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Abstract: The Fitzpatrick Skin Phototype Classification (FSPC) scale is widely used to categorize skin
types but has limitations such as the underrepresentation of darker skin phototypes, low classification
resolution, and subjectivity. These limitations may contribute to dermatological care disparities in
patients with darker skin phototypes, including the misdiagnosis of wound healing progression
and escalated dermatological disease severity. This study introduces (1) an optical sensor measur-
ing reflected light across 410–940 nm, (2) an unsupervised K-means algorithm for skin phototype
classification using broadband optical data, and (3) methods to optimize classification across the Near-
ultraviolet-A, Visible, and Near-infrared spectra. The differentiation capability of the algorithm was
compared to human assessment based on FSPC in a diverse participant population (n = 30) spanning
an even distribution of the full FSPC scale. The FSPC assessment distinguished between light and
dark skin phototypes (e.g., FSPC I vs. VI) at 560, 585, and 645 nm but struggled with more similar pho-
totypes (e.g., I vs. II). The K-means algorithm demonstrated stronger differentiation across a broader
range of wavelengths, resulting in better classification resolution and supporting its use as a quantifi-
able and reproducible method for skin type classification. We also demonstrate the optimization of
this method for specific bandwidths of interest and their associated clinical implications.

Keywords: Fitzpatrick skin type; K-means clustering; machine learning; skin optical properties;
dermatology; skin type classification

1. Introduction

Visual skin phototype evaluations are widely used in medicine. From clinical uses
such as screening for skin cancer and skin grafting immunosuppression to cultural research
in colorism and cosmetic product development [1–5], skin phototype classification continu-
ously demonstrates usefulness across academic, clinical, and industrial applications [6]. In
addition to these use cases, skin phototype classification enables clinicians to assess tissue
health to diagnose and/or treat medical conditions or risk thereof [3]. The Fitzpatrick Skin
Phototype Classification (FSPC) scale (Figure 1a) was developed in 1975 to classify different
skin phototypes according to their susceptibility to sunburn and skin cancer in response
to ultraviolet (UV) radiation [7]. Despite its broad adoption for clinical use, the FSPC
has become controversial in recent years for its underrepresentation of populations with
darker skin pigmentation, poor classification resolution (i.e., limited to only six possible
phototypes), and subjective nature rather than quantifying skin type through empirical
evidence or measurement tools [8]. The FSPC scale also has a major limitation in its reliance
on human visual data extracted from the relatively narrow visible light (VL) spectrum
as inputs, which may not represent skin optical responses to UV radiation as intended.
Similarly, the FSPC has limited use for clinical conditions that are not UV-sensitive, such
as skin optical properties in the infrared and near-infrared spectra, which may hold sig-
nificance for classifying skin phototypes for other clinical applications (e.g., personalized
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and optimized exposure dosage and wavelengths for photobiomodulation therapy) [9].
Furthermore, the FSPC is sometimes misused to categorize race and ethnicity rather than
its intended use with UV exposure risks [10]. Each of these compounding factors limits
the clinical usefulness of the FSPC and highlights a need for a quantitative and repeatable
skin type classification system that can probe skin optical properties at specific optical
bandwidths of interest to target specific clinical uses.
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Figure 1. (a) Fitzpatrick Skin Type Scale (I–VI) and (b) Generalized penetration depths of various
wavelengths of light through tissue structures of interest [11].

The limitations of visual chromatic skin evaluations, such as the FSPC, may have
detrimental impacts on patient care, such as misleading clinicians, causing delay or devia-
tion from optimal treatment procedures [12]. For example, inaccurate blood oxygenation
measurements have been documented among patients with darker skin types compared to
those with lighter skin types, increasing the possibility of undiagnosed hypoxemia [12–14].
Specifically, one meta-analysis reported a mean overestimation of 1.11% and 1.52% of arte-
rial and peripheral blood oxygenation in people with high levels of skin pigmentation [12].
Moreover, patients with highly pigmented skin are subject to higher risks of undiagnosed
bacterial-laden wounds based on the FSPC evaluation, leaving darker skin phototype
patients at higher risk for disease progression [15]. In a review of racial disparities in
dermatology, patients with dark skin phototypes were less likely to receive a variety of
pharmaceutical interventions needed for dermatological care and, thus, more likely to have
more severe dermatological disease progression [16]. Finally, questionnaire-based skin type
classifications, such as the FSPC, are shown to overestimate pigmentation among subjects
with light skin and underestimate pigment for those with dark skin, highlighting a need
for a more representative skin phototype scale with more quantitative and reproducible
classificational approaches based on skin optical properties instead of appearances [17,18].

Past research efforts have explored different sensor-based methods, such as colorime-
ters and spectrophotometers, in combination with algorithms such as the Individual Ty-
pology Angle (ITA) [19] and International Commission on Illumination L*a*b* color space
(CIELAB) [20,21], or surveys to quantify and classify human skin types [22]. These ap-
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proaches use one or multiple light sources to emit standardized or distributed wavelengths,
allowing photodetectors to measure light reflected or transmitted through tissue [23]. Light
intensity data are then used as algorithm inputs to assess skin optical characteristics. In
the 3-dimensional CIE L*a*b* model, L* represents luminescence, a* measures red/green
balance, and b* measures yellow/blue balance [23]. The ITA algorithm similarly models
luminance, yellow, and blue light intensities as an arc, classifying skin phototypes based on
angle ranges. While CIE L*a*b* and ITA offer more repeatable and quantitative measure-
ments than visual assessments (e.g., the FSPC Scale), they are limited by narrow visible
bandwidths and cannot be used to analyze high-dimensional optical data. This limits their
ability to distinguish between spectral features with similar appearances [23]. Additionally,
these algorithms rely on wavelength intensity ratios rather than raw irradiance values, po-
tentially reducing sensitivity to specific physiological features and differentiation between
skin types.

Different wavelengths of the incident light penetrate different tissue depths and struc-
tures (Figure 1b) [24]. For example, longer visible wavelengths, such as red light (~650 nm),
penetrate deeper than shorter wavelengths, such as blue light (~450 nm). Thus, optical
resonance at these wavelengths represent different anatomical and physiological features of
the tissue [11,24]. Previous research investigating tissue penetration depths using different
wavelengths via computational simulations [24,25] and observations from photobiomod-
ulation Therapy (PBMT) [26] suggests that nonuniformity in tissue structures, thickness,
and optical properties (i.e., absorption and scattering coefficients) [27] all contribute to
difficulties in creating standardized qualitative or quantitative tools to classify skin types.
Machine learning algorithms, however, show promise for aiding in skin type classification.
In one study, machine learning tools aided clinicians in improving skin disease diagnosis
accuracy by more than 33% compared to clinicians alone [28]. This promising result under-
scores the potential of machine learning algorithms in aiding dermatological care, offering
new options for a more accurate and equitable future. However, the same study reported
that the machine learning approach still struggled to accurately diagnose skin diseases in
darker skin phototype patients based on the FSPC scale [28].

Classifying skin phototypes across diverse populations is challenging due to complex
anatomical variability, differing tissue absorbance properties, and varied optical responses
to broad-spectrum light. These challenges are further complicated by a mismatch between
the salient optical properties of distinct skin structures, which are dynamic in response to
broad-spectrum light spanning from UV to IR, in contrast to human vision, which operates
in visible spectra [29]. At the cutaneous level, visual perception of skin color is affected
by physical phenomena such as light scattering, absorption, and penetration depth within
different skin layers (Figure 1b) [27]. It has been reported that 4–7% of a near-normal
incident beam of light between 200–3000 nm is reflected away from the skin’s surface,
or stratum corneum, regardless of skin type [27,30]. The remaining 93–96% of incident
light is absorbed or refracted at the epidermis and dermis layers [31]. Melanin blocks UV
light [32] and exists in two forms: pheomelanin (yellow-brown) and eumelanin (black-
brown) [33,34]. Eumelanin is more abundant in the epidermis of individuals with darker
skin types [35]. Despite efforts to correlate pigmentation, skin optical properties, and the
FSPC scale, human color vision is most sensitive to blue, green, and red light spectra [23].
These narrower wavelengths do not fully account for the complex optical properties of
human skin, which span the full photo spectrum. For example, melanosomes, a type of
organelle in pigment cells, are reported to have scattering effects orders of magnitude
higher than melanin’s absorbing effects across the Visible Light (VL) and Near-Infrared
(NIR or Near-IR) spectra at 400–1,600 nm [35]. In contrast, melanin accounts for 50–75% of
light absorption in the UV spectrum, leaving less light reflected in this spectrum among
individuals with skin that contains high melanin concentration [36]. The complex optical
properties of human skin, shortcomings of visual chromatic evaluations, and limitations in
previous sensor-based work highlight an ongoing need for a more robust, objective skin
phototype classification method with UV, Visible, and Near-IR spectra considerations. Such
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a method will provide a quantitative and repeatable framework for evaluating complex
skin optical properties, thus yielding better diagnostic reliability and repeatability.

Here, we report an objective sensor-based skin optical properties classification ap-
proach that characterizes and classifies different skin phototypes based on optical simi-
larities via a machine learning algorithm (K-means clustering) [37] across a 410940 nm
spectral dataset for a culturally diverse subject pool. Historically, K-means classification
models have been used as medical image classifiers for skin cancer detection and detection
of human skin and gestures [38,39]. Based on computational simplicity and the ability to
evaluate high-dimensional feature spaces, K-means clustering is a good candidate algo-
rithm for evaluating and grouping sensor-derived broad-spectrum skin optical properties
from diverse human populations. This proposed integrated sensor and algorithm approach
serves not only to provide a framework for an objective, repeatable, and reliable skin type
classification but also to further the understanding of the relationships between visual skin
evaluations and underlying skin optical properties.

2. Materials and Methods
2.1. Participants

Thirty participants (16 females and 14 males) participated in this study. This cohort
spanned an even distribution of the entire FSPC scale I–VI (five participants per category,
Table 1). All enrolled participants were free of cardiopulmonary or respiratory disease.
Table 1 summarizes participant demographic and anthropometric information. All research
activities were approved by the University of Oregon Institutional Review Board, and
written consent was obtained from all participants prior to the experiment.

Table 1. Summary table of participant demographic and anthropometric information.

FSPC Scale Numbers of
Participants

Age (Years)
(Mean ± SD) Biological Sex Self-Identify

Ethnicity

Type I 5 23.4 ± 5.78 M: 2 F: 3 White: 5

Type II 5 24.7 ± 6.00 M: 3 F: 2
Asian: 2

Hispanic: 1
White: 2

Type III 5 23.0 ± 4.41 M: 2 F: 3 Asian: 5

Type IV 5 22.4 ± 3.65 M: 3 F: 2 Asian: 1
Black: 4

Type V 5 23.9 ± 4.99 M: 4 F: 1 Asian: 1
Black: 4

Type VI 5 23.8 ± 5.05 M: 0 F: 5 Black: 5
SD: Standard deviation.

2.2. Experimental Overview

The experimental flow is illustrated in Figure 2. Participants first completed a ques-
tionnaire where they self-reported their age, biological sex, and ethnicity (Table 1). A
trained research team member then evaluated the participants’ skin on the FSPC scale
under standardized lighting conditions (lux: 967 lux, color temperature: 3442 K, confirmed
by a spectrometer (Light Master IV, OPPLE, Shanghai, China). Skin was evaluated from
the back of the hand between the thumb and index finger. This anatomic landmark was
selected as the evaluation site for its typical skin uniformity, lack of hair, and unobtrusive
access. Skin type was evaluated by comparing the skin color to the FSPC scale displayed
on an OLED computer monitor presented in the same field of view. Left vs. right hand
selection was randomized between participants.
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Figure 2. Block diagram of experimental procedures.

After visual skin classification, participants underwent skin optical properties mea-
surements with the spectral sensor (Section 2.3). The sensor was placed, contacting the
participant’s skin at the same anatomic landmark as visual evaluations. Light pressure was
applied to the sensor to isolate it from environmental light but not cause discomfort for
the participant. Ten repeated samples were collected from each sensor (AS7261, 2, and 3),
which measure irradiance at the Near-UV-A, Visible, and Near-IR spectra. In total, 180 data
points (ten data points per channel across 18 channels) were collected for each participant;
16-bit data were transmitted to a PC via serial communication for subsequent processing
(Section 2.4). Classification methods (FSPC vs. K-means) were then compared for their
ability to differentiate skin phototypes (Section 2.5). The purpose of this study was to
independently evaluate the FSPC and K-means methods for their ability to differentiate
skin phototypes. The FSPC method was not considered the ground truth, and thus, direct
comparisons for K-means vs. FSPC accuracy were not made.

2.3. Sensor Design

The optical spectroscopy sensor (Figure 3) consists of spectrum-paired light-emitting
diodes (LEDs) and photodiodes designed to probe the optical properties of skin. Three LEDs
(Luxeon 3014, Lumileds, San Jose, CA, USA; VLMU3100, Vishay Semiconductors, Shelton,
WA, USA; SIR19-21C/TR8, Everlight Electronics; New Taipei City, Taiwan) emit light
spectra at 385–425 nm, 425–725 nm, and 780–950 nm bandwidths, respectively, spanning the
Near-UV-A to Near-IR spectra. By combining three spectrophotometry sensors (AS72651,
2, and 3, AMS, Premstatten, Austria) with six bandpass filters each, the platform measures
light resonance at 18 discrete wavelengths ranging from 390 nm to 960 nm with a sensitivity
of 28.6 nW/cm2 of irradiance. The platform produces 16-bit digital irradiance values (range:
0–216) at each wavelength via I2C communication for objective spectral characterization
with data rates up to 400 kbit/s. Custom circuitry and firmware (C++, Visual Studio,
Microsoft, Bellevue, WA, USA) on a microcontroller (WRL-15484, SparkFun, Niwot, CO,
USA) controls the sensors and transmits data via serial connection to a PC for subsequent
analysis. A 3D-printed (Prusa, Newark, DE, USA) Polylactic acid (PLA) sensor housing
was designed to isolate the sensor from ambient light and allow measurements at specific
spectra (i.e., Near-UV-A, Visible, or Near-IR) if desired.
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Figure 3. Sensor outside of packaging showing electronics, LEDs, and photodiodes.

2.4. Data Processing

Raw data from all participants were imported and processed in MATLAB R2023b
(MathWorks. Inc, Natick, MA, USA). A broad description of the processing procedures is
provided in Section K-Means Classification and Custom Seeding. An average irradiance
value for each channel was calculated for each participant as the mean of the ten samples
collected at each channel. Each channel’s data were then normalized to the maximum
measurement observed in that channel, mapping each wavelength’s dataset on a 0 to 1 scale.
The normalized participants’ measurements were then grouped based on the FSPC category,
hereafter referred to as “human evaluation” in statistical comparisons or used as inputs to
the K-means clustering algorithm (Section K-Means Classification and Custom Seeding)
(Figure 2).

K-Means Classification and Custom Seeding

The K-means clustering method (Figure 4) is a commonly used data classification
approach that partitions data points into mutually exclusive clusters/groups (i.e., skin
phototype) based on similarities in observed characteristics (i.e., irradiance measurements).
This clustering method was selected for its simple mathematics, low computational power
requirements, easily interpreted results, and comprehensive documentation in an effort to
enhance clinical interpretation compared to more ambiguous black-box machine learning
approaches. In this experiment, all 30 participants’ data were mapped in an 18-dimensional
feature space, with each dimension representing the skin’s optical properties measured at
a specific wavelength. Data were partitioned into k = 6 clusters based on the number of
categories in the FSPC scale. The classification results arising from the K-means method do
not follow the same ranked order logic as the FSPC. Instead, K-means provides a cluster
of participants with similar optical properties across a particular bandwidth of interest.
However, clusters with high irradiance values in a particular bandwidth may not be high
in another, and thus, the ranked order logic should not be applied to K-means results.
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The goal of this K-means classification approach is to find the six cluster centroid
positions that best partition participants based on the least squares Euclidean distance
of each data point to the centroid. The algorithm also seeks to maximize the Euclidean
distance between centroids (i.e., maximize differentiation between groups). As such,
initial centroid positioning can influence the ultimate classification results. In this study,
randomly assigned centroid locations are not appropriate due to the nonnormal distribution
of the data across 18 wavelengths. Moreover, the six centroids should not be initialized
at the average irradiance value (or center of the domain) of each wavelength to avoid
introducing wavelength weighting bias, which would skew classification results based on
the wavelength with the highest irradiance value. To avoid these pitfalls, we utilized a
custom centroid seed function whereby the centroids were initialized at evenly distributed
positions along a linear function spanning the full irradiance range (minimum to maximum)
observed at each wavelength. This approach provides a repeatable initial position for each
centroid spanning the full range of irradiance values present in the dataset, reduces the
chance of convergence at false local minima, and avoids introducing bias due to unequal
irradiance values at different wavelengths.

To fully explore the classification capability of the K-means algorithm, four K-means
analyses were performed. K-means410–940 (Broad-spectrum) used all 18 wavelengths as
grouping criteria and categorized participants based on skin optical properties across
the full bandwidth of light tested. K-means410–535 used six wavelengths ranging from
410–535 nm as grouping criteria and evaluated groupwise similarities across the Near-
UV-A and lower visible spectra. Similarly, K-means560–705 and K-means730–940 used six
wavelengths ranging from 560–705 nm and 730–940 nm, respectively, as grouping criteria
to partition subjects across Visible and Near-IR spectra. By segmenting these spectra, we
demonstrated this approach can be optimized for categorizing participant skin types based
on specific bandwidths of interest and their associated clinical applications. For example,
UV sensitivity with K-means410–535, skin chromatic appearances with K-means560–705, or
therapeutic wavelength identification with K-means730–940. Additionally, this approach
highlights that participants with similar skin types in a particular bandwidth are not
necessarily similar at other bandwidths, demonstrating the need for customizability based
on different clinical needs.

2.5. Statistical Analysis

In total, five classification grouping results (one human evaluation-classified dataset
and four K-means-classified datasets) were individually investigated for their ability to
classify skin type based on skin optical properties across the wavelengths tested. All
statistical tests were performed in GraphPad 10 prism (GraphPad Software Inc., Boston,
MA, USA). Each dataset was first tested for normality via the Shapiro-Wilk normality
test (α = 0.05). If the normality assumption was met, the classification methods’ main
effects of grouping on irradiance values were tested using one-way ANOVA analyses
(α = 0.05) at each wavelength. If the normality assumption was violated, the nonparametric
Kruskal–Wallis test (K-W) (α = 0.05) was used to evaluate the main effects. For all analyses,
post-hoc pairwise comparisons were performed via Tukey’s Honest Significant Differences
(HSD) tests (ANOVA) and Dunn’s method (K-W) with adjusted p-values to evaluate the
resolution of the classification methods (i.e., the ability to differentiate between groups at
each wavelength). Pairwise comparison p-values are reported in Appendix A.

An average Silhouette value [40] was also calculated for each cluster to quantify
the quality of clusters generated by each K-means approach and FSPC evaluation. The
Silhouette value is calculated as the difference between intra- and inter-cluster distances
(average distance of a point to all other data points from the same cluster and average
distance of this point to all other data points in the next nearest cluster, respectively)
normalized to the maximum value of each. Silhouette values range from −1 to 1, with
higher scores indicating better clustering quality.
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3. Results and Discussion
3.1. Clustering Results

Thirty subjects were classified based on four methods, and their respective grouping
results were subsequently analyzed (Sections 3.2 and 3.3). As shown in Table 2, the
30 subjects evenly covered the six skin phototypes of the FSPC scale based on human
evaluation (n = 5 per FSPC group). However, based on skin optical data measured by
the sensor, the K-means classification method grouped subjects nonuniformly across six
categories. Moreover, in each of the K-means approaches, except K-means410–535, there
were outlier groups in which one or more clusters contained only one participant. This
occurs due to the lack of similarities with other subjects from the pool and may be explained
by three causes: (1) the sample size is too small that no other subjects share similar optical
properties with the outlier; and/or (2) k = 6 clusters is a suboptimal target for grouping
(i.e., actual skin phototypes are more or less numerous than the FSPC); and/or (3) the
evenly distributed channel-wise weight enlarged the differences between subjects that
share similar optical properties. It is also important to note that there is no one-to-one
matching relationship between the grouping results of human evaluation and K-means
classification methods. It is important to note that for the purposes of this study, the FSPC
scale was not regarded as the ground truth for classifying skin phototypes. Hence, there
is no basis for comparison between methods for group size or accuracy. All classification
results should be considered independent from one another. Groups with n = 1 were
excluded from the statistical analysis.

Table 2. Summary table of grouping results for human evaluation and K-means classification.

Human Evaluation K-means Classification

Skin
Types

Subject
Counts Clusters

Subject Counts

Broad-
Spectrum Near-UV-A Visible Near-IR

Type I 5 Group A 3 3 7 4

Type II 5 Group B 9 5 4 11

Type III 5 Group C 12 6 13 6

Type IV 5 Group D 4 10 3 5

Type V 5 Group E 1 2 1 1

Type VI 5 Group F 1 4 2 3

The Silhouette values (SV) varied based on different clustering approaches (Table 3).
Overall, the K-means410–940 resulted in the highest average SV (0.245 ± 0.358), with the FSPC
Human Evaluation and K-means730–940 producing the lowest average SVs (−0.084 ± 0.387 and
−0.088 ± 0.263). Clusters with SVs < 0.25 indicate low quality of data clustering (i.e., failure
to identify and differentiate the distinctive optical features encoded within different skin
types). In contrast, 0.25 < SV < 0.50 indicates weak-to-moderate quality, and SV > 0.50
indicates a cluster with high quality differentiation. Conditions with clusters with SV < 0.25
may indicate that k = 6 clusters is a suboptimal target. The K-means410–940 produced three
adequate-quality clusters and one low-quality cluster, indicating that broadband optical
data clustered into three groups may be viable. Future work should seek to further explore
the optimal target number of clusters for maximizing the quality of data classification.
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Table 3. Summary of Silhouette values for the human evaluation and K-means approaches.

Silhouette Values

Cluster Type Cluster Silhouette Value
Mean ± SD

Method Silhouette Value
Mean ± SD

FSPC
(Human

Evaluation)

Type I −0.540 ± 0.080

−0.084 ± 0.387

Type II −0.374 ± 0.180
Type III 0.197 ± 0.243
Type IV 0.117 ± 0.432
Type V −0.090 ± 0.280
Type VI 0.189 ± 0.344

K-means410–940
(Broad spectrum)

Group A 0.547 ± 0.131

0.245 ± 0.358

Group B −0.212 ± 0.162
Group C 0.438 ± 0.178
Group D 0.488 ± 0.137
Group E * —
Group F * —

K-means410–535
(Near-UV-A)

Group A 0.561 ± 0.073

0.159 ± 0.321

Group B −0.069 ± 0.202
Group C −0.135 ± 0.321
Group D 0.251 ± 0.190
Group E 0.621 ± 0.127
Group F 0.119 ± 0.248

K-means560–705
(Visible)

Group A 0.179 ± 0.148

0.040 ± 0.214

Group B 0.169 ± 0.212
Group C −0.039 ± 0.183
Group D −0.007 ± 0.298
Group E * —
Group F −0.124 ± 0.306

K-means730–940
(Near-IR)

Group A −0.237 ± 0.075

−0.088 ± 0.263

Group B −0.062 ± 0.212
Group C −0.204 ± 0.266
Group D −0.100 ± 0.191
Group E * —
Group F 0.264 ± 0.461

* Cluster contains only one subject; thus, a Silhouette value cannot be calculated.

3.2. Group-Level Analysis

As shown in Figure 5a, the human evaluation classification method resulted in sta-
tistically significant differences between skin types at only four wavelengths: 560 nm,
585 nm, 645 nm, and 705 nm, suggesting that humans rely primarily on these wavelengths
when distinguishing skin types. However, the skin types differentiated at 705 nm failed to
establish statistical significance when examined with pairwise comparison due to the lower
adjusted p-value used (Section 3.3 and Appendix A). Moreover, the human classification
method failed to establish significance from 410–535 nm, colors that span from blue to cyan.
This observation aligns with previous research showing that human eyes are less sensitive
to subtle differences from 390–500 nm spectra under the photopic condition [41] and more
sensitive to distinguishing light in the yellow, green, and red spectra [41], which is also
evident in the significant differences observed at 560 nm, 585 nm, and 645 nm in the human
evaluation-classified condition (Figure 5a). This observation aligns with previous research
showing that the trichromatic human photonic vision has a peak spectral sensitivity at
approximately 555 nm, a combination wavelength from three types of short, middle, and
long cone cells [42,43]. In summary, the chromatic assessment of the skin types via human
evaluation only offers limited differentiation capability primarily constrained to a narrow
bandwidth within the visible spectrum (560–645 nm) that leaves Near-UV-A and Near-IR
spectrum unexplored.

While the results suggest that human evaluation-based classification relies primar-
ily on visible light spectra for differentiating skin types, data from the K-means410–940
(Figure 5b) show that the Near-UV-A and lower visible wavelengths provide the most dif-
ferentiating power across the bandwidth tested. When compared to the human evaluation
condition, the K-means410–940 algorithm provided higher differentiation power, as shown
in Figure 5b, showing statistical differences in an additional five wavelengths compared
to human FSPC evaluations. More specifically, these additional wavelengths are typically
found closer to the UV spectrum rather than the IR spectrum. This suggests that the actual
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optical properties of the skin may be encoded within the Near-UV-A and lower visible
(435–585 nm) range, while the Near-IR spectrum (730–940 nm) may primarily encode
information about body temperature, making it unsuitable for skin type classification.
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Figure 5. Normalized intensity of (a) human evaluation skin classification method vs. (b) K-
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Figure 6 shows the optimized K-means classification results in which the algorithm
was tuned to classify skin types based on the specific wavelengths of interest. Specif-
ically, in Figure 6a, the K-means410–535 algorithm was applied with centroids’ seeding
condition that focuses only on 410–535 nm and neglects other wavelengths. The results
showed optimized dispersion in this spectrum specifically. This approach may have clinical
significance for classifying skin phototypes for UV sensitivity rather than color (visible
spectrum) or perfusion/temperature (IR spectrum). Similarly, desirable grouping results
through visible spectrum optimization are shown in Figure 6b. In this approach, statistical
differences were seen not only among the optimized wavelengths (560–705 nm) but also
spanning further into part of the Near-IR (730–760 nm). In contrast to the clear and effective
classification shown above in K-means410–535 (Near-UV-A) and K-means560–705 (Visible),
the K-means730–940 method (Near-IR) shown in Figure 6c resulted in less dispersion be-
tween the classification groups. Nevertheless, significant main effects of group on intensity
were observed in five of the six optimized wavelengths. In combination, bandwidth opti-
mization of the K-means classification method can better differentiate various skin types
through the wavelength spectrum from 410–705 nm. The less concentrated statistical dif-
ferences of the IR optimization results might be due to the normalized intensity obtained
through the Near-IR spectrum encoding body temperature instead of actual reflective skin
optical properties.

In summary, the K-means classification methods provided better skin optical-based
classification across the 410–705 nm spectrum (i.e., differentiation across different skin types)
when compared to human evaluation classification based on the FSPC scale. Optimization
of K-means classification based on the spectra of interest, such as Near-UV-A or Visible,
offers unique opportunities to tailor skin type differentiation towards various medical



Sensors 2024, 24, 7397 11 of 20

applications. For example, the K-means method optimized on the Near-UV-A spectrum
can be used to better assess the skin cancer risk among different groups of patients based
on the skin’s optical properties instead of the skin color alone [39,44]. K-means optimized
at the visible spectrum can be used to better match the cosmetic appearance of a skin
graft [45]. The IR spectra-focused K-means classification can be utilized in identifying
optimal therapeutic wavelength in photobiomodulation [9].
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3.3. Intra-Group Analysis

Even though human eyes are most sensitive at 555 nm [42,43] and have shown the
capability to differentiate between the extremes of the FSPC (e.g., I vs. VI), results from this
study show that human visual evaluation struggled to differentiate between skin types
that are more similar on the FSPC scale. As shown in Figure 7a, human FSPC evaluation
showed significant differentiation between darker skin types (V and VI) and lighter skin
types (I, II, and III) at 560 nm, 585 nm, and 645 nm. However, human eyes struggled to
distinguish the finer differences among more similar skin types (i.e., I vs. II, II vs. III, etc.)

Compared to human evaluation, the non-optimized K-means classification (Figure 7b)
displays more capability to differentiate skin types at 485 nm and 535 nm. Yet, it still
struggled to distinguish different skin types, primarily in the Visible and Near-IR spectra.
It is important to note that all K-Means classification methods, optimized or not, do not
provide any one-to-one matching for their groupings to a specific FSPC category. Hence,
no direct comparison between any two classification results can be conducted.

As described in Section 3.1 and shown in Table 2, K-means410–535 showed the same
number of multi-participant clusters compared to human evaluation (k = 6). In contrast,
all other K-means classifications resulted in at least one single-participant group. This
observation suggests that K-means410–535 might share a similar classifying scheme as human
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evaluation whereas other K-means approaches do not. However, there is a discrepancy
in the distribution of participants within those six groups, indicating that K-means410–535
and human evaluation may be using different grouping criteria. Previous research and the
results of this study suggest that human evaluations rely specifically on a narrow bandwidth
of light (560–645 nm) to differentiate skin phototypes, whereas K-means410–535 relies on a
set of shorter wavelengths. When evaluated based on the highest percentage of possible
differences among the skin type groups, the K-means730–940 method contains the most
differentiable intra-grouping results (810–940 nm) among all K-means methods despite
presenting an outlier group. However, this differentiation may be more representative of
skin temperature, rather than phototype due to the role of temperature in IR wavelength
absorption. Even though a comparison of direct grouping results is not achievable in this
study, Figure 7 illustrates the resolution of each approach to classify skin phototypes.
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ous wavelengths under different classification methods. (a) human FSPC classification method,
(b) K-means410–940, (c) K-means410–535, (d) K-means560–705, (e) K-means730–940. Colors in (a) represent
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In summary, K-means classification with optimization offers more customizable, quan-
tifiable, and reproducible skin type classification based on skin optical measurements.
However, this study is not without its limitations. For example, this study involved cul-
turally diverse subject groups, but the sample size of the collection is limited and may not
represent the full skin optics range present in the human population. Moreover, the sensors
used to measure skin optics are not uniformly sensitive across the bandwidth tested. The
Near-UV-A and lower visible spectrum wavelengths exhibited greater overall signal power
than the other wavelengths tested, which could skew the weightings of these data in the
clustering algorithms. Normalization procedures were implemented on each wavelength
to reduce the weighting effects. Nevertheless, some effect of this weighting may have
persisted in the final dataset, possibly masking finer differences between subjects difficult
to detect due to the low signal-to-noise ratio for the channels with lower intensity. A related
limitation is that K-means applies the same weighting factor to each wavelength and thus
may not fully capture the varying skin optical properties at different wavelengths that drive
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skin type differentiation. The algorithm itself is also sensitive to the presence of outliers,
the initial location of the centroids, and the uncertainty of optimal cluster numbers. Lastly,
the 18 wavelengths sampled across 390–960 nm were not equally distributed (i.e., sampling
intervals were non-uniform between wavelengths). These peak sensitivities are based on
the bandpass filters designed by the manufacturer of the photodiodes selected for this
study. It is possible that different sampling intervals or higher wavelength resolution could
affect the results of this study.

Future work should seek to verify these results with broadened light spectra. Due to
hardware limitations and participant safety, this study only utilized light in the Near-UV-A
spectrum. This light may not share the same optical characteristics of light in the UV-B
and UV-A spectra, which hold more clinical relevance for sunburn sensitivity, skin cancer
risk, etc. Future work should also seek to verify these results with an increased sample
size. A larger dataset would be advantageous for broadening the skin types observed and
achieving a normal distribution in the dataset, allowing the use of ANOVA comparisons
rather than the less statistically powerful Kruskal–Wallis, as was sometimes required for
the present dataset. These factors will also help reduce the chances of single-participant
groups in the results. Future work could also explore the use of more complex centroid
seed functions (e.g., nonlinear), which might achieve better grouping results by narrowing
the search space. Lastly, the results of this study suggest that k = 6 may not be the optimal
target number of clusters. Future studies could benefit by including techniques such as the
elbow method to investigate optimal cluster numbers.

4. Conclusions

This study presented empirical evidence showing that the combined sensor and K-
means classification approach can be utilized for skin phototype classification. This method
provides advantages over the conventionally used Fitzpatrick Skin Phototype Classification,
including better differentiation power and the ability to optimize differentiation at specific
bandwidths of interest. The K-means classification methods showed quantifiable and
reproducible grouping results that can be segmentally applied to the 410–940 nm spectrum
with various medical application focuses.
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