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Abstract: Seismic data acquired in the presence of mechanical vibrations or power facilities may be
contaminated by strong interferences, significantly decreasing the data signal-to-noise ratio (S/N).
Conventional methods, such as the notch filter and time-frequency transform method, are usually
inadequate for suppressing non-stationary interference noises, and may distort effective signals if
overprocessing. In this study, we propose a method for eliminating mechanical vibration interferences
in seismic data. In our method, we extended the variational mode extraction (VME) technique to a
multivariate form, called multivariate variational mode extraction (MVME), for synchronous analysis
of multitrace seismic data. The interference frequencies are determined via synchrosqueezing-based
time-frequency analysis of process recordings; their corresponding modes are extracted and removed
from seismic data using MVME with optimal balancing factors. We used synthetic data to investigate
the effectiveness of the method and the influence of tuning parameters on processing results, and
then applied the method to field datasets. The results have demonstrated that, compared with the
conventional methods, the proposed method could effectively suppress the mechanical vibration
interferences, improve the S/Ns and enhance polarization analysis of seismic signals.

Keywords: mechanical vibration; interference elimination; seismic data; multivariate variational
mode extraction

1. Introduction

Seismic technologies, both active and passive, are highly effective tools for reservoir
characterization and evaluation. Active source techniques such as time-lapse seismic (4D
seismic) are employed to detect fluid migration due to production processes over time [1–3].
Furthermore, microseismic monitoring is utilized to assess hydraulic fracturing stimulation,
coal mining, CO2 injection and storage, and associated seismic hazards [4–7]. Additionally,
the ambient-noise seismic interferometry method is used to complement traditional seismic
reflection methods in petroleum exploration and development, helping to identify and
monitor hydrocarbon reservoirs [8,9], as well as to image subsurface structures, particularly
in areas where active seismic sources are not practical. Continuous monitoring data are
typically recorded using three-component geophones deployed either in boreholes or
on the surface, depending on the specific application [10]. During both temporary and
permanent seismic acquisition, it is crucial to minimize interferences by placing the seismic
sensors at a sufficient distance from known noise sources while maximizing the detection of
seismic/microseismic events. This involves a careful analysis of the expected noise sources
and their patterns, as well as the probable locations of seismic activity. Nevertheless, long-
duration high-energy interferences produced by the mechanical vibrations (e.g., fracturing
pump and working oil pumps) or power facilities in the seismic monitoring area may be
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unavoidably recorded [1,11]. These interferences have the potential to seriously deteriorate
the quality of the recorded data and make it difficult to process seismic signals. Therefore,
reliable techniques must be developed to extract and remove strong interferences from
seismic data.

Numerous methods have been developed to improve the quality of seismic data by
reducing or eliminating noise. Noise can generally be categorized into two types: random
noise and strong interference noise. Commonly used methods for suppressing noise include
frequency-domain filters (e.g., high-pass filter and notch filter), morphological component
analysis [12], iterative trimmed and truncated mean filter method [13], randomized princi-
pal component analysis [14], time-frequency analysis methods (e.g., wavelet transform and
synchrosqueezing transform method) [15–17], and sparse representation-based de-noising
methods [18,19]. Most of these methods are primarily aimed at reducing random noise or
harmonic interferences. However, conventional methods commonly struggle to eliminate
the non-stationary interferences while preserving effective seismic signals, resulting in the
loss of important information related to the subsequent seismic phase identification and
arrival picking. Advanced methods such as unsupervised deep learning, including con-
volutional neural networks (CNNs) and variational autoencoders, leverage large datasets
to efficiently learn the noise patterns and suppress them [20,21]. These methods require
high-quality labeled data for training and the availability of various seismic monitoring
scenarios needs to be considered. Unsupervised learning methods do not require labeled
data, making them especially useful for situations where obtaining labeled data is challeng-
ing or impractical [22]. This flexibility allows them to be applied across a wide range of
seismic monitoring scenarios, enhancing the ability to identify and mitigate noise without
the need for extensive labeled datasets.

Mode decomposition-based algorithms, such as empirical mode decomposition (EMD)
and variational mode decomposition (VMD), have been developed to decompose complex
signals into several intrinsic mode functions (IMFs) with different characteristic time
scales [23–27]. In recent years, these methods and their variants have been utilized to
analyze and de-noise seismic and microseismic data [28–32]. In the EMD, the original signal
is decomposed into a set of IMFs by iteratively extracting the high-frequency components
and their associated envelopes. These IMFs, which correspond to the target signal as
determined via signal feature analysis, are then reconstructed to obtain the de-noised
signal. Similarly, the VMD method decomposes the signal into multiple modes based on an
optimization framework [23]. Additionally, multivariate extension of mode decomposition-
based algorithms (i.e., multivariate EMD, multivariate VMD) have been developed for
processing multivariate data (e.g., multichannel signals), resulting in IMFs with aligned
frequency ranges [24,26]. Recently, variational mode extraction (VME) has been proposed
as a special form of VMD that extracts only one specific mode at a time and is used in
various fields, including biomedical signal processing and fault diagnosis [33–37].

The VME method is a powerful tool for extracting band-limited components by isolat-
ing a specific mode with a predetermined approximate center frequency from a univariate
input signal. However, the effectiveness of VME depends on selecting appropriate parame-
ters, such as the center frequency and bandwidth of the modes to be extracted [35,37]. In
practice, strong vibration interferences often contaminate multicomponent or multitrace
seismic data on the receivers adjacent to the interference source. Ensuring a common fre-
quency component among all channels of input data is crucial for seismic data de-noising
and analysis. Therefore, we propose the use of a multivariate extension of VME (MVME)
to address the problem of mode alignment when applying VME to multivariate input data.
In this paper, we developed an interference noise elimination method for seismic data
by using multivariate VME (MVME). The proposed method achieves strong interference
removal from multichannel seismic signals by identifying the frequencies of the interference
components and then extracting the interference signals. It employs MVME to extract
and separate individual modes from raw seismic records with the approximate center
frequencies and optimal penalty parameters. In the following sections, we first introduced
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the principles of VME, multivariate extension of VME and the workflow of the proposed
method. Then, we systematically evaluated the performance of the proposed method using
synthetic data. Finally, we used two field data examples to demonstrate the effectiveness of
the proposed method in enhancing the S/Ns and facilitating subsequent data processing
(e.g., seismic signal polarization analysis).

2. Methods
2.1. Variational Mode Extraction (VME)

Variational mode decomposition (VMD) is an advanced signal processing approach
that has gained popularity in recent years for its ability to decompose non-stationary
signals into a set of quasi-orthogonal intrinsic mode functions (IMFs) [25]. Unlike empirical
mode decomposition (EMD) approaches, VMD addresses issues of mode mixing and
non-optimal reconstruction by iteratively searching for modes that minimize a variational
constraint [25,26]. The constrained variational problem can be defined as follows:

min
{uk(t)},{ωk}

{
K
∑

k=1

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2

2

}
s.t.

K
∑

k=1
uk(t) = x(t)

, (1)

where K represents the number of decomposition mode components. uk(t) and ωk denote
the k-th mode and its center frequency, respectively. δ(t) is the Dirac delta function and
* represents convolution. ∂t denotes the partial derivative with respect to time. e−jωkt shifts
the mode uk(t) to its baseband centered around ωk. The goal is to decompose the signal x(t)
into a set of modes uk(t) that are each compact around their respective center frequencies
ωk. By minimizing the sum of the squared norms of the modes’ analytic signals, VMD
ensures that each mode is narrow-band and centered around a specific frequency.

Variational mode extraction (VME) is a specialized version of VMD that extracts a
single mode with a predetermined center frequency. The basic principle behind VME is
to decompose a signal into two parts: the desired mode ud(t) with the predetermined
center frequency ωd and the residual signal ur(t). To properly extract the desired mode,
two conditions must be satisfied [33]: (1) the desired mode must be compacted around its
center frequency; (2) the spectral overlap between the desired mode and the residual signal
should be minimal. Furthermore, the original signal should be restricted by the summation
of the extracted desired mode and the residual signal. The VME method can be described
by the following constrained minimization problem:

min
{ud(t)},{ωd},{ur(t)}

{αJ1 + J2}

s.t. ud(t) + ur(t) = x(t)
, (2)

J1 =

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ ud(t)

]
e−jωdt

∥∥∥∥2

2
, (3)

J2 = ∥β(t) ∗ ur(t)∥2
2, (4)

where β(t) denotes the impulse response of the filter, which is expressed as the following
frequency response used to the residual signal:

β(ω) =
1

α(ω − ωd)
2 , (5)

where α in Equations (2) and (5) is the penalty parameter for controlling the balance
between J1 (represents the compactness of the desired mode) and J2 (represents the spectral
overlap between the desired mode and residual signal).
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Considering a quadratic penalty term and a Lagrange multiplier λ(t), Equation (2)
can be modified as follows,

L(ud, ωd, ur, λ) = α
∥∥∥∂t

[(
δ(t) + j

πt

)
∗ ud(t)

]
e−jωdt

∥∥∥2

2
+ ∥β(t) ∗ ur(t)∥2

2

+∥x(t)− (ud(t) + ur(t))∥2
2 + ⟨λ(t), x(t)− (ud(t) + ur(t))⟩

. (6)

This minimization problem, like many VMD-based methods, may be addressed using
the alternate direction method of multipliers algorithm (ADMM), which can convert a
complex optimization problem [25,26,29,30]. The extracted mode, its corresponding cen-
ter frequency, and the Lagrangian multiplier λ are constantly updated by the following
Equations (7), (8) and (9), respectively, until the termination condition is fulfilled.

ûn+1
d (ω) =

x̂(ω) + α2(ω − ωn+1
d )

4
ûn

d(ω) + λ̂(ω)/2[
1 + α2(ω − ωn

d )
4
][

1 + 2α(ω − ωn
d )

2
] , (7)

ωn+1
d =

∫ ∞
0 ω

∣∣∣ûn+1
d (ω)

∣∣∣2dω∫ ∞
0

∣∣∣ûn+1
d (ω)

∣∣∣2dω

, (8)

λ̂n+1 = λ̂n + τ

 x̂(ω)− ûn+1
d (ω)

1 + α2(ω − ωn+1
d )

4

. (9)

Finally, the above iteration terminates when the convergence condition is satisfied,∥∥∥ûn+1
d − ûn

d

∥∥∥2

2∥∥ûn
d

∥∥2
2

< ε, (10)

where ûn
d(ω) and ωn

d represent the obtained desired mode and the center frequency in
the n-th iteration, respectively. x̂(ω) is Fourier transforms for the original signal. τ is
one update parameter that is commonly preset to 0 to ensure the algorithm converges
effectively. Another update parameter ε, which controls the reconstruction accuracy of
the VME decomposition, is often set to a very tiny positive value (e.g., 1 × 10−7 in the
following tests). The penalty parameter α and initial center frequency ωd are important
input parameters. Particularly, α determines the bandwidth of the desired mode, and a
smaller value of α can yield a larger bandwidth.

2.2. Multivariate Variational Mode Extraction (MVME)

Multivariate variational mode decomposition (MVMD) is an extension of the standard
variational mode decomposition (VMD) designed to handle multichannel or multivariate
data. The goal of multivariate variational mode decomposition (MVMD) is to decompose a
multivariate signal into a set of intrinsic mode functions (IMFs) that are common across
all channels, ensuring that each mode has a narrow bandwidth and a specific center
frequency [23]. Inspired by MVMD, multivariate VME (MVME) is proposed for extracting
desired multivariate modulated oscillations ud(t), ([ud,1(t), ud,2(t), . . . , ud,C(t)]) from input
data x(t), ([x1(t), x2(t), . . . , xC(t)]) containing C number of data channels. The constrained
optimization problem for MVME can be described according to Equation (2) as:

min
{ud(t)},{ωd},{ur(t)}

{αJ1 + J2}

s.t. ud(t) + ur(t) = x(t)
, (11)

J1 =

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ ud(t)

]
e−jωdt

∥∥∥∥2

2
, (12)
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J2 = ∥β(t) ∗ ur(t)∥2
2. (13)

Considering a quadratic penalty term and a Lagrange multiplier, Equation (11) can be
modified as follows,

L(ud, ωd, ur,λ) = αJ1 + J2

+∥x(t)− (ud(t) + ur(t))∥2
2 + ⟨λ(t), x(t)− (ud(t) + ur(t))⟩

(14)

The extracted mode and its corresponding center frequency are constantly updated by
Equations (16) and (17), respectively, until the termination condition is fulfilled.

ûn+1
d,c (ω) =

x̂c(ω) + α2(ω − ωn+1
d )

4
ûn

d,c(ω) + λ̂n
c (ω)

2[
1 + α2(ω − ωn+1

d )
4][[

1 + 2α(ω − ωn
d )

2
]] , (15)

ωn+1
d =

∑
c

∫ ∞
0 ω

∣∣∣ûn+1
d,c (ω)

∣∣∣2dω

∑
c

∫ ∞
0

∣∣∣ûn+1
d,c (ω)

∣∣∣2dω

. (16)

Finally, the above iteration terminates when the convergence condition is satisfied,∥∥∥ûn+1
d,c − ûn

d,c

∥∥∥2

2∥∥∥ûn
d,c

∥∥∥2

2

< ε, (17)

where c is the channel number of data.

2.3. The Proposed Interference Elimination Method

In the application of seismic interference elimination, the desired modes are the in-
terferences produced by the mechanical vibrations or power facilities. As mentioned, the
initial center frequencies and the desired modes’ penalty parameters have a significant
impact on the extraction effect of MVME. The fundamental goal of the proposed interfer-
ence elimination method is to identify and mitigate unwanted noise or signals that may
obscure or distort the effective seismic signal. It is important to maximize the separation of
effective seismic signals from interference noise to ensure that the desired mode contains
complete and relatively pure interference through adopting an appropriate initial value
of ωd and penalty parameter α. The interference produced by mechanical vibrations or
power facilities often has stable dominant frequencies that last for a long time. Therefore,
we first identify the frequency components that need to be eliminated from the recordings,
and then adjust the penalty parameters to achieve the optimal de-noising result.

To identify the frequency components in time sequence recording, frequency-based
and time-frequency-based methods are commonly used, such as the Fourier transform
(FT), autoregressive (AR) modeling, short-time Fourier transform (STFT), and wavelet
transform (WT). In this study, the value of ωd was selected using synchrosqueezing-based
time-frequency analysis (SST). This advanced method enhances the resolution of time-
frequency representations by building on traditional transforms like the STFT or WT. It
reassigns the time-frequency coefficients to sharpen the representation, producing a more
precise and concentrated time-frequency representation, making it easier to identify and
interpret signal components [38–40]. The S/N of the target seismic signal after removing
interferences is used to favor the optimal value α from a range of values. The S/N is
calculated using the following equation,

S/N = 20 log10

(
As

An

)
, (18)
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where As and An represent the root-mean-square amplitudes in a time window of seismic
signals and background noise, respectively.

The process of the proposed method is summarized as follows:

(1) Determine the number (M) and the frequencies (w1, w2, . . ., wM, sorted by energy
level) of pending strong interferences according to the seismic recordings X(t);

(2) Set m = 1, the range and step of the penalty parameter (αmin, αmax, ∆α), and define
X’(t) = X(t);

(3) Decompose the seismic data using MVME with the initial frequency wm and a series
of penalty parameters. Calculate the S/Ns of seismic signals in the residual part and
determine the optimal value αm of penalty parameter according to the maximum of
S/Ns.

(4) Extract the m-th interference noise from seismic data using MVME with the optimal
penalty parameter αm. Define the m-th interference as um(t) (um(t) = [um,1(t), . . .
um,c(t), . . ., um,C(t)]; c represents the channel. The residual signal after removing m-th
interference can be obtained by X’(t) = X(t) − um(t);

(5) If m < M, increment m by 1 and repeat steps (3) and (4); Otherwise, go to step (6).
(6) Finally, X’(t) is the de-noised seismic record which reduces the interferences.

Figure 1 illustrates the flowchart of the proposed interference elimination method.
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3. Numerical Analysis

In this section, we evaluated the performance of the proposed method using synthetic
data. The synthetic data were composed of a Ricker wavelet (regarded as the seismic signal)
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with the peak frequency of 50 Hz (Figure 2a), a non-stationary signal (regarded as the
interference noise) (Figure 2b), and Gaussian white noise n(t) with a variance of 0.1:

x(t) = A
[

signal3(t)
signal4(t)

]
+ n(t)

signal3(t) = (1 − 2(π f (t − t0))
2)e−(π f (t−t0))

2
, t0 = 500

signal4(t) = (1 + 0.4sin(5πt)) ∗ cos(2π25t + 6πt2)

. (19)Sensors 2024, 24, x FOR PEER REVIEW 8 of 20 
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Figure 2. Waveforms of (a) the 3-C seismic signal, (b) the 3-C interference noise, and (c) the synthetic
data. (d) The time-frequency analysis result of the 1st component data. The red lines in (c) indicate
the seismic arrival.

The amplitude ratios of the seismic signal and interference noise on the 3-C record
were set to 1:2:3 and 5:4:3 in mixing matrix A, respectively.

We investigated the effects of the penalty parameter and initial center frequency on
MVME performance. From the time-frequency analysis result (as shown in Figure 2d), it
is evident that there was a strong interference in the record with a dominant frequency
of about 26 Hz. To find the optimal α value, we fixed the initial center frequency at 26
Hz and initialized α with a value of 2000, increasing it in steps of 2000 up to 200,000. We
extracted and removed the interference signals using MVME with the predefined center
frequencies. The optimal penalty parameter was determined by maximizing the S/N of
the de-noised signals within a window of 40 samples following seismic arrival. When
the penalty parameter was set to 12,400, the de-noised results were optimal, as shown
in Figure 3. Theoretically, α determines the bandwidth of the desired mode; a smaller α
yields a larger bandwidth, while a larger α yields a smaller bandwidth. The processing
results using different penalty parameters are shown in Figure 4, in which small α indicates
underprocessing and large α indicates overprocessing.

In addition, we compared the effect of different initial center frequencies on the
extraction results by fixing α = 124,000. With ωd ranging from 15 to 30 Hz, we calculated
and compared the S/Ns of the de-noised signals and the final center frequency after
iteration. As long as the ωd value is estimated within an appropriate range, MVME exhibits
consistent performance for interference extraction. The results, shown in Figure 5, indicate
that the initial center frequency had a negligible effect on the results. In practice, the time-
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frequency-based method can help identify the range of ωd, allowing for easy determination
of an acceptable or optimal value of ωd.
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Figure 5. Comparison of the S/Ns (a) and the final center frequencies (b) using MVME with different
initial center frequencies.

We also processed each of the three components using the VME method with identical
parameters and the optimal α value. The processing results are presented in Figure 6a,b.
Unlike the extraction results of components 2 and 3, signal component 1 showed a signifi-
cant discrepancy compared to the actual signal, leading the underprocessing for the seismic
wavelet signal. This discrepancy arose from variations in the energy distribution of the
signal, influenced by differences in optimization outcomes. A comparison with the results
shown in Figure 4c,d indicates that the MVME method was more effective at achieving
synchronous analysis of multitrace data than the VME method.
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α = 124,000. (a) The extracted interference noise. (b) The de-noised signals. The black and red lines
are the real signals in the synthetic data and the processing results via the VME method, respectively.

For comparison, we also used the conventional notch filters and synchrosqueezing
transform method (SST) to eliminate the interferences. In the SST method, we identified
ridges in the magnitudes of the synchrosqueezed transform and reconstructed them along
the ridge to isolate and analyze modes. Figure 7a,c shows the removed interferences and
de-noised signals using the notch filter, while Figure 7b,d presents the results using the SST
method. It is evident that the notch filter failed to completely eliminate the interferences.
Specifically, we noted that while the SST method was effective in separating seismic wavelet
signals from interferences, it altered the shape and amplitude of the wavelet signal, as
observed in Figure 7c,d. Although the de-noised waveforms obtained using the SST method
appear superior to those obtained with the MVME method (Figure 4c,d), the SST method
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was deficient in preserving the amplitude of the seismic wavelet signals compared to the
MVME method.
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Figure 7. The processing results using the notch filter and the SST method. (a,b) The removed
interferences via notch filter and SST method, respectively. (c,d) The de-noised signals via notch filter
and SST method, respectively. The black and red lines are the real signals in the synthetic data and
the processing results, respectively.

Quantitative evaluation of amplitude-preserving de-noising is crucial for assessing
the performance of different methods. In this study, we used different absolute amplitudes
for the seismic signals in this example and generated a series of synthetic 3-C records with
the S/Ns ranging from −0.17 dB to 8.27 dB (as shown in Figure 8). We calculated the
S/Ns after interference elimination and the root mean square (RMS) errors between the de-
noised signals and noise-free data to demonstrate the effects of the above three methods on
preserving the seismic signal. We calculated the RMS errors using the following equation:

RMS =

√√√√ 1
N

N

∑
i=1

(Xclean(i)− Xdenoised(i))
2, (20)

where Xclean and Xdenoised are the free-noise recording and de-noised recording, respectively.
N is the number of samples in the modeled recording. Additionally, we calculated the
polarization parameters of the 3-C seismic signal using the following equations,

L = (λ1−λ2)
2+(λ2−λ3)

2+(λ1−λ3)
2

2(λ1+λ2+λ3)
2

θ = arctan
(

e1y
e1x

)
ϕ = arccos(e1z)

, (21)

where L is the rectilinearity, θ and ϕ are the polarization angles (θ represents the azimuth
angle and ϕ represents the inclination angle). λ1, λ2, λ3(λ1 > λ2 > λ3) are the eigenvalues
of a covariance matrix constructed using windowed waveforms at seismic arrival, and[
e1x, e1y, e1z

]
is the eigenvector corresponding to the largest eigenvalue λ1. These polar-

ization parameters help in understanding the direction of the seismic wave propagation,
which is crucial for accurate seismic/microseismic data interpretation.
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Figure 8 show the comparison of the processing results of three methods for synthetic
data with varying S/Ns. The notch filter failed to completely remove the interferences
and performed poorly for recordings with low S/Ns. Since synthetic 3-C records only
changed the amplitude of the seismic wavelet signal without changing the amplitude of
the interferences, the RMS error after notch filter de-noising at different S/Ns did not vary
significantly (Figure 8b), being primarily affected by random noise. Both the SST method
and the MVME exhibited superior performance in terms of rectilinearities, with values close
to 1. Although the SST method achieved a high S/N, it resulted in a loss of effective seismic
signal, as evidenced by the RMS error. In addition, this method affected the rectilinearities
and polarization angles of the three-component seismic signals. The proposed method,
on the other hand, enhanced the S/N with a reduced RMS error of the effective seismic
signal. Furthermore, the polarization characteristics after removing interference closely
matched the actual values (represented by black dotted lines). These observations indicate
that the proposed method can effectively remove the strong interferences while preserving
the seismic signals.

4. Field Data Test

In this section, we applied the proposed method to two field datasets. The field
data underwent a preliminary processing phase, which included receiver orientation and
band-pass filtering. The selection of frequency range for band-pass filtering was tailored to
align with the specific characteristics of the field data to eliminate the low-frequency and
high-frequency noises. By focusing on the [5, 200] Hz range, we ensured that the filtering
process targeted the frequencies carrying the most relevant information for our analysis.
After removing the mechanical vibration interferences, we further calculated and compared
the S/Ns and the rectilinearities of the remaining signals to demonstrate the effectiveness
of the proposed method.
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4.1. Active Seismic Data Example

The first field dataset was acquired from a seismic monitoring survey in a heavy
oil field steam-assisted gravity drainage (SAGD) project in Xinjiang, China. A network
of 200 buried 3-C receivers installed in shallow wells with a depth of about 10 m and a
sampling interval of 1 ms was utilized for monitoring. The acquisition system was located
above the horizontal SAGD wells, close to operational oil pumps. The target reservoir
area was covered by 2668 active sources for seismic reflection imaging. Figure 9 shows the
survey geometry in this case. Figure 10a shows the waveforms of an active shot recorded
by three adjacent receivers, in which the red line indicates the manually picked direct
P-wave arrival time. It shows that there was a strong interference noise with the dominant
frequency of about 15 Hz (as shown in Figure 10b, especially in the horizontal components)
in these data. Based on the distance of the receivers relative to the wellheads, it was
confirmed that this low-frequency interference was generated by the nearby operational
oil pump.
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(a) (b) 

Figure 9. The planar view of the active seismic survey geometry. Black dots, blue triangles, and red
circles represent the location of active seismic shots, 3-C receivers, and wellheads, respectively. The
red lines indicate the horizontal well trajectories.
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Figure 10. The 3-C seismic data from a SAGD seismic monitoring project. (a) The 3-C waveforms of
an active shot. (b) The time-frequency analysis result of 1-N component data. The red lines in (a)
indicate the manually picked direct P-wave arrival times.

We applied the proposed method to reduce the strong interference noise, the initial
center frequency ωd was set to 15, and the penalty parameter α varies from 1000 to 100,000
with an interval of 1000. In this case, the optimal penalty parameter was calculated by
taking the maximum value of S/N of the de-noised signals in the window following
seismic arrivals. Considering that the target reservoir was located at a depth of 300 m, a
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6 s time window was selected to retain as much reflected wave information as possible.
The optimal penalty parameter was determined by maximizing the S/N of the de-noised
signals. When the penalty parameter was set to 29,000, the de-noised results were optimal.
Waveforms in Figure 11a,b show the de-noised signals and the removed interferences
via the proposed method. It can be seen from the de-noised waveforms that seismic
signals were much clearer, particularly in the horizontal components. To quantitatively
analyze the effectiveness of the de-noising, we calculated the S/Ns and rectilinearities of
the direct P-wave in 3-C seismic signals. The time window used for these calculations
encompassed 50 sampling numbers after the arrival of the direct P-wave. The results are
listed in Tables 1 and 2.
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Figure 11. The processed results using the proposed method. (a,b) The de-noised signals and the
removed interferences, respectively. The amplitude ranges of waveforms are the same. The red lines
in (a) indicate the manually picked direct P-wave arrival times.

Table 1. Comparison of the S/Ns (dB) of the direct P-wave in the de-noised seismic signals using
different methods.

Receiver No. Raw Records Notch Filter SST The Proposed Method

1 9.80 16.52 23.33 23.60
2 6.52 16.67 24.72 24.40
3 5.56 18.96 25.50 26.58

Table 2. Comparison of the rectilinearities of the direct P-wave in the de-noised seismic signals using
different methods.

Receiver No. Raw Records Notch Filter SST The Proposed Method

1 0.47 0.85 0.88 0.89
2 0.13 0.92 0.94 0.95
3 0.24 0.95 0.99 0.98

For comparison, the notch filter and SST method were also used to eliminate the
interferences. Waveforms in Figure 12a,b show the de-noised signals and the removed
interferences via the notch filter, while waveforms in Figure 12c,d show the results ob-
tained using the SST method. Both methods were capable of suppressing the interference
noise, as evidenced by the increased S/Ns (Table 1) and the improved rectilinearities of
the direct P-waves in the de-noised signals (Table 2). While the de-noising results of the
three methods were acceptable in different scenarios, a closer examination of the de-noised
waveforms revealed distinct differences. The results from the notch filter still contained
residual interferences, indicating underprocessing (as shown in Figure 12a). Addition-
ally, the SST method tended to overprocess, removing some effective seismic signals with
frequencies close to the interference. Furthermore, the processing results show varying
de-noising degrees across the 3C records, such as the 1Z and 2Z components in Figure 12c.
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By comparison, the proposed method achieved superior results in suppressing the interfer-
ences and preserving seismic signals. It effectively removed the strong interferences while
minimizing the loss of useful seismic information, thus providing a more balanced and
accurate de-noising solution.
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Figure 12. The processing results using the notch filter and SST method. (a,b) The de-noised signals
and the removed interferences via notch filter, respectively. (c,d) The de-noised signals and the
removed interferences via the SST method, respectively. The red lines in (a,c) indicate the manually
picked direct P-wave arrival times.

4.2. Microseismic Data Example

The second field dataset was recorded from microseismic monitoring of a hydraulic
fracturing job in a shale gas play in Chongqing, China. A temporary string composed of
14 levels of triaxle 15-Hz geophones was deployed in the inclined section of a horizontal
well to monitor the stimulations. The data sampling interval was 0.25 ms, and the receiver
spacing interval was 10 m. Figure 13 shows the survey geometry in this case. Since the
wellhead of the monitoring well was close to that of the treatment well, the downhole
geophones continuously recorded fracturing pump vibration signals.
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Figure 14a shows 3-C waveforms of one microseismic event recorded on the shallowest
receiver. It is obvious that the arrivals of direct P- and S-waves were masked by strong
interferences. Via time-frequency analysis of N-component data, the dominant frequencies
of the interference noises in the microseismic recordings were determined. The three
dominating frequencies (60 Hz, 110 Hz and 20 Hz, ranked from strongest to weakest) of
the monitoring data are displayed in the time-frequency representation in Figure 14b.
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Figure 14. The 3-C microseismic data from a hydraulic fracturing downhole monitoring. (a) The 3-C
waveforms of a microseismic event. (b) The time-frequency analysis of N-component data. The red
and blue lines in (a) represent the manually picked P-wave and S-wave arrival times, respectively.

We extracted and removed the above three interference frequencies using the pro-
posed method. Waveforms in Figure 15a,b show the de-noised signals and the removed
interferences via MVME. The arrival of the microseismic signals were more apparent after
removal of interference noise. The time windows for calculating the signal-to-noise ratio
(S/N) and rectilinearity are defined as follows: for the P-wave, the time window was
100 sampling numbers after the P-wave arrival; for the S-wave, the time window was
200 sampling numbers after the S-wave arrival. The S/N calculation time window for the
entire microseismic event was 2000 sampling numbers after the P-wave arrival. We can
see from Tables 3 and 4 that the S/Ns and the rectilinearities of the microseismic signals
and P-wave were also increased using the proposed method. We also applied the notch
filters and SST method to the same dataset for comparison. The de-noised signals and the
removed interferences obtained using the notch filters are shown in Figure 15c,d, and the
results obtained using the SST method are shown in Figure 15e,f. Both methods struggled
to eliminate the interferences, which was reflected in the S/Ns (as shown in Table 3) and
rectilinearities of the P-wave (as shown in Table 4). Although the notch filter was applied
with carefully selected parameters, it failed to eliminate interferences in two horizontal
components. The de-noised signals indicated that the notch filter resulted in insufficient
processing and had limited improvement in the S/N of the microseismic event. Although
the SST method significantly enhanced the S/Ns, the processing results show that the
amplitudes of the P-waves were corrupted (as shown in Figure 15f). In comparison, the pro-
posed method demonstrated more pronounced advantages in de-noising effectiveness and
preserving the effective P-wave signal. The actual data contained weak effective S-wave
signals that overlapped significantly in frequency with interference signals and it poses
a challenging problem for current de-noising methods. The methods mentioned in this
paper showed no significant improvement in de-noising under such conditions. However,
after applying the proposed method, the S-wave arrival became more apparent, aiding in
accurate source localization in subsequent processing.



Sensors 2024, 24, 7399 16 of 18

Sensors 2024, 24, x FOR PEER REVIEW 17 of 20 
 

 

tained using the SST method are shown in Figure 15e,f. Both methods struggled to elimi-

nate the interferences, which was reflected in the S/Ns (as shown in Table 3) and rectilin-

earities of the P-wave (as shown in Table 4). Although the notch filter was applied with 

carefully selected parameters, it failed to eliminate interferences in two horizontal com-

ponents. The de-noised signals indicated that the notch filter resulted in insufficient pro-

cessing and had limited improvement in the S/N of the microseismic event. Although the 

SST method significantly enhanced the S/Ns, the processing results show that the ampli-

tudes of the P-waves were corrupted (as shown in Figure 15f). In comparison, the pro-

posed method demonstrated more pronounced advantages in de-noising effectiveness 

and preserving the effective P-wave signal. The actual data contained weak effective S-

wave signals that overlapped significantly in frequency with interference signals and it 

poses a challenging problem for current de-noising methods. The methods mentioned in 

this paper showed no significant improvement in de-noising under such conditions. How-

ever, after applying the proposed method, the S-wave arrival became more apparent, aid-

ing in accurate source localization in subsequent processing. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 15. The processing results using different methods. (a,b) The de-noised signals and the re-

moved interferences via the proposed methods, respectively. (c,d) The de-noised signals and the 

removed interferences via notch filter, respectively. (e,f) The de-noised signals and the removed 

interferences via the SST method, respectively. The red and blue lines in (a,c,e) represent the man-

ually picked P-wave and S-wave arrival times, respectively. 

Figure 15. The processing results using different methods. (a,b) The de-noised signals and the
removed interferences via the proposed methods, respectively. (c,d) The de-noised signals and the
removed interferences via notch filter, respectively. (e,f) The de-noised signals and the removed
interferences via the SST method, respectively. The red and blue lines in (a,c,e) represent the manually
picked P-wave and S-wave arrival times, respectively.

Table 3. Comparison of the S/Ns (dB) of the de-noised microseismic signals using different methods.

Raw Records Notch Filter SST The Proposed Method

Microseismic
event −0.46 6.58 12.49 13.39

P-wave 5.10 13.51 11.58 15.38
S-wave 5.80 6.26 0.75 6.61

Table 4. Comparison of the rectilinearities of the de-noised microseismic signals using different methods.

Raw Records Notch Filter SST The Proposed Method

P-wave 0.52 0.82 0.64 0.81
S-wave 0.28 0.27 0.18 0.27

5. Conclusions

Long-duration strong interferences caused by mechanical vibrations or power facilities
during active and passive seismic surveys contaminate the seismic signals and must be
removed from the raw data. In this paper, we presented an interference noise suppression
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method for multitrace seismic/microseismic data. The proposed method employs MVME
to extract and separate individual modes from seismic records based on the approximate
center frequencies and optimal penalty parameters. Testing of the proposed method on
synthetic data have demonstrated its effectiveness in removing the mechanical vibration
interference noise. In addition, we found that a suitable range of initial center frequencies
had nearly no impact on the interference extraction via the proposed method. The penalty
parameters, which mainly affect the complete removal of interference noise, can be opti-
mized based on the S/N of the seismic signals after de-noising. By applying the proposed
method to field datasets, we have shown that the proposed method performed better than
conventional methods in suppressing the interferences and preserving seismic signals.
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39. Thakur, G.; Brevdo, E.; Fučkar, N.S.; Wu, H.T. The synchrosqueezing algorithm for time-varying spectral analysis: Robustness
properties and new paleoclimate applications. Signal Process. 2013, 93, 1079–1094. [CrossRef]
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