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Abstract: During the loading process, significant external position disturbances occur in the electro–
hydraulic load simulation system. To address these position disturbances and effectively mitigate the
impact of uncertainty on system performance, this paper first treats model parameter uncertainty and
external disturbances as lumped disturbances. The various states of the servo valve and the pressures
within the hydraulic cylinder chambers are then examined. Building on this foundation, the paper
proposes a nonlinear multi-mode variable structure independent load port electro–hydraulic load
simulation system that is tailored for specific loading conditions. Secondly, in light of the significant
motion disturbances present, this paper proposes an integral sliding mode active disturbance rejection
composite control strategy that is based on fixed-time convergence. Based on the structure of the
active disturbance rejection control framework, the fixed-time integral sliding mode and active
disturbance rejection control algorithms are integrated. An extended state observer is designed
to accurately estimate the lumped disturbance, effectively compensating for it to achieve precise
loading of the independent load port electro–hydraulic load simulation system. The stability of the
designed controller is also demonstrated. The results of the simulation research indicate that when the
command input is a step signal, the pressure control accuracy under the composite control strategy
is 99.94%, 99.86%, and 99.76% for disturbance frequencies of 1 Hz, 3 Hz, and 5 Hz, respectively.
Conversely, when the command input is a sinusoidal signal, the pressure control accuracy remains
high, measuring 99.94%, 99.8%, and 99.6% under the same disturbance frequencies. Furthermore, the
simulation demonstrates that the influence of sensor random noise on the system remains within
acceptable limits, highlighting the effective filtering capabilities of the extended state observer. This
research establishes a solid foundation for the collaborative control of load ports and the engineering
application of the independent load port electro–hydraulic load simulation system.

Keywords: independent load port; electro–hydraulic servo system; sliding mode control; pressure control

1. Introduction

Electro–hydraulic servo systems have the advantages of fast responses, high con-
trol accuracy, and easy equipment maintenance and have been widely used in industry,
aerospace, and other fields [1,2]. The design of the motion controller for the servo system is
challenging due to numerous model uncertainties [3,4], including parameter uncertainties,
unmodeled dynamics, and external disturbances. This complexity represents a significant
topic of current research.

To enhance the control performance of electro–hydraulic servo systems, numerous ad-
vanced control strategies have been proposed, and extensive research has been conducted
by scholars from various countries. Generally speaking, robust control [5,6] can ensure
the specified output tracking performance but requires a large feedback gain to ensure
high control accuracy in practical applications. Adaptive control [7,8] can aptly solve the
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problem of system parameter uncertainty and achieve the online estimation of unknown pa-
rameters by designing parameter adaptive laws. The adaptive robust control strategy [9,10]
develops nonlinear robust terms to effectively counter external disturbances while simulta-
neously reducing feedback gain through the adaptive adjustment of system parameters.
This approach ensures optimal transient and steady-state control performance. Adaptive
disturbance rejection control [11,12] integrates the benefits of both adaptive control and
active disturbance rejection control. This approach reduces the adaptive feedback gain
by designing the total disturbance of the uncertainty within the extended state observer
(ESO) model and compensating for it. Due to its excellent approximation characteristics,
the neural network [13,14] possesses adaptive and self-learning capabilities, enabling it to
perform nonlinear compensation and model identification. As a result, it is increasingly em-
ployed to address nonlinear problems within various systems. Sliding mode control [15,16]
can theoretically achieve asymptotic tracking control but usually results in discontinuous
control inputs and jitter problems in the physical system. Model predictive control [17,18]
has been favored by many scholars due to its ability to explicitly handle constraints and
system uncertainties and has been widely used in electromechanical servo systems. The
tracking error of the servo system must not only achieve a specified steady-state accuracy
but must also adhere to certain transient performance indicators, such as convergence
speed and overshoot. Preset performance control [19,20] offers an improved solution for
enhancing the transient performance of the system.

The traditional hydraulic system employs a single-spool servo valve to regulate the
oil port of the hydraulic actuator. Although this configuration meets the desired control
performance, it results in repeated throttling losses, which complicates the optimization
of energy-saving characteristics. To address the recurring throttling losses prevalent in
traditional hydraulic systems, BACKÉ [21] proposed an independent load port control
system. This system employs four cartridge valves to independently regulate the inlet
and outlet oil circuits of the hydraulic actuator, thereby facilitating both the positive
and negative aspects of motion control for the hydraulic actuator. On this basis, many
scholars from various countries have conducted research on principle configuration, motion
control, fault diagnosis, and other aspects [22–26]. To reduce pressure losses, Li et al. [27]
proposed an independent metering valve-based configuration driven by servo pump
control. Wang et al. [28], pursuing efficiency improvement, proposed a differential drive
collaborative (DDCS) control for vehicles with independent-wheel drive. In another paper,
Kogler et al. [29] realized an IM concept of open-loop control cylinder drive, which was
combined with a human operator, constituting the so-called cybernetic system (CPS).
Nguyen et al. [30] implemented a novel independent metering valve system (NIMV) to
reduce energy consumption. Koivumäki et al. [31] used a separate meter-in–meter-out
(SMISMO) setup, enabling the independent metering (pressure control) of each chamber
actuator. Abuowda et al. [32] reviewed independent metering advanced technology used
in hydraulic systems.

Based on the independent load port as a novel valve group control technology, this
valve group employs dual valve cores to independently regulate the throttling area of both
the inlet and outlet. This design eliminates the rigid linkage between the two chambers of
the hydraulic cylinder, thereby enhancing the degree of control freedom. Furthermore, it
allows for the separate control of pressure in the two chambers of the hydraulic cylinder,
facilitating output loading while simultaneously considering energy-saving performance.
In view of this, this paper proposes an independent load port electro–hydraulic load
simulation system. To address the challenges posed by uncertain nonlinearity, unmea-
surable states, and loading accuracy in the electro–hydraulic load simulation system, a
complex multi-mode variable structure mathematical model was initially developed for
the independent load port electro–hydraulic load simulation system, which is subject to
disturbances from external motion. The traditional Active Disturbance Rejection Control
(ADRC) framework exhibits certain limitations, including inadequate tracking performance
in the loading control of electro–hydraulic load simulation systems and the occurrence of
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chattering in sliding mode control. To address these issues, this paper introduces an integral
sliding mode active disturbance rejection composite control strategy based on fixed-time
convergence, referred to as FISMADRC. By designing an extended state observer, the
system state and external disturbances can be accurately estimated, thereby addressing the
unmeasured aspects of the system state while simultaneously compensating for the effects
of time-varying disturbances on control performance. The effectiveness of the proposed
independent load port electro–hydraulic load simulation system, along with the designed
composite controller, is demonstrated through simulation comparisons.

2. Variable Structure Independent Load Port Model

The working principle of the independent load port electro–hydraulic load simulation
system is illustrated in Figure 1. On the left side, the electro–hydraulic loading system
comprises a loading servo valve, a loading cylinder, and a pressure sensor, among other
components, and operates within a closed-loop feedback mechanism. Conversely, the
right side features the linear actuator position system, which also employs a closed-loop
feedback system facilitated by a displacement sensor. The electro–hydraulic loading system
is rigidly connected to the linear actuator. Within this system, the displacement of the
linear actuator represents a significant position disturbance to the loading system. The
independent load port valve control system utilizes control technology that allows for
the independent adjustment of the throttling areas of both the inlet and outlet valves. To
investigate the fundamental theory of the independent load port electro–hydraulic load
simulation system, this article intentionally excludes considerations regarding the pressure
coordination of the hydraulic cylinder’s right chamber and the control of the output force
of the hydraulic cylinder. In this context, u1 represents the input signal of the servo valve,
ps denotes the system pressure, p1 refers to the pressure in the left chamber of the hydraulic
cylinder, and p1 is also the control target examined in this study.

Figure 1. Schematic view of independent load port electro–hydraulic load simulation system model
(1—tank, 2—hydraulic pump, 3—relief valve, 4—electro–hydraulic servo valve, 5—independent load
port electro–hydraulic load simulation system controller, 6—pressure sensor, 7—hydraulic cylinder,
8—displacement sensor, 9—linear actuator, 10—linear actuator controller).

In this article, the right chamber of the hydraulic cylinder is connected to the oil-return
pipeline, while the servo valve manages the pressure control of the electro–hydraulic
load simulation system via an independent load port. The pressure variations in the left
chamber of the hydraulic cylinder result in complex working conditions for the independent
load port electro–hydraulic load simulation system, characterized by multi-mode variable
structures. In working condition 1, the system is considered to be under normal operating
conditions when the system pressure pS exceeds the pressure p1 in the left chamber of the
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hydraulic cylinder. In working condition 2, when the spool of the servo valve is actuated
in the forward direction but the system pressure pS falls below the pressure p1 in the left
chamber, the oil within the left chamber is forcibly discharged through the oil inlet of the
servo valve, resulting in a release of pressure. In working condition 3, when the piston
rod of the hydraulic cylinder is subjected to an external force, the pressure p1 in the left
chamber experiences a rapid increase, significantly surpassing the system pressure pS.
Consequently, the spool of the servo valve opens in the reverse direction, allowing the oil
from the left chamber to flow back to the tank.

According to the working principle of the multi-mode variable structure of the inde-
pendent load port electro–hydraulic load simulation system, a nonlinear mathematical
model of the system is established. Equation (1) represents the flow equation of the servo
valve when the spool is opened in the forward direction and the system pressure pS exceeds
the chamber pressure p1. Equation (2) describes the flow equation of the servo valve when
the spool is again opened in the forward direction, but in this case, the chamber pressure p1
is greater than the oil source pressure pS. Finally, Equation (3) outlines the flow equation of
the servo valve when the valve core is opened in the reverse direction, specifically when
the chamber pressure p1 surpasses the return oil back pressure.{

xv > 0, ps > p1

Q1 = Cdwxv

√
2(ps−p1)

ρ

(1)

{
xv > 0, ps < p1

Q1 = −Cdwxv

√
2(p1−ps)

ρ

(2)

{
xv < 0

Q1 = Cdwxv

√
2p1

ρ

(3)

where Q1 represents the volume flow rate entering the chamber, Cd denotes the valve
port flow coefficient, w indicates the valve opening area gradient, pS refers to the system
pressure, ρ signifies the oil density, and p1 is the pressure in the left chamber.

For a symmetrical hydraulic cylinder, assuming that the initial volumes of the two
chambers loading the cylinder are equal and neglecting external leakage from the cylinder,
the flow continuity equation for the pressure chamber is as follows.

Q1 = A
dy
dt

+
V1

βe

dp1

dt
+ Ctc p1 (4)

where y represents the displacement of the hydraulic cylinder piston rod, A denotes the
effective area of the piston, V1 indicates the total control volume, which encompasses
both the drive chamber and the servo valve pipeline, βe refers to the liquid volume elastic
modulus of the hydraulic fluid, and Ctc signifies the internal leakage coefficient of the
hydraulic cylinder.

We assume that the system state variable is x1 = p1 and the control variable u = xv.
According to Equations (1)–(4), the state equations under different working conditions can
be obtained. {

u > 0, ps > p1
.
x1 = −βeCtc

V1+Ay x1 +
βeCdw
V1+Ay

√
2(ps−x1)

ρ u − βe A
V1+Ay

.
y

(5)

{
u > 0, ps < p1

.
x1 = −βeCtc

V1+Ay x1 − βeCdw
V1+Ay

√
2(x1−ps)

ρ u − βe A
V1+Ay

.
y

(6)

{
u < 0

.
x1 = −βeCtc

V1+Ay x1 +
βeCdw
V1+Ay

√
2x1

ρ u − βe A
V1+Ay

.
y

(7)
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3. Controller Design

This study presents the design of a controller for the left chamber pressure p1 of the
independent load port electro–hydraulic load simulation system. After analyzing and
organizing Equations (5)–(7), the state equation for the independent load port electro–
hydraulic load simulation system can be expressed in a unified form.{ .

x1 = f (x1) + bu
y1 = x1

(8)

where y1 is the output of the system state variable, x1 is the state variable of the system,
f (x1) is an item that has nothing to do with the control quantity, u is the control input of
the system, and b is the control compensation factor.

It can be seen from state Equations (5)–(7) of the valve-controlled independent load
port electro–hydraulic load simulation system that f (x1) is as follows:

f (x1) = − βe A
V1 + Ay

.
y − βeCec

V1 + Ay
x1 (9)

It can be seen that it contains motion disturbances and some parameters that may be
uncertain. Under different working conditions, b can be written in the following form:

b = βeCdw
V1+Ay

√
2(ps−x1)

ρ , u > 0, ps > p1

b = −βeCdw
V1+Ay

√
2(x1−ps)

ρ ,u > 0, ps < p1

b = βeCdw
V1+Ay

√
2x1

ρ , u < 0

(10)

In this context, the control item part, denoted as bu, is influenced by the variable b,
which exhibits certain fluctuations. Consequently, the changing component of b can be
considered a disturbance, while the constant component can be represented as b0. It is
important to note that the value of b0 is not unique.

bu = ∆bu + b0u (11)

where ∆b is the uncertainty of the input gain.
We define the tracking error of the left chamber pressure p1 of the independent load

port electro–hydraulic load simulation system as follows:

e(t) = pr1(t)− p1(t) (12)

Among them, pr1(t) is the expected pressure of the left chamber.
For the independent load port electro–hydraulic load simulation system, the pressure-

fixed time integral sliding mode surface of the left cavity is defined as follows:

s(t) = e(t) + c1

∫ t

0
|e|m sign(e)dt + c2

∫ t

0
|e|n sign(e)dt (13)

where c1 > 0, c2 > 0 is the design gain, m > 1, 0 < n < 1.
The first-order differential of the fixed-time integral sliding mode surface of the

pressure in the left cavity is as follows:

.
s(t) =

.
pr1(t)− f (x1)− bu + c1|e|m sign(e) + c2|e|n sign(e) (14)

We select the fixed-time exponential approaching law as follows:

.
s(t) = −εsign(s)− g1|s|r sign(s)− g2|s|φ sign(s) (15)

where ε > 0, g1 > 0, g2 > 0, r > 0, φ > 0.
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Connecting Equations (14) and (15), the pressure control rate of the left chamber of the
hydraulic cylinder can be obtained.

u =
1
b

[ .
pr1(t)− f (x1) + c1|e|m sign(e) + c2|e|n sign(e) + εsign(s)
+g1|s|r sign(s) + g2|s|φ sign(s)

]
(16)

where f (x1) is estimated by the expanded state observer observation of Equation (18).
The expanded state system equation of the system’s state Equation (8) can be written

as follows: 
.
x1 = x2 + b0u
.
x2 = d(t)

y1 = x1

(17)

An expanded state observer of the following form is used:
e = z1 − y1.

z1 = z2 − β1e + b0u
.
z2 = −β2fal(e, α, δ)

(18)

where z1 is the observed value of x1, z2 is the observed value of x2, β1 and β2 are appropriate
parameters, e is the pressure error value, δ is the interval length of the linear segment, α is a
real number from 0 to 1, and fal is a continuous power function with linear segments, as
shown in (19), and is used to avoid high-frequency chatter.

fal(e, α, δ) =

{
e/δa−1, |e| ≤ δ

|e|a sign(e), |e| > δ
(19)

Due to the observation error inherent in the extended state observer, stability issues
arise in the inner loop of active disturbance rejection control, which in turn influences the
permissible range of b0. If the value of b0 is excessively small, the inner control loop of
active disturbance rejection may diverge as a result of an overly high equivalent open-loop
gain. Conversely, if b0 is too large, significant control errors may occur. Considering these
factors comprehensively, this paper adopts the invariant component b0 of b, as specified in
Equation (20), and substitutes it with a constant during the simulation process.

b0 = βeCdω
√

2ps/2V1
√

ρ = 35, 224, 325 (kPa · s)/m (20)

The structural block diagram of the fixed-time convergence integral sliding mode
active disturbance rejection composite controller designed in this section is shown in
Figure 2.

Figure 2. Block diagram of fixed-time integral sliding mode active disturbance rejection compos-
ite control.
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Before performing an analysis of the fixed-time convergent integral sliding mode
active disturbance rejection composite controller, the following lemma is first given:

Lemma 1. For a class of nonlinear systems.

.
x(t) = f (t) (21)

Among them, it is assumed that there is a Lyapunov function V(x) that satisfies.

.
V(x) ≤ −γ1Vδ1(x)− γ2Vδ2(x) (22)

Among these parameters, if the values satisfy conditions γ1 > 0, γ2 > 0, 0 < δ1 < 1,
δ2 > 1, the system is classified as globally fixed-time stable. In this case, the convergence
time T is bounded, and it adheres to the inequality presented in Equation (23).

T ≤ Tmax =
1

γ1(1 − δ1)
+

1
γ2(δ2 − 1)

(23)

In order to prove that the fixed-time integrated sliding mode surface s(t) can converge
to zero in a fixed time, the Lyapunov function is selected as follows:

V1 =
1
2

s2 (24)

Derive Equation (24) and organize it to obtain

.
V1 = s

.
s = s[

.
pr1(t)− f (x1)− bu + c1|e|m sign(e) + c2|e|n sign(e)] (25)

Substituting the designed control rate (16) into Equation (25), the above equation can
be continued to be organized as follows:

.
V1 = s[−εsign(s)− g1|s|r sign(s)− g2|s|φ sign(s)]
≤ s[−g1|s|r sign(s)− g2|s|φ sign(s)]

= −g1(s2)
1
2 (r+1) − g2(s2)

1
2 (φ+1)

= −g1
1
2

1
2 (r+1)

(V1)
1
2 (r+1) − g2

1
2

1
2 (φ+1)

(V1)
1
2 (φ+1) < 0

(26)

It is evident that Equation (26) is always less than zero. According to Lemma 1, the
designed fixed-time convergent integral sliding mode surface s(t) meets the reachability
condition, indicating that the fixed-time (27) is asymptotically stable.

Ts1 ≤ 1

g1
1
2

1
2 (r+1)

(1 − 1
2 (r + 1))

+
1

g2
1
2

1
2 (φ+1)

( 1
2 (φ + 1)− 1)

(27)

To prove the convergence of the tracking error of the system state, we refer to Equa-
tion (27), which indicates that the integral sliding mode variable converges in a fixed
timeframe. When the integral sliding mode variable reaches stability, denoted as s =

.
s = 0,

we can derive the following results:

.
e = −c1|e|m sign(e)− c2|e|n sign(e) (28)

We then select the following Lyapunov function:

V2 =
1
2

e2 (29)
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By taking the derivative of Equation (29) and sorting it out, we can obtain

V2 = e
.
e = e

[
−c1|e|m sign(e)− c2|e|n sign(e)

]
= −c1(e2)

1
2 (m+1) − c2(e2)

1
2 (n+1)

= −c1
1
2

1
2 (m+1)

(V2)
1
2 (m+1) − c2

1
2

1
2 (n+1)

(V2)
1
2 (n+1) < 0

(30)

It can be observed that Equation (30) is consistently less than zero. From Lemma
1, it is evident that the tracking error of the system, governed by the integrated sliding
mode active disturbance rejection composite control strategy with fixed-time convergence,
converges in a fixed time. Specifically, the fixed time (31) is asymptotically stable.

Ts2 ≤ 1

c1
1
2

1
2 (m+1)

(1 − 1
2 (m + 1))

+
1

c2
1
2

1
2 (n+1)

( 1
2 (n + 1)− 1)

(31)

4. Simulation Results and Analysis
4.1. Closed-Loop Pressure Simulation Analysis

It is assumed that the external position disturbance experienced by the indepen-
dent load port electro–hydraulic load simulation system is characterized by sinusoidal
motion. During the simulation process, the position disturbance signal is designated as
xd = 0.01 sin(2πt) (m), with an amplitude of 10 mm. Since the frequency of external posi-
tion disturbances is typically low, a frequency range of 1–5 Hz is selected as it is commonly
utilized in engineering practice. If the frequency value is excessively high, the system
will demand significant energy, necessitating corresponding enhancements to the servo
valve and energy system. Additionally, the displacement of the hydraulic cylinder will be
minimal, resulting in observable vibrations without noticeable displacement.

Under the influence of sinusoidal motion disturbances in the independent load port
of the electro–hydraulic load simulation system, a comparative simulation study was con-
ducted on fixed-time integral sliding mode active disturbance rejection composite control,
PID control, and active disturbance rejection control strategies. The system command sig-
nals are designated as x1 = 5000 kPa and x1 = 5000 sin(2πt) + 8000 kPa, respectively. The
parameter selection and simulation parameters for the system are detailed in Tables 1 and 2.
The closed-loop output pressure and the output pressure error of the system are illustrated
in the figure below.

Table 1. System parameters.

Name Numerical Value

Servo valve flow coefficient Cd = 0.61
Effective area of hydraulic cylinder piston rod A = 0.003434 m2

External leakage coefficient Ctc = 2 × 10−15(m 3 /s)/Pa
Liquid volume elastic modulus of hydraulic fluids βe = 6.9 × 108 Pa

Density of hydraulic fluid ρ = 875 kg/m3

Hydraulic cylinder stroke L = 0.5 m
Maximum valve flow

System pressure
117 L/min

21 MPa

According to the closed-loop pressure curve in Figure 3, the closed-loop pressure
error curve in Figure 4, and the controller output in Figure 5, we illustrate that when the
disturbance signal frequency is set to 1 Hz, the composite control of fixed-time integral
sliding mode auto-disturbance rejection results in a rise time of approximately 0.03 s for
the pressure to reach its steady-state value. Notably, prior to achieving a steady state, the
pressure exhibits significant fluctuations at 0.01 s. Following this initial period, the pressure
stabilizes without overshooting, transitioning smoothly to the steady-state pressure. Once
the pressure attains the steady-state condition, it closely aligns with the command pressure
curve. The steady-state pressure shows minimal adjustment, with a steady-state error
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of approximately 3 kPa, indicating a pressure control accuracy of 99.94%. Under active
disturbance rejection control, the rise time for the pressure to reach the steady-state value is
approximately 0.035 s. There is a fluctuation observed at 0.0025 s as the pressure approaches
the steady-state value, followed by a smooth transition to steady-state pressure. Once
steady-state pressure is attained, the pressure overshoots by approximately 12 kPa, while
still maintaining a high level of accuracy with a pressure control accuracy of 99.76%. Under
PID control, the rise time for the pressure to reach a steady state is approximately 0.06 s. The
pressure exhibits continuous fluctuations prior to achieving a steady state. Once a steady
state is attained, the maximum pressure overshoot is recorded at 140 kPa and the pressure
control accuracy is measured at 97.2%. In comparison, the fixed-time integral sliding mode
active disturbance rejection composite control demonstrates a pressure response that is
0.005 s and 0.03 s faster than the active disturbance rejection control and PID pressure
control, respectively.

Table 2. Controller simulation parameters.

FISMADRC PID ADRC

c1 0.1 b0 3.52 × 107 P 15 b0 3.52 × 107

c2 1 β1 103 I 5 β1 103

m 1 β2 106 D 0.1 β2 106

n 0.5 δ 0.001 δ 0.001
ε 100 α 0.9 α 0.6

g1 20 φ 1
g2 20 r 1.44

Figure 3. Closed-loop pressure with a disturbance frequency of 1 Hz.

Figure 4. Closed-loop pressure error with a disturbance frequency of 1 Hz.
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Figure 5. Controller output with a disturbance frequency of 1 Hz.

According to the closed-loop pressure curve in Figure 6, the closed-loop pressure
error curve in Figure 7, and the controller output in Figure 8, we illustrate that when the
disturbance signal frequency is set to 3 Hz, the composite control of fixed-time integral
sliding mode auto-disturbance rejection results in a rise time of approximately 0.03 s for
the pressure to attain the steady-state value. Prior to reaching this steady-state pressure,
fluctuations occur within a duration of 0.01 s, followed by a smooth transition to the steady
state without any overshoot. Once the pressure stabilizes, the overshoot is minimal and
the steady-state pressure error is approximately 7 kPa, indicating a high-pressure control
accuracy of 99.86%. Under active disturbance rejection control, the rise time for the pressure
to reach the steady-state value is approximately 0.035 s. There is an initial fluctuation before
the pressure stabilizes, followed by a transition to the steady-state pressure without any
overshoot. Once at a steady state, the pressure exhibits an overshoot of approximately
15 kPa while maintaining a high level of accuracy, with a pressure control accuracy of 99.7%.
Under PID control, the rise time for the pressure to reach a steady state is approximately
0.06 s; however, the pressure consistently fluctuates. Once steady-state pressure is achieved,
the maximum pressure overshoot reaches 150 kPa and the pressure control accuracy is 97%.
In comparison, the fixed-time integral sliding mode active disturbance rejection composite
control demonstrates a pressure response that is 0.005 s and 0.03 s faster than the active
disturbance rejection control and PID pressure control, respectively.

Figure 6. Closed-loop pressure with a disturbance frequency of 3 Hz.
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Figure 7. Closed-loop pressure error with a disturbance frequency of 3 Hz.

Figure 8. Controller output with a disturbance frequency of 3 Hz.

According to the closed-loop pressure curve in Figure 9, the closed-loop pressure
error curve in Figure 10, and the controller output in Figure 11, we illustrate that when the
disturbance signal frequency is set at 5 Hz, the composite control employing fixed-time
integral sliding mode auto-disturbance rejection results in a rise time of approximately 0.03 s
for the pressure to reach the steady-state value. Notably, the pressure experiences some
fluctuations of approximately 0.01 s before stabilizing, subsequently transitioning smoothly
to the steady-state pressure without any overshoot. Once the steady-state pressure is
attained, the overshoot remains minimal, with a steady-state error of about 12 kPa, resulting
in a pressure control accuracy of 99.76%. Under active disturbance rejection control, the
rise time for the pressure to reach the steady-state value is approximately 0.035 s. Notably,
there is a fluctuation prior to the pressure stabilizing at the steady-state level, after which
it transitions smoothly. Once steady-state pressure is achieved, the pressure experiences
an overshoot of approximately 25 kPa while maintaining a high level of accuracy with a
pressure control precision of 99.5%. Under PID control, the rise time for the pressure to
reach the steady-state value is approximately 0.06 s. There is consistently some vibration
upon reaching steady-state pressure. Once steady-state pressure is achieved, the maximum
pressure overshoot recorded is 160 kPa and the pressure control accuracy is 96.8%. In
comparison, the fixed-time integral sliding mode active disturbance rejection composite
control demonstrates a pressure response that is 0.005 s and 0.03 s faster than the active
disturbance rejection control and PID pressure control, respectively.
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Figure 9. Closed-loop pressure with a disturbance frequency of 5 Hz.

Figure 10. Closed-loop pressure error with a disturbance frequency of 5 Hz.

Figure 11. Controller output with a disturbance frequency of 5Hz.

According to the closed-loop pressure curve in Figure 12, the closed-loop pressure
error curve in Figure 13, and the controller output in Figure 14, when the frequency of the
disturbance signal is set to 1 Hz, the closed-loop pressure curve exhibits a rapid response
under the fixed-time integral sliding mode active disturbance rejection composite control.
The dynamic tracking performance of the closed-loop pressure is commendable, with a
tracking time of approximately 0.035 s. The closed-loop pressure curve effectively follows
the command pressure, accurately tracking the peaks and troughs of the sinusoidal pressure
curve. In this state, the transition of the sinusoidal pressure curve is smooth and stable,
exhibiting no buffeting. As illustrated in Figure 13, the maximum overshoot of the pressure
upon reaching the steady state is approximately 3 kPa, resulting in a pressure control
accuracy of 99.94%. Under active disturbance rejection control, the pressure exhibits a
rapid response; however, there is a noticeable lag in pressure tracking, with a tracking
time of approximately 0.045 s, leading to a specific tracking error in the pressure curve. As
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illustrated in Figure 13, the maximum overshoot of the pressure upon reaching the steady
state is approximately 138 kPa, and the pressure control accuracy is 97.24%. Under PID
control, the closed-loop pressure curve exhibits a slightly sluggish response, resulting in a
delay in tracking the pressure curve. The closed-loop pressure aligns with the command
pressure at approximately 0.08 s. Due to the absence of filtering in PID control, noise
significantly affects the pressure curve, particularly at its peaks and troughs. As illustrated
in Figure 13, the maximum overshoot of the pressure upon reaching a steady state is
approximately 154 kPa, with a pressure control accuracy of 96.92%. In comparison, the fixed-
time integral sliding mode active disturbance rejection composite control demonstrates
a pressure response that is 0.01 s and 0.045 s faster than the active disturbance rejection
control and PID pressure control, respectively.

Figure 12. Closed-loop pressure with a disturbance frequency of 1 Hz.

Figure 13. Closed-loop pressure error with a disturbance frequency of 1 Hz.

Figure 14. Controller output with a disturbance frequency of 1 Hz.
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According to the closed-loop pressure curve in Figure 15, the closed-loop pressure
error curve in Figure 16, and the controller output in Figure 17, when the frequency
of the disturbance signal is set to 3 Hz, the closed-loop pressure curve exhibits a rapid
response under the fixed-time integral sliding mode active disturbance rejection composite
control, tracking the command pressure in approximately 0.035 s. The dynamic tracking
performance of the closed-loop pressure is commendable and the pressure curve transitions
smoothly and stably at the peaks and troughs of the sinusoidal pressure curve, without
exhibiting any buffeting. Furthermore, as illustrated in Figure 16, the maximum overshoot
upon reaching steady-state pressure is approximately 10 kPa, resulting in a pressure control
accuracy of 99.8%. Under active disturbance rejection control, the pressure exhibits a
rapid response; however, a hysteresis phenomenon is observed, with a tracking time
of approximately 0.045 s, leading to a certain tracking error in the pressure curve. As
illustrated in Figure 16, the maximum overshoot of the pressure upon reaching the steady
state is approximately 140 kPa and the pressure control accuracy is 97.2%. Under PID
control, the closed-loop pressure curve exhibits a slight delay, with the pressure curve
aligning with the upper command pressure at 0.08 s. Due to the lack of filtering in PID
control, noise significantly affects the pressure curve, particularly at its peaks and troughs.
As illustrated in Figure 16, the maximum overshoot of the pressure upon reaching a
steady state is approximately 160 kPa, resulting in a pressure control accuracy of 96.8%. In
comparison, the fixed-time integral sliding mode active disturbance rejection composite
control demonstrates a pressure response that is 0.01 s and 0.045 s faster than the active
disturbance rejection control and PID pressure control, respectively.

Figure 15. Closed-loop pressure with a disturbance frequency of 3 Hz.

Figure 16. Closed-loop pressure error with disturbance frequency of 3 Hz.
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Figure 17. Controller output with a disturbance frequency of 3 Hz.

According to the closed-loop pressure curve in Figure 18, the closed-loop pressure
error curve in Figure 19, and the controller output in Figure 20, when the frequency
of the disturbance signal is set to 5 Hz, the closed-loop pressure curve exhibits a rapid
response and successfully tracks the upper command pressure within approximately 0.035 s,
demonstrating effective dynamic tracking performance. The pressure curve accurately
follows the peaks and troughs of the sinusoidal pressure profile, transitioning smoothly
and stably without any noticeable oscillations. Furthermore, as indicated in Figure 19,
the maximum overshoot of the pressure upon reaching the steady state is approximately
20 kPa, while the pressure control accuracy is measured at 99.6%. Under active disturbance
rejection control, a hysteresis phenomenon occurs in pressure tracking, with a tracking
time of approximately 0.045 s, leading to a measurable tracking error in pressure. As
illustrated in Figure 19, the maximum overshoot of pressure upon reaching a steady state
is approximately 150 kPa and the pressure control accuracy is 97%. Under PID control,
the closed-loop pressure curve exhibits a slight delay, with the pressure curve tracking
the upper command pressure at 0.08 s. Due to the lack of filtering in the PID controller,
noise significantly affects the pressure curve, particularly at its peaks and troughs. As
illustrated in Figure 19, the maximum overshoot of the pressure upon reaching the steady
state is approximately 170 kPa, resulting in a pressure control accuracy of 96.6%. In
comparison, the fixed-time integral sliding mode active disturbance rejection composite
control demonstrates a pressure response that is 0.01 s and 0.045 s faster than the active
disturbance rejection control and PID pressure control, respectively.

Figure 18. Closed-loop pressure with a disturbance frequency of 5 Hz.
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Figure 19. Closed-loop pressure error with a disturbance frequency of 5 Hz.

Figure 20. Controller output with a disturbance frequency of 5 Hz.

In the loading control of the electro–hydraulic load simulation system, an accuracy
of 1% in pressure control error is considered excellent. This study employs a fixed-time
convergence integral sliding mode active disturbance rejection composite control strategy.
When the command is a step signal of x1 = 5000kPa and the disturbance frequencies
are set to 1 Hz, 3 Hz, and 5 Hz, the pressure control error accuracy achieved under the
composite control strategy is 0.06%, 0.14%, and 0.24%, respectively. When the command is a
sinusoidal signal of x1 = 5000 sin(2πt) + 8000kPa, the pressure control accuracy under the
same disturbance frequency is measured at 0.06%, 0.2%, and 0.4%, respectively. It is evident
that the pressure control error of the multi-mode variable structure electro–hydraulic load
simulation system remains consistently controlled within 1%. The simulation analysis of
closed-loop pressure indicates that, under the influence of identical command and distur-
bance signals, the fixed-time integral sliding mode active disturbance rejection composite
control achieves a faster rise time in reaching steady-state pressure compared to both active
disturbance rejection and PID control. Furthermore, the overshoot of the state error is
minimal and the pressure control accuracy is higher. These results demonstrate that the
pressure control performance and robustness of the fixed-time integral sliding mode active
disturbance rejection composite control are superior.

4.2. Noise Impact Analysis

The interference of noise significantly affects the control performance of system pres-
sure. This paper investigates the filtering capabilities of the extended state Observer (ESO)
in scenarios where the pressure sensor is subject to noise, as encountered in the actual
operating conditions of the independent load port electro–hydraulic load simulation sys-
tem. During the simulation, the pressure sensor is converted into a practical 0–10 V analog
pressure sensor, with the specified system command signal set at x1 = 5000 sin(2πt) + 6000
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and the disturbance motion signal defined as y = 0.01 sin(1 · 2πt). To approximate the
actual effect, random noise levels of 50 mV and 100 mV are added to the pressure sensor in
order to examine the filter characteristics of the ESO. The simulation results illustrating the
impact of noise interference are presented in the figure below.

As illustrated in Figures 21 and 22, the introduction of random noise interference
signals of 50 mV and 100 mV to the pressure sensor significantly affects the pressure
readings. This impact is particularly pronounced at the peaks and troughs of the pressure
curve. Figures 21 and 22 illustrate that the maximum error fluctuations of the pressure
curve prior to filtering are approximately 235 kPa and 655 kPa, respectively. As depicted
in Figure 21, the pressure curve following filtering closely resembles the ideal pressure
curve. Although Figure 22 indicates that the pressure curve after filtering exhibits some
fluctuations, these variations remain within an acceptable range. The results indicate that
when the random noise interference signal reaches 100 mV, the noise significantly affects
the pressure; however, the filtering effect of the ESO remains effective. The filtered pressure
curve is optimal, exhibiting smoothness and good tracking performance. After analyzing
the noise filtering capabilities of the ESO, it can be concluded that the pressure values
obtained after ESO filtering are suitable for use in pressure closed-loop control, thereby
ensuring the system maintains robust closed-loop pressure control performance.

Figure 21. Pressure curve under random noise of 50 mV.

Figure 22. Pressure curve under random noise of 100 mV.

5. Conclusions

This paper establishes a state equation for the nonlinear mathematical model of the
independent load port electro–hydraulic load simulation system. Based on this state
equation, the controller is derived through a series of equations. To address the challenges
of significant external motion disturbances and sensor noise interference experienced by the
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independent load port electro–hydraulic load simulation system, an integral sliding mode
active disturbance rejection composite control strategy based on fixed-time convergence is
proposed. The subsequent conclusions are drawn from the simulation research conducted:

(1) This paper proposes an independent load port electro–hydraulic load simulation
system characterized by complex working conditions and multi-mode variable struc-
tures. The research findings indicate that this system offers a high degree of control
freedom, rapid pressure response, and exceptional control accuracy. Its flexibility and
convenience suggest that the independent load port electro–hydraulic load simulation
system is well-suited for pressure loading control.

(2) The simulation study demonstrates that when the disturbance signal amplitude is
set to 10 mm and the frequency is 5 Hz, the independent load port electro–hydraulic
load simulation system exhibits excellent anti-interference capability. This is achieved
under the control of the integral sliding mode active disturbance rejection composite
control strategy, which is based on fixed-time convergence. The results indicate
that the closed-loop pressure immunity limit performance threshold of the system is
relatively high, thereby confirming the effectiveness of the fixed-time convergence
integral sliding mode auto-disturbance composite control strategy. Additionally, the
independent load port electro–hydraulic load simulation system shows improved
pressure control performance.

(3) This paper explores the feasibility of nonlinear extended state observer technology
for filtering. The simulation results demonstrate that the proposed integrated sliding
mode active disturbance rejection composite control strategy, which is based on
fixed-time convergence, exhibits effective suppression and filtering characteristics
for random noise, thereby highlighting its superiority and practicality in pressure
control applications.

This paper investigates the control mechanisms of the independent load port electro–
hydraulic load simulation system, focusing specifically on the pressure control managed by
a single servo valve. Under certain operating conditions, abrupt changes in the movement
mode of the steering gear can lead to a mismatch between the electro–hydraulic load
simulation system and the steering gear system. Such discrepancies may result in pressure
shock issues. Therefore, there is an urgent need to enhance the mode-switching control
strategy of the controller, warranting further in-depth research.
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