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Abstract: LiDAR and cameras, often regarded as the “eyes” of intelligent driving vehicles, are
vulnerable to adverse weather conditions like haze, rain, and snow, compromising driving safety.
In order to solve this problem and enhance the environmental sensing capability under severe
weather conditions, this paper proposes a multimodal back-end fusion object detection method,
Sec-CLOCs, which is specifically optimized for vehicle detection under heavy snow. This method
achieves object detection by integrating an improved YOLOv8s 2D detector with a SECOND 3D
detector. First, the quality of image data is enhanced through the Two-stage Knowledge Learning and
Multi-contrastive Regularization (TKLMR) image processing algorithm. Additionally, the DyHead
detection head and Wise-IOU loss function are introduced to optimize YOLOv8s and improve
2D detection performance.The LIDROR algorithm preprocesses point cloud data for the SECOND
detector, yielding 3D object detection results. The CLOCs back-end fusion algorithm is then employed
to merge the 2D and 3D detection outcomes, thereby enhancing overall object detection capabilities.
The experimental results show that the Sec-CLOCs algorithm achieves a vehicle detection accuracy
of 82.34% in moderate mode (30–100 m) and 81.76% in hard mode (more than 100 m) under heavy
snowfall, which demonstrates the algorithm’s high detection performance and robustness.

Keywords: DyHead; LIDROR; multimodal object detection; Sec-CLOCs; Wise-IOU; YOLOv8s

1. Introduction

Most current autonomous driving perception technologies rely on sensors like LiDAR
and cameras. However, in snowy conditions, falling snowflakes not only obstruct objects
but also diminish their feature information, leading to a poor image quality captured by the
camera and posing challenges for image-based object detection algorithms. Furthermore,
commercial LiDAR sensors, which typically operate at wavelengths around 900 nm, can
detect snowflakes during snowfall. However, they have difficulty in distinguishing between
reflections from snowflakes and other objects, causing 3D detectors to mistakenly classify
snowflakes and noise as objects. Vehicles are one of the main targets of automated driving
systems in adverse weather conditions. Especially in winter environments, vehicles are not
only critical dynamic obstacles that affect driving safety and navigation accuracy, but also
often become the most difficult to detect and track due to differences in shape and size,
as well as snow and complex road conditions. Therefore, accurate vehicle detection is
crucial. To this end, this paper proposes a target detection algorithm called Sec-CLOCs,
which effectively addresses the challenges of vehicle detection under adverse weather
conditions by combining the back-end fusion of camera and LiDAR data.

The key contributions and novel aspects of this research are outlined below:

1. To mitigate the impact of low-quality data on 2D object detection in snowy scenes, we
apply the Two-stage Knowledge Learning and Multi-contrast Regularization (TKLMR)
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algorithm for image preprocessing, enhancing image quality during heavy snowfall.
Additionally, the Low-Intensity Dynamic Radius Outlier Removal (LIDROR) filtering
algorithm is introduced to reduce the effect of snowflakes on LiDAR point cloud data.
Experimental results show that the integration of the TKLMR image snow-removal
method and the LIDROR point cloud filtering algorithm significantly reduces the
influence of snowflakes on the performance of 2D and 3D object detectors.

2. To enhance the 2D detection algorithm’s performance in snowy environments, we
incorporate DyHead as a new detection head built on YOLOv8s, improving the
model’s object perception accuracy. Additionally, Wise-IOU is used to reduce reliance
on high-quality labeled datasets. Experimental results show that YOLOv8s, combined
with DyHead and Wise-IOU, delivers improved accuracy and robustness for 2D
detection in snowy conditions.

3. We proposed a back-end fusion algorithm, Sec-CLOCs, based on improved YOLOv8s
and SECOND object detection, to further improve vehicle detection performance
in snowy environments. Compared to other object detection methods, Sec-CLOCs
demonstrated superior results under snowy conditions.

2. Related Work
2.1. Image Desnowing Algorithm

Snowflakes and snow reduce object features and increase noise in image data, degrad-
ing the performance of image-based object detection. Traditional snow-removal algorithms
rely on manually constructed filters that identify and separate snowflakes by analyzing
the color properties of images (e.g., saturation and sharpness). These methods require the
manual identification of snow properties to design appropriate filters for effective snow
removal. As an illustration, Pei and co-researchers [1] devised a strategy for detecting and
eradicating precipitation, such as rain and snow, from visual data based on the properties of
saturation and clarity. Similarly, Wang and team [2] proposed an innovative technique that
effectively cleans up rain and snow disturbances within images. Their approach involves
breaking down the image into its low- and high-frequency segments, where the fine details
of rain and snow are mainly concentrated in the high-frequency domain. The enhancement
of the image is achieved through a process that incorporates the detection of rain and snow,
coupled with the application of bootstrap filtering techniques, thereby maintaining the
vital aspects of the image.

The advent of deep learning has led to a rising trend in the utilization of meth-
ods for snow elimination that are grounded in this advanced technology. For instance,
DesnowNet [3] utilizes a multi-stage network to sequentially remove both semi-transparent
and opaque snow particles. This approach accounts for the semi-transparency and color
distortion of snow, enabling more accurate estimation and recovery of details in snow-
covered images. When areas are entirely hidden by opaque snow, DesnowNet estimates
the residual complement of the snow-free image to restore these occluded details. How-
ever, DesnowNet has potential drawbacks, such as producing speckled artifacts when the
background is blurred, making it challenging to recover images of snow-covered regions.

Chen et al. [4] introduced a combined process for snow removal that addresses non-
transparent snowflakes of varying sizes. However, its ability to generalize is limited,
potentially leading to artifacts. Jaw et al. [5] introduced an algorithm for single-image
snow elimination that employs a hierarchical dual-tree complex wavelet transformation,
further integrating conflict channel loss to improve the effectiveness of snow removal.
Similarly, Chen et al. [6] implemented this transform in a network called HDCW-Net
for snow information retrieval. Despite its effectiveness, the dual-tree complex wavelet
transform approach encounters challenges with dense or translucent snow.

2.2. Single-Sensor Object Detection Algorithms

Current algorithms for detecting image objects in severe weather conditions tend to
concentrate mainly on rain, fog, and dim lighting scenarios. For example, IA-YOLO [7]
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integrates a microprocessing image module with CNN-PP to improve detection in fog and
low light. TogetherNet [8] combines image restoration and detection tasks for dynamic
learning. FogGuard [9] uses YOLOv3 with teacher–student perceptual loss for better foggy
detection accuracy, while RDMNet [10] employs a dual-branch network for object detection
and image recovery, enhancing performance through multi-scale degradation modeling
and feature fusion.

Present LiDAR-based approaches for 3D object detection are broadly categorized
into two forms: representation based on voxels and representation based on unprocessed
point clouds. In the voxel-based representation, PointPillar [11] transforms point cloud
data into columnar feature maps, which are processed using a 2D convolutional network,
improving the computational efficiency of 3D object detection. SECOND [12] is optimized
for 3D sparse convolution, enabling rapid processing of point cloud data, and introduces
a new angle coding scheme and data enhancement method, allowing it to handle large
object detection with excellent performance while maintaining fast processing speeds.
In the raw point cloud-based representation, PointNet [13] is a pioneering method for
object detection that addresses the challenges of traditional convolutional neural networks,
which struggle to perform feature extraction on raw point clouds due to their disorder
and irregularity. PV-RCNN [14] combines the advantages of both voxelized representation
and raw point cloud representation in a two-stage network, thereby improving 3D object
detection performance while managing memory consumption effectively.

2.3. Multi-Sensor Fusion Algorithms

In the field of object detection, multimodal fusion methods enhance detection by
merging data from different sensors. These methods are usually categorized into three
fusion stages: early fusion, deep fusion and late fusion.

Early fusion, or data layer fusion, merges raw point cloud and image data to leverage
cross-modal interactions. Although effective, it faces challenges like data alignment and
computational demands. MVX-Net [15] is an example of this approach, proposing fusion
strategies like PointFusion, which combines each 3D point with RGB image features using
pre-trained 2D networks for simultaneous learning. Point Augmenting [16] improves 3D
object detection through cross-modal data augmentation by decorrelating point clouds
with CNN features and incorporating virtual objects into both imagery and point cloud
data throughout the training process.

Deep fusion combines LiDAR point clouds and image data, requiring precise align-
ment and complex networks. For example, STD [17] proposed a two-phase approach that
brings in the notion of spherical reference points, facilitating the more precise prediction of
the position and dimensions of objects in its initial stage. It also includes a PointsPool Layer
for extracting features from candidate regions in the second stage. EPNet [18] enhances
point features with semantic image features without requiring any image annotation, using
a consistent enforced loss to address localization and classification consistency. 3D-CVF [19]
implements a cross-view feature fusion technique, converting 2D camera data into feature
maps that align closely with 3D LiDAR information in a bird’s-eye view (BEV). It achieves
this through an automatic projection calibration process. A gated feature fusion network is
then applied to blend these features, determining the region’s significance based on the
relative importance of camera and LiDAR data for optimal fusion.

Late fusion systems process data from different modalities separately before fusing
them at the decision level, which has many significant advantages. This flexibility allows
the system to adapt to changing application scenarios. If there is a problem or loss of data
in one modality, it will not affect the processing of other modalities, thereby improving the
robustness of the system. For instance, CLOCs [20] can be used with any pre-trained 2D
and 3D detector without the need for additional training. This method exploits geometric
and semantic consistency and fuses the detection results of different modalities through a
probability-driven learning-based method. This leads to a considerable advancement in
the efficiency of object detection.
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3. Methods

In this study, we propose the Sec-CLOCs back-end fusion object detection algorithm to
address the challenge of detecting vehicles in snowy environments. To address the image
distortion problem in such conditions, we introduce an integrated severe weather removal
technique based on two-stage knowledge learning, which utilizes a unified framework
with pre-trained weights to efficiently address the problem. In the image detection section,
we improve the sensing accuracy by merging DyHead into the detection architecture of
YOLOv8s and utilize Wise-IOU to reduce the dependence on the quality of premium
datasets. In the area of point cloud detection, we employ the Low-intensity Dynamic
Radius Outlier Removal (LIDROR) method to mitigate the impact of snowflakes on the raw
point cloud data, which is then complemented by the SECOND [12] method to recognize
3D objects. In the subsequent fusion phase, we utilize the CLOCs [20] post-fusion algorithm
to merge the detection data from two different sensors. Due to the versatility and modular
design of the algorithm, we can train the 2D and 3D detectors separately, which greatly
improves the training efficiency of the system. Figure 1 illustrates the whole flow of Sec-
CLOCs, the vehicle detection algorithm based on a camera and LiDAR back-end fusion
proposed in this paper.

Figure 1. The whole process of Sec-CLOCs, an object detection algorithm based on the back-end
fusion of a camera and LiDAR.

3.1. Image Snow-Removal Algorithm

To enhance image quality during snowy conditions, this paper employs an integrated
severe weather removal method based on two-stage knowledge learning [21]. This method
consists of two phases:

Knowledge Collation (KC) Phase: In this phase, the student network learns to handle
various weather conditions by collaborating with multiple teacher networks, each trained
for a specific recovery task. The student network integrates knowledge from these teachers
using Collaborative Knowledge Transfer (CKT). Characteristics extracted from the teacher
and student networks are mapped to a shared feature domain through a Progressive
Feature Projection (PFP) module. Subsequently, Bidirectional Feature Matching (BFM) is
executed to promote effective knowledge dissemination. The PFP is a learnable module
that determines the optimal feature space for common feature learning. BFM constrains
the learned features by re-projecting the teacher networks’ features back into the original
input space and measuring their differences from the original features.

Knowledge Examination (KE) Phase: After training in the KC phase, the student
network is ready to handle diverse weather types without relying on the teacher networks.
In this phase, the network’s robustness and discrimination are enhanced through more
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stringent constraints. The aim is to improve the overall weather recovery performance
by applying stricter regularization, using the Multi-Contrast Regularization (MCR) loss.
This loss function comprises Soft Contrast Regularization (SCR) and Hard Contrast Reg-
ularization (HCR). SCR, used in the KC phase, reduces learning difficulty by leveraging
the teacher networks’ predictions as positive samples. In the KE phase, HCR enhances
performance across multiple weather types by utilizing the actual ground truth of input
images as positive samples and the degraded images across all weather conditions as
negative samples, thereby improving the network’s discrimination ability. The effect is
shown in Figure 2.

Input

output

Figure 2. TKLMR snowflake removal results. Input is the input raw image and Output is the result
after applying the TKLMR severe weather removal algorithm.

3.2. Improved 2D Detector

This study aims to boost the efficacy of 2D image detection in snowy conditions
by altering YOLOv8s. The conventional detection head of YOLOv8s is substituted with
DyHead (Dynamic Head) [22], and Wise-IOU [23] is employed as a replacement for the
original loss function to reduce the negative impact of subpar sample quality. DyHead
notably enhances the model’s object detection head’s perceptual abilities without incurring
extra computational expenses. It achieves scale perception by incorporating an attention
mechanism across feature layers, spatial perception through an attention mechanism at
different spatial positions, and task perception by employing an attention mechanism in
the output channel.

Specifically, given the feature tensor F ∈ RL×S×C, the general formula for applying
self-attention is as follows:

W(F ) = π(F ) · F (1)

where π(·) denotes an attention mechanism. A simplified method for deploying this mech-
anism involves using a fully connected layer. Nevertheless, due to the tensor’s elevated
dimensionality, learning the attention mechanism across its entire scope is computationally
demanding and frequently infeasible. Consequently, the attention mechanism is decom-
posed into three consecutive attentions, with each attention focused solely on one aspect:

W(F ) = πC(πS(πL(F ) · F ) · F ) · F . (2)
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The functions πL(·), πS(·), and πC(·) signify three separate attention mechanisms, each
applied to the dimensions L, S, and C, respectively.

The scale-sensitive attention mechanism, πL(·), adaptively merges features from vari-
ous scales according to their semantic relevance.

πL(F ) · F = σ

(
f

(
1

SC ∑
S,C

F
))

· F (3)

where f(·) is a linear function approximated by a 1 × 1 convolutional layer, while
σ(x) = max(0, min(1, x + 12)) constitutes a hard sigmoid activation.

Spatial Perception Attention πS is a module designed for spatial perception based on
fused features. Due to the complexity of dimension S, the module is split into a two-phase
process: initially, attention learning is made sparse via deformable convolution, followed
by the consolidation of features across identical spatial coordinates within different layers:

πS(F ) · F =
1
L

L

∑
l=1

K

∑
k=1

wl,k · F (l; pk + ∆pk; c) · ∆mk (4)

In this context, K denotes the count of sparsely sampled locations, with pk + ∆pk
representing the positional shift determined by the spatial offset ∆pk that targets the
distinctive area, and ∆mk signifies the self-learned importance scalar at location pk. These
values are derived from the input characteristics at the intermediate stage of F.

The task-specific attention πC adaptively toggles the activation and deactivation of
feature channels to cater to various tasks:

πC(F ) · F = max

(
α1(F ) · Fc + β1(F ), α2(F ) · Fc + β2(F )

)
(5)

In this context, Fc is the feature slice of the cth channel, with [α1, α2, β1, β2]T = θ(·) serv-
ing as a hyperfunction that learns to govern the activation threshold. These equations can be
recursively nested, allowing for the effective stack of multiple πL, πS, and πC modules. The
detailed configuration of the DyHead module is shown in Figure 3. Figure 4 is for a single-
stage inspection configuration, and Figure 5 is for a two-stage inspection configuration.

Figure 3. Detailed configuration of each attention module of the DyHead block.

Figure 4. DyHead single-stage detection configuration.
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Figure 5. DyHead two-stage detection configuration.

In the snowy autonomous driving dataset, falling snowflakes and light may cause
poor annotation of the dataset, resulting in a large IoU loss for the 2D detector when
detecting quality anchor boxes. As a result, we replaced the standard loss function in
YOLOv8s with the Wise-IOU method. Wise-IOU represents a novel approach to bounding
box regression, utilizing a flexible, non-monotonic focusing strategy to gauge the efficacy of
anchor boxes, moving away from the traditional IoU evaluation approach. This mechanism
determines anchor box quality based on “outliers” rather than relying exclusively on IoU
values. In addition, the Wise-IOU uses an intelligent gradient gain strategy to focus on
high-quality anchor frames and mitigate the effects of low-quality samples, ultimately
focusing on improving the optimization of medium-quality anchor frames and improving
the effectiveness of the detection frame. Specifically, Wise-IOU is defined as follows:

LWloUv3 = rRWloULIoU xc (6)

RWloU = exp

 (x − xgt)2 + (y − ygt)2(
W2

g + H2
g

)∗
 (7)

r2 =
β

δαβ−δ
(8)

where Wg signifies the breadth of the minimum outer bounding box, while Hg signifies
the height of the minimum outer bounding box and W2

g + H2
g signifies the diagonal length

of the minimum outer bounding box. The symbol * indicates a separation operation to
forestall the generation of gradients by the RWloU that could impede convergence, where C
is a constant value and δ makes r = 1 when β = δ.

3.3. Three-Dimensional Object Detection

This paper utilizes SECOND [12] as a 3D object detector. SECOND features a sparse
convolutional network architecture that enables the model to effectively detect objects
of different shapes and sizes while ensuring high efficiency. Additionally, SECOND also
introduces an enhanced angle loss function to optimize orientation estimation performance
and implement a novel data augmentation technique to boost the model’s generalization
capability and convergence speed.

To address the issue of noise, such as snowflakes, affecting data collected by LiDAR
in snowy environments, we introduced the LIDROR algorithm for point cloud filtering,
which is grounded in the SECOND architecture.

In [24], taking advantage of the fact that snow particles exhibit lower intensity values
compared to other objects, a LIOR filtering algorithm was proposed that utilizes intensity
data from LiDAR 3D point clouds to remove snow. This filtering process consists of two
stages: initially, it scrutinizes each point to mark the point where the intensity reading
falls below a predetermined threshold, e. Subsequently, ROR filtering is performed on
potential outliers pinpointed during the initial scan, and the points designated as outliers
are removed from the point cloud dataset. A notable characteristic of the LIOR filtering
process is its selective application of the ROR filter to certain points, which enables the
LIOR method to operate at enhanced speeds in contrast to the DROR filter [25], yet it
preserves similar efficacy in eliminating snow particles [24]. However, the traditional
LIOR filter struggles with variations in distance, prompting the introduction of a new
filter, LIDROR [26]. Specifically, during the LIOR filter’s second phase, the ROR filter is
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substituted with the DROR filter, which utilizes a variable search radius to overcome the
limitations of the ROR filter. The parameters for dust extraction, including the fixed multi-
plier Φ and the minimum acceptable number of points within the search area, necessitate
optimization. These settings are fine-tuned in response to their influence on the filter’s
effectiveness and robustness across varying dust conditions. Furthermore, the LIDROR
filter permits the adjustment of a higher intensity threshold without sacrificing crucial
non-dust data, thereby optimizing dust extraction. As depicted in Figure 6, the LIDROR
filter successfully diminishes snowflake interference in the point cloud dataset.

Input

output

Figure 6. LIDROR processing results. The input is the original point cloud visualization and the
output is the point cloud visualization after LIDROR point cloud filtering.

3.4. Multi-Sensor Fusion Detection Module

This paper adopts the CLOCs object detection algorithm as the fusion algorithm for 2D
and 3D detection results. The algorithm first uses the camera and LiDAR independently for
2D and 3D object detection to generate two sets of candidate objects, and then calculates the
geometric consistency (through IoU) and semantic consistency (through category matching)
between these candidate objects to construct a sparse tensor containing these scores. Next,
a 2D convolutional neural network is used to process the non-zero elements in this sparse
tensor to fuse information from different modalities. The merged characteristics are then
translated into the ultimate detection outcomes using a maximum pooling operation,
resulting in precise and efficient 3D object detection.

When performing object detection in an image, the 2D detection technology gen-
erates a set of two-dimensional bounding boxes and corresponding confidence levels.
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For n potential objects in an image, the 2D detection results can be described by the
following expression:

B2D = {B2D
1 , B2D

2 , ...B2D
n },

B2D
k = {[xk1, yk1, xk2, yk2], s2D

k }
(9)

B2D denotes the collection of n candidate frames in an image. For the kth 2D detection
candidate among these frames, xk1, yk1 denotes the pixel location of the top-left boundary
of the frame, xk2, yk2 marks the pixel location of the bottom-right boundary of the frame,
and s2D

k conveys the confidence level associated with the detection.
In the object detection scenario of a 3D point cloud, the output includes the 3D

dimensions, spatial position and rotation angle of each candidate object. For k 3D de-
tection candidates in the point cloud, the 3D detection results can be described by the
following expression:

B3D = {B3D
1 , B3D

2 , · · · B3D
n },

B3D
k = {[hk, wk, lk, xk, yk, zk, θk], s3D

k }
(10)

B3D represents the collection of n 3D potential frames within a point cloud, where the
kth potential 3D detection frame is indicated by B3D

k , and [hk, wk, lk, xk, yk, zk, θk] encapsu-
late the 7 attributes of the candidate frame in the point cloud. s3D

k are the confidence scores
of the represented point cloud candidate frames.

We use a new fusion network structure to re-evaluate all candidate frames. For the k
results of 2D detection and n results of 3D detection, we synthesize the representation by
creating a tensor T of k × n × 4:

Ti,j = {IoUi,j, s2D
i , s3D

j , dj} (11)

where IoUi,j represents the geometric consistency between the i-th detection result in the
image and the j-th in the point cloud. s2D

i is the confidence score of the i-th detected object
in the two-dimensional detection and s3D

j is the confidence score in the point cloud scene.
dj represents the normalized distance from the j-th object detected in the point cloud scene
to the ground. In this way, the result can be represented as a four-dimensional tensor of
coefficients, which can be directly input into the convolutional network for fusion. Elements
Ti,j with zero IOU will be eliminated because they are geometrically inconsistent.

4. Experiment Preparation
4.1. Experimental Dataset

The Canadian Adverse Driving Conditions (CADCs) [27] Dataset is the world’s first
dataset customized for the study of self-driving vehicles in cold environments. The dataset
collects data from a variety of winter driving scenarios during the winter months in the
Waterloo Region, Canada, and consists of 56,000 images and 7000 LiDAR scans covering
75 unique scenarios with frame counts ranging from 50 to 100 per scenario. The dataset
is carefully labeled with 10 object classes, including vehicles, pedestrians, trucks, etc.,
and is equipped with an extensive sensor array consisting of one LiDAR, eight cameras,
and GPS/IMU data post-processing. Vehicles are the most critical targets for automated
driving systems in snowy weather conditions, and they are the main dynamic obstacles
affecting safety and navigation in winter environments. Especially on snow-covered roads,
the visibility of moving vehicles is severely affected; at the same time, stationary vehicles
(e.g., parked vehicles) are usually more difficult to detect and recognize due to snow
accumulation, reduced visibility, and varying vehicle sizes and shapes. Therefore, vehicles
are the most challenging and relevant target category in our study, and we specifically
chose a sample containing both stationary and moving vehicles as the dataset for this study.
In this paper, 5250 samples of camera and LiDAR data collected in snowy environments are
used. To ensure the robustness and generalizability of the data, these samples cover a wide
range of driving environments, including city streets, highways, and country roads, to fully
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reflect the diversity of driving in snow. Each driving environment includes snow-covered
roads, snow on vehicles, and reduced visibility due to snowfall, ensuring that the dataset
effectively captures the unique challenges vehicles face in winter driving scenarios. All
5250 samples were divided into a training, validation, and test set in a 6:2:2 ratio, with the
training set containing 3150 samples for model training, and the validation and test sets
each containing 1050 samples to ensure that model performance evaluations are based on
independent datasets.

4.2. Parameter Settings

Some training parameters of YOLOv8s are shown in Table 1, using the open hyperpa-
rameters set in the code.

Table 1. YOLOv8s training parameters.

Model Training Cycle Batch Size Image Size Optimizer Automatic Mixing Accuracy

YOLOv8s 300 epoch 16 640 × 640 pixels SGD True

Some training parameters for CLOCs are provided in Table 2, using the open hyperpa-
rameters set in the code.

Table 2. Training parameters for CLOCs.

Model Training Cycle Batch Size Maximal Voxel Worker Threads Point Shuffling

CLOCs 160 epoch 1 16,000 3 True

5. Experimental Results
5.1. YOLOv8s Experiment

In this study, Precision, Recall, mAP 50, mAP 50-95, and F1 score are used as evaluation
metrics for YOLOv8s. Precision measures how many of the samples predicted by the model
to be positive are actually true positive samples. Recall measures the proportion of all true
positive samples that are successfully predicted by the model. The mAP 50 is the Average
Precision (AP) of the model at a threshold of IoU = 0.50. The mAP 50-95 is a more rigorous
calculation of mAP, which calculates the average Precision at multiple IoU thresholds from
IoU = 0.50 to IoU = 0.95 in steps of 0.05. F1 score is the reconciled average of Precision
and Recall and is designed to measure the overall performance of the model. It combines
the accuracy and Recall of the model, especially if the dataset is not balanced in terms of
categories. The F1 score is a better reflection of the model’s performance.

This paper adds different modules to YOLOv8s for comparative experiments, and the
results are shown in Table 3. In heavy snow weather, the annotation effect of the dataset
will be affected, resulting in a large IoU loss when the 2D detector detects low-quality
anchor boxes. Wise-IoU mainly focuses on optimizing medium-quality anchor boxes and
improving the effectiveness of detection boxes, thereby significantly improving the detec-
tion performance of 2D detectors under severe weather conditions. In addition, compared
with other modules, DyHead unifies different target detection heads by introducing an
attention mechanism, thereby significantly improving the model’s expression ability on
the target detection head without increasing the computational burden. Table 3 shows
that YOLOv8s+DyHead and YOLOv8s+Wise-IoU perform better than other models under
snowy conditions. More importantly, the combination of these two modules fully utilizes
their complementary advantages and significantly improves the overall performance of
YOLOv8s, especially in terms of detection accuracy and F1 score.
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Table 3. YOLOv8s experiments.

Model Precision Recall mAP 50 mAP 50-95 F1 Score

YOLOv8s 90.7% 74.2% 83.5% 63.3% 81.5%
YOLOv8s+fasternet 89.8% 73.7% 83.6% 61.6% 81.0%

YOLOv8s+timm 89.8% 74.0% 84.0% 62.1% 81.0%
YOLOv8s+GhostHGNetV2 89.4% 74.7% 84.0% 63.6% 81.4%

YOLOv8s+SPPF-LSKA 91.8% 73.5% 83.8% 63.2% 81.6%
YOLOv8s+DyHead 90.7% 74.8% 84.1% 64.3% 81.8%
YOLOv8s+Wise-IOU 91.3% 76.2% 85.7% 65.1% 83.1%

YOLOv8s+DyHead+Wise-IOU 90.1% 77.7% 86.0% 65.8% 83.4%

Through the fusion of YOLOv8s with DyHead, the model achieved a 0.72% boost
in mean Average Precision (mAP) over the conventional YOLOv8s. DyHead streamlines
scale, spatial, and task awareness by employing attentional processes across different
feature hierarchies, spatial locations, and channel outputs, which sharpens the model’s
responsiveness to a range of object sizes without incurring additional computational
costs, notably improving vehicle detection performance. Next, replacing YOLOv8s’ loss
function with Wise-IOU led to the model’s mAP increase of 2.63% on the CADC dataset.
The results show that Wise-IOU reduces the IoU loss generated when generating high-
quality anchor boxes due to the poor annotation quality of the dataset, making the model
more adaptable to the snowy environment. Finally, after combining DyHead and Wise-IOU,
it was found that they did not interfere with each other, allowing the model to achieve
the highest level of mAP value on the CADC dataset, which is 2.99% higher than the
ordinary YOLOv8s.Experiments show that the improved YOLOv8s improves the accuracy
of image object detection compared with the original YOLOv8s. The visualization results
of YOLOv8s, YOLOv8s+dyhead, YOLOv8s+Wise-IOU and YOLOv8s+dyhead+Wise-IOU
are shown in Figure 7.

5.2. Sec-CLOCs Ablation Experiment

This study uses the evaluation criteria of the KITTI dataset [28,29], classifying objects
into three categories: easy (within 30 m), moderate (30–100 m), and hard (beyond 100 m).
The Average Precision (AP) of bird’s eye view (ABEV) and 3D detection (A3D) was tested at
an IoU threshold of 0.7, following standards for vehicle categories and previous research.

In order to evaluate the overall performance improvement, ablation experiments were
conducted to compare the improved Sec-CLOCs algorithm with the original CLOCs algo-
rithm; the results are shown in Table 4. First, the LIDROR point cloud filtering algorithm
is introduced into the original CLOCs algorithm. In the easy mode, ABEV is improved
by 4.01%, and A3D is improved by 10.01%. The LIDROR point cloud filtering algorithm
efficiently removes the mid-range and far-range snowflake noise in the LiDAR raw data,
which significantly reduces the interference of snowflakes on the 3D detection results,
reduces the possible pseudo-targets, and thus improves 3D detection and BEV boundary
detection. The accuracy of 3D detection and the BEV bounding box at medium and long
ranges is improved.

Subsequently, in the easy mode, ABEV and A3D are improved by 6.74% and 28.70%,
respectively, when combined with the improved YOLOv8s 2D image detection results.
By replacing the original loss function of YOLOv8s with Wise-IOU, the accuracy of the 2D
detector for object localization and bounding box detection at medium and long distances is
further improved, which reduces the impact of the poor quality of data annotation in snowy
weather. Thanks to the dynamic design of the DyHead, the detector head is better able to
cope with different sizes, shapes, and types of targets, allowing the improved YOLOv8s to
achieve significant gains in medium- and long-range vehicle detection. In moderate mode,
ABEV and A3D show 21.67% and 47.65% improvements over the baseline, respectively, and
in hard mode, ABEV and A3D show 18.26% and 38.51% improvements, respectively.
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(a) (b) (c) (d)

Figure 7. Improved YOLOv8s ablation experiment visualization results. (a) Original YOLOv8s
detection result. (b) YOLOv8s+DyHead detection result. (c) YOLOv8s+Wise-IOU detection result.
(d) YOLOv8s+DyHead+Wise-IOU detection result. (We suggest viewing in enlarged mode).

Finally, the introduction of the TKLMR image processing method effectively mitigates
the negative impact of snowflakes on the camera image and further improves the perfor-
mance of the 2D detector. In the easy mode, ABEV improves 11.58% and A3D improves
43.18% compared to the benchmark; in the moderate mode, ABEV and A3D improve by
23.33% and 48.85%, respectively. In hard mode, ABEV and A3D improved by 19.69% and
39.96%, respectively.
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Table 4. Sec-CLOCs ablation experiments.

Model
ABEV A3D

Easy Moderate Hard Easy Moderate Hard

CLOCs 75.73% 66.76% 68.31% 47.92% 43.46% 45.57%
CLOCs+LIDROR 78.77% 70.56% 71.57% 52.72% 50.99% 52.28%

CLOCs+LIDROR+Improved YOLOv8s 83.60% 81.23% 80.78% 66.68% 64.17% 63.12%
Our 84.50% 82.34% 81.76% 68.61% 64.69% 63.78%

5.3. Sec-CLOCs Comparison Experiment

Furthermore, this study conducts a comparative analysis of the Sec-CLOCs method
against the AVOD [30], F-PointNet [31], TANet [32], PointRCNN [33] and Snow-CLOCs [34]
approaches using an identical dataset. The findings are detailed in Table 5.

Table 5. Vehicle object detection results.

Model
ABEV A3D

Easy Moderate Hard Easy Moderate Hard

AVOD 81.22% 71.76% 69.25% 68.55% 63.54% 56.68%
F-PointNet 81.56% 70.35% 67.25% 68.58% 64.59% 57.84%
F-ConvNet 80.68% 71.56% 69.11% 64.65% 57.45% 55.16%
PointRCNN 85.94% 82.31% 81.71% 70.11% 63.65% 62.68%

TANet 84.52% 82.23% 80.65% 67.46% 62.09% 60.66%
Snow-CLOCs 86.21% 79.81% 79.12% 70.55% 63.54% 62.83%
Sec-CLOCs 84.50% 82.34% 81.76% 68.61% 64.69% 63.78%

Among these evaluation metrics, Sec-CLOCs demonstrated significant advantages
for medium- and long-range vehicle target detection under heavy snowfall. Specifically,
by adopting the improved YOLOv8s as the 2D detector, the detection performance of
different sizes, shapes and types of vehicle targets in snowy environments is significantly
improved and further optimized for medium- and long-range vehicle targets. Meanwhile,
with the help of the LIDROR point cloud filtering algorithm, the interference of snowflakes
on the 3D detector in moderate and heavy modes is significantly reduced. Under the
condition of an IoU threshold of 0.7, the bird’s eye view detection accuracies of Sec-
CLOCs in medium and hard modes are 82.34% and 81.76%, respectively, and the 3D
detection frame accuracies are 64.69% and 63.78%, respectively. By fusing the 2D and 3D
detection results, Sec-CLOCs further improves the efficiency of utilizing the information of
multiple viewpoints, which means the detection accuracy in the complex environments is
significantly improved. This kind of back-end fusion technology (CLOCs) can effectively
integrate data from different sensors, overcoming the problem of information loss or error
accumulation that a single sensor may face, especially in the detection of medium- and long-
range targets, which shows a strong advantage. The TKLMR image processing method
used in this paper is a removal method for multiple severe weather conditions, which may
not be as effective as those algorithms optimized for specific weather conditions (e.g., heavy
snow, haze, etc.) in removing multiple weather disturbances when compared to image
processing algorithms optimized for a single weather condition, and thus the targets in
the images may not be clear enough. In addition, the improvements to YOLOv8s in this
paper focus on optimizing the detection performance of small targets at medium and long
distances, especially in more complex or difficult environments (e.g., heavy snowfall or
challenging 3D environments), but these improvements also introduce a certain amount of
computational overhead or additional complexity, which does not result in a significant
increase in performance in the relatively simple conditions in the easy mode. Compared to
Snow-CLOCs, the architecture of Sec-CLOCs focuses more on the detection of medium- and
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long-range vehicle targets in snowy environments and achieves significant improvements
in this regard.

As shown in Figures 8 and 9, the 2D detection performance of Sec-CLOCs and the
3D detection performance of the final fused detection are demonstrated, proving that it
achieves better 2D and 3D detection performance in snowy weather.

Figure 8. Results of 2D object detection on the validation set of the CADC public dataset. The red box
indicates the object position predicted by our algorithm, and the corresponding number indicates the
confidence score.

Figure 9. Results of 3D object detection results on the validation set of the CADC public dataset.
The red box indicates the object position predicted by our algorithm, while the white box indicates
the ground truth object position.

6. Conclusions

This paper proposes an object detection method, Sec-CLOCs, in snowy environments
based on the back-end fusion of camera data and LiDAR. This algorithm is divided into 2D
detection part, 3D detection parts and fusion parts. For the 2D detection part, the images
collected in snowy weather are preprocessed using Two-stage Knowledge Learning and
the Multi-contrastive Regularization (TKLMR) bad weather removal algorithm. At the
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same time, the YOLOv8s algorithm is improved, and DyHead is introduced to replace
the original detection head and combined with Wise-IOU. For the 3D detection part, the
point cloud data collected in snowy weather are preprocessed using the LIDROR point
cloud filtering algorithm, and then SECOND is used for 3D object detection. For the
fusion part, the output results of the 2D detector and 3D detector are fused using the
CLOCs back-end fusion algorithm. The experimental results show that the algorithm
proposed in this paper achieves 84.50%, 82.34% and 81.76% vehicle detection accuracy in
easy, moderate and hard modes, respectively, and achieves good detection performance
in snowy environments. Currently, the method is designed for vehicle detection and is
optimized for snowy conditions. This limits its applicability to other types of objects, such
as pedestrians, bicyclists, or animals, which are also critical in real-world detection tasks.
Furthermore, the effectiveness of the method proposed in this paper in other weather
conditions (e.g., rain, fog, or night-time) has not been fully explored. Therefore, future
work will focus on extending the Sec-CLOCs method to detect a wider range of objects,
including pedestrians and other road users, as well as dealing with a variety of weather
conditions other than snow, such as heavy rain, fog, and low visibility scenarios, which
will further improve its robustness and adaptability.
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