal result is A2B1C3D1.

As the optimal combination derived from the orthogonal experiment was not incor-
porated into the simulation test plan, a simulation test was performed on the selected
parameters. The optimized parameter results are shown in Table 4. Comparing the results
with those of with Rc and D, using FSI to evaluate the structural parameters of MCCS
can simultaneously obtain a low-capacitance dynamic range and a uniformly sensitive
field distribution.
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Table 3. Range analysis of orthogonal test results.

Level A. Electrode
Plates Number

B. Electrode
Opening Angle

Coverage
C. Plate Width D. Grounding

Shield Radius

KR1 42.176 43.880 53.933 58.815
KR2 39.641 56.521 52.664 50.280
KR3 69.694 51.112 44.916 42.418
RR 30.053 12.641 9.017 16.397
KD1 16.137 15.511 15.363 14.073
KD2 13.983 16.127 16.005 15.598
KD3 16.041 14.523 14.793 16.490
RD 2.155 1.604 1.212 2.417
K1 2.264 2.568 2.435 2.599
K2 2.613 2.397 2.453 2.488
K3 2.574 2.486 2.563 2.364
R 0.348 0.171 0.128 0.235

Table 4. Optimized parameter results.

Optimal Combination A2B1C3D3 A2B3C3D1 A2B1C3D1

Rc 12.758 12.812 12.741
D 4.542 4.537 4.528

4.2. Characterization of Moisture Distribution

The frozen soil samples with different initial moisture contents were tested using
MCCS to analyze the feasibility of using measurement indexes to assess moisture distri-
bution. The test results are shown in Figures 4 and 5. Figure 4 illustrates the distribution
of the sum of capacitance values and the total moisture content along the depth of the
specimen, while Figure 5 shows the average dielectric constant distribution and the total
moisture content along the same depth direction. It was found that the moisture content in
the unfrozen area decreased while the moisture content in the frozen area increased. As the
experiment was conducted in a closed system with no external water supply, it is assumed
that moisture migrated from the unfrozen area to the frozen area. As the initial moisture
content increased, the slope of the curves in the figure increased, indicating more significant
variations in moisture content along the height direction. Based on the increase in the order
of initial moisture content, the peak moisture content positions for the 10%, 15%, and 20%
samples were 8 cm, 10 cm, and 12 cm, respectively, with peak moisture content increasing
by 9.5%, 11.3%, and 5.3% compared to the initial values.

As the initial moisture content increased, more water accumulated in the frozen region,
and less water remained in the unfrozen region, showing a trend of increasing moisture
migration. This is because, under the same cold junction temperature conditions, a higher
initial moisture content in the samples meant that more time was required for freezing,
providing more time for moisture migration and leading to a greater migration volume.
Conversely, with a low initial moisture content in the sample, the freezing speed increased,
resulting in a shorter migration time and a smaller migration volume.

It can be seen from the Cs curves of the three specimens that there was a uniform
decreasing trend from top to bottom, attributed to the much lower relative dielectric
constant of ice compared to water. However, the slope variations showed no discernible
pattern. The εm curves also showed a monotonically decreasing trend from bottom to
top, but the greatest slope change occurred at the peak moisture content, indicating the
most significant change in the dielectric properties of the material, with clear ice crystal
formation at this location. If the εm value is less than this point, it is considered to be a
frozen region, and if the εm value exceeds this threshold, it is considered to be an unfrozen
region. Notably, the moisture content here was measured using the oven-drying method,
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which accounted for the migrated and frozen water. Therefore, both curves exhibited a
monotonically decreasing trend.
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A clear boundary between the frozen and unfrozen zones appeared near the peak
moisture content, as illustrated in Figure 6, indicating that the freezing front occurred
at the moisture content peak. Due to the characteristics of the material, the point with
the minimum slope in the εm curve can be considered the ice front. It was found that
the freezing fronts identified by the two methods were consistent, which preliminarily
verified the accuracy of using εm to assess moisture distribution. Since the measurement
step was 1 cm, the freezing front obtained using this indicator could only be taken as the
intermediate value between two measured heights; an error analysis will be performed in
the following finite element simulations.
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4.3. Three-Dimensional Imaging of Ice Fronts

Before calculating the average dielectric constant distribution, a 2D image of the
material distribution within the measured cross-section can be obtained. As shown in
Figure 7, the dielectric constant distribution matrix was converted into a 2D image. Due to
the presence of waterproof and insulation layers on all sides, the moisture distribution in
the radial direction of the specimen showed little variation. Using trilinear interpolation
algorithm, the eight 2D images were indirectly reconstructed into a 3D image, providing
an intuitive visualization of the moisture distribution and the precise location of the ice
front, as illustrated in Figure 8.
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4.4. Finite Element Simulation Verification

The temperature field distribution of the three models with different initial moisture
contents after 24 h is shown in Figure 9. Theoretically, the freezing temperature is 0 ◦C, but
in real conditions, the freezing point may vary due to factors like water salinity and soil
composition, typically being below 0 ◦C. In this finite element simulation, the ice front is
defined as the 0 ◦C surface. The position of the ice front obtained from the εm curves is
compared with the simulation results, as illustrated in Figure 10.
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The simulated unfrozen water content along the depth of the specimen was compared
to the εm after normalization, with the red solid line representing the model’s solution
results and the blue solid dots indicating the results of the laboratory freezing test. The
simulation results indicate a downward gradient in moisture content from bottom to top,
with the greatest variation near the ice front. Above the ice front, the unfrozen water
content approaches zero, and at this point, εm value reflects the dielectric properties of
the ice–soil mixture. The εm index proposed in this paper aligns well with the simulation
results, with minimal deviation, as shown in Table 5. This verifies that the εm index can
accurately represent the moisture distribution in frozen soil and the position of the ice
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front, whereas Cs can only provide a qualitative analysis of moisture distribution without
pinpointing the ice front.
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Figure 10. Normalized simulation results of moisture content compared with measured εm after
24 h of freezing: (a) 10% initial moisture content; (b) 15% initial moisture content; (c) 20% initial
moisture content.

Table 5. Measurement deviation compared with simulation.

Initial moisture content 10% 15% 20%

Measurement deviation 0.9% 1.5% 2.8%

5. Conclusions

In this study, a self-designed MCCS was employed to evaluate moisture distribu-
tion and identify the ice front position in frozen soil. The following conclusions can be
summarized from this paper:

1. The fuzzy optimization design method was employed to optimize the structural
parameters. Comparing the results with Rc and D, using FSI to evaluate the structural
parameters of MCCS can simultaneously obtain a low-capacitance dynamic range
and a uniformly sensitive field distribution.

2. The sum of the capacitance values (Cs) and the average dielectric constant distribution
(εm) were introduced to evaluate moisture migration. The point with the minimum
slope in the εm curve can be considered as the ice front, which was consistent with the
moisture content.

3. The trilinear interpolation algorithm was used to reconstruct a 3D image of the ice
front. The precise location of the ice front could be identified.

4. The temperature field and unfrozen moisture distribution were obtained via finite ele-
ment simulation. The εm index proposed in this paper aligns well with the simulation
results, with minimal deviation.

Future investigations should be implemented to evaluate the accuracy and sensitivity
of the method, to develop appropriate reconstruction models and effective numerical
methods, and to discover optimal sensor structures and discretization methods for the
reconstruction domain for better measurement results.
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