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Abstract: Energy efficiency constitutes a pivotal performance indicator for 5G New Radio (NR)
networks and beyond, and achieving optimal efficiency necessitates the meticulous consideration of
trade-offs against other performance parameters, including latency, throughput, connection densities,
and reliability. Energy efficiency assumes it is of paramount importance for both User Equipment
(UE) to achieve battery prologue and base stations to achieve savings in power and operation cost.
This paper presents an exhaustive review of power-saving research conducted for 5G and beyond
5G networks in recent years, elucidating the advantages, disadvantages, and key characteristics of
each technique. Reinforcement learning, heuristic algorithms, genetic algorithms, Markov Decision
Processes, and the hybridization of various standard algorithms inherent to 5G and 5G NR represent a
subset of the available solutions that shall undergo scrutiny. In the final chapters, this work identifies
key limitations, namely, computational expense, deployment complexity, and scalability constraints,
and proposes a future research direction by theoretically exploring online learning, the clustering
of the network base station, and hard HO to lower the consumption of networks like 2G or 4G. In
lowering carbon emissions and lowering OPEX, these three additional features could help mobile
network operators achieve their targets.
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1. Introduction

According to the GSMA [1], the telecom industry is responsible for 2–3% of global en-
ergy consumption, and power costs constitute 15–40% of an operator’s operating expenses
(OPEX). Consequently, major telecom providers like Deutsche Telekom, Vodafone, Verizon,
AT&T, and Orange have established ambitious targets for reducing power consumption
and carbon emissions in the near future [2–6].

Networks consume 90% of a telecom operator’s total power/electricity, with 60–80%
attributed to the Radio Access Network (RAN), as per GSMA data [7]. The 3GPP [8] defines
network energy efficiency as the amount of data transmitted per unit of energy consumed,
measured in bits per Joule (bit/J). A higher bit/J value signifies greater energy efficiency.

5G RAN, depicted in Figure 1, has substantial potential for energy savings and has
become a focal point for research. Various approaches have been proposed, including
the following:

• Integrating renewable energy sources with traffic offloading and Advanced Sleep
Modes [9];

• Implementing mechanisms to deactivate underutilized small cells based on predicted
user mobility [10,11];

• Utilizing machine learning to control cell sleep modes efficiently based on traffic,
interference, and buffer status [12,13];

• Developing heuristic solutions that consider energy efficiency and power allocation
by switching off base stations [14];
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• Proposing algorithms to dynamically adjust cell coverage and base station activity
based on traffic load, maximize energy efficiency, and balance grid and solar power
consumption [15];

• Employing genetic algorithms to deactivate underutilized base stations [16];
• Investigating dynamic switching between base station backhauling technologies [17];
• Optimizing Advanced Sleep Mode (ASM) parameters to balance energy savings and

delay constraints, addressing a new aspect of Quality of Service (QoS) [18];
• Proposing a clustering-based energy-saving scheme to minimize active base stations

while ensuring QoS for all User Equipment (UE) [19];
• Developing a centralized dynamic sleep method using a genetic algorithm and clus-

tering to enhance energy savings through coordinated sleep decisions [20];
• Dynamically updating the sleep mode status of Radio Units (RUs) based on the

network state to ensure that only necessary RUs remain active, meeting demand and
maintaining QoS [21];

• Dynamically controlling power-saving modes using graph theory to determine the
order of cell activation/deactivation, maximizing power savings while maintaining
coverage and minimizing signaling [22].
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The need for user connectivity and communication capabilities in any geographical
area where 5G or traditional mobile technologies cannot be made available is continuously
rising. That is the reason why advanced network architectures like Satellite–Terrestrial
Integrated Networks (STINs), depicted in Figure 2, and Integrated Terrestrial–Aerial Net-
works (ITANs), depicted in Figure 3, have begun to attract more and more interest. The key
difference between STINs and ITANs lies in ITANs’ integration of the aerial platform and
utilization of RISs (reconfigurable intelligent surfaces), while STINs are provided by terres-
trial and satellite networks with a common scope of delivering ubiquitous communication
improving security and energy consumption.



Sensors 2024, 24, 7402 3 of 18

Sensors 2024, 24, 7402 3 of 20 
 

 

 
Figure 2. System model of the considered STIN. 

 
Figure 3. System model of ITAN with multi-layer RIS. 

Various approaches to achieve energy efficiency for beyond 5G new networks have 
been taken: 
• Hybrid beamforming design in [23,24]; 
• Robust beamforming design in [25]. 

Besides these, other approaches look at overall energy efficiency solutions by focus-
ing on computational load, indirectly obtaining 5G networks’ energy efficiency [26,27]. 

Figure 2. System model of the considered STIN.

Sensors 2024, 24, 7402 3 of 20 
 

 

 
Figure 2. System model of the considered STIN. 

 
Figure 3. System model of ITAN with multi-layer RIS. 

Various approaches to achieve energy efficiency for beyond 5G new networks have 
been taken: 
• Hybrid beamforming design in [23,24]; 
• Robust beamforming design in [25]. 

Besides these, other approaches look at overall energy efficiency solutions by focus-
ing on computational load, indirectly obtaining 5G networks’ energy efficiency [26,27]. 

Figure 3. System model of ITAN with multi-layer RIS.

Various approaches to achieve energy efficiency for beyond 5G new networks have
been taken:

• Hybrid beamforming design in [23,24];
• Robust beamforming design in [25].

Besides these, other approaches look at overall energy efficiency solutions by focusing
on computational load, indirectly obtaining 5G networks’ energy efficiency [26,27].

Section 2 of this paper will provide a detailed analysis of these solutions, establishing
criteria for comparison and identifying their strengths and weaknesses, which will be
discussed in Section 3. Section 4 will conclude with potential enhancements.
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2. Energy Efficiency Solutions Available in the Market

The rapid evolution of mobile networks, from 4G to 5G and beyond, has brought about
a tremendous surge in data traffic and connected devices. This growth, while enabling
exciting new possibilities, also presents a critical challenge: energy consumption. As net-
works expand and densify to meet ever-increasing demand, their energy footprint grows
significantly, raising concerns about environmental impact and operational costs. Therefore,
a crucial focus for the future of mobile connectivity lies in developing and implementing
innovative solutions to optimize energy efficiency across 5G and beyond networks like
ITANs and STINs. This involves not only improving the energy performance of individual
network components, but also rethinking network architectures, protocols, and deploy-
ment strategies to minimize overall energy usage without compromising performance or
user experience.

In this context, the work of Adil Israr et al. [9] has addressed the escalating energy
consumption in 5G networks, triggered by the surge in 5G and IoT devices. They propose
a holistic solution centered around integrating renewable energy sources, intelligent traffic
management, and advanced power-saving techniques. To reduce reliance on the traditional
carbon-intensive grid, the authors advocate incorporating renewable energy sources like
solar and wind power into the 5G infrastructure. This hybrid energy paradigm aims to
decrease both operational costs and environmental impact. Furthermore, to optimize energy
use during peak hours, the solution dynamically offloads user traffic from power-hungry
macro base stations to energy-efficient small cell base stations.

During off-peak hours, underutilized base stations are intelligently put into varying
levels of sleep modes, conserving energy by gradually deactivating components. A cen-
tralized renewable energy farm is also envisioned to provide a cost-effective and reliable
power source for both macro and small cell base stations. The complex dynamics of energy
supply, consumption, storage, and traffic patterns are analyzed using stochastic modelling,
providing insights for optimizing energy-saving strategies. The proposed algorithm strikes
a balance between energy efficiency and Quality of Service (QoS) by employing traffic-
aware offloading, Advanced Sleep Modes, and Markov Chain Modelling to analyze the
probabilities of, and transition rates between, different sleep states.

The algorithm’s objectives are to minimize blocking probability and reactivation
delays while maximizing energy savings. The hybrid energy supply system ensures
network availability and QoS even during periods of low renewable energy generation.
The effectiveness of this solution is gauged using key metrics like energy gain, overall
energy consumption, blocking probability, and reactivation delay.

Beyond direct energy savings, the framework explores the concept of virtual energy
cooperation, where surplus renewable energy from one base station can be shared with
others experiencing high traffic demand. This comprehensive approach not only tackles
the pressing issue of 5G network energy consumption but also paves the way for a more
sustainable and resilient future for mobile networks.

In the realm of energy-efficient 5G networks, Hasan Farooq et al. [10] introduced
AURORA, a framework designed to proactively conserve energy in future ultra-dense
5G environments. AURORA’s core innovation lies in its ability to predict user mobility
patterns and preemptively place small cells into sleep mode when they are anticipated to
be underutilized.

By analyzing historical handover traces, AURORA employs a semi-Markov model to
forecast not only the next cell a user is likely to move to but also the estimated handover
time. Further enhancing its predictive capabilities, the framework incorporates “landmarks”
to approximate future user locations. Based on these predicted user locations and cell
loads, AURORA formulates an optimization problem to minimize energy consumption by
strategically deactivating underutilized small cells. To ensure a balanced load across active
cells and maintain Quality of Service (QoS), it also utilizes Cell Individual Offsets (CIOs).

Extensive simulations with realistic mobility traces have showcased AURORA’s ability
to significantly reduce energy consumption without compromising QoS. It outperforms
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traditional reactive approaches and maintains energy savings even in the face of minor
inaccuracies in mobility prediction. AURORA’s commitment to QoS is evident in its explicit
focus on balancing energy efficiency with user experience. It achieves this by ensuring
a fair distribution of load across active cells through load balancing with CIOs, which
prevents overload and maintains service quality. Additionally, a Minimum Rate Constraint
guarantees a minimum data rate for each user, ensuring sufficient resources even when
some cells are in sleep mode. A Coverage Constraint is also maintained to ensure reliable
network access across the coverage area, even with some cells inactive. The Load Threshold
parameter provides network operators with the flexibility to adjust the balance between
energy saving and QoS based on their specific needs. Through these mechanisms, AURORA
aims to strike an optimal balance between energy efficiency and user satisfaction, ensuring
a sustainable and high-performing 5G network for the future.

Fateh Elsherif et al. [11] have proposed a novel energy-saving approach for 5G cel-
lular networks that involves dynamically controlling the on/off status of base stations
(BSs) in real time. The approach formulates the problem as a Markov Decision Process
(MDP), where the system state encompasses user positions, velocities, and BS statuses.
The algorithm selects actions (turning BSs on or off) to minimize total energy consump-
tion, including operational and switching costs. The authors introduce a policy rollout
algorithm with Monte Carlo sampling to solve the MDP and propose a modified action
space for improved computational efficiency. Simulations demonstrate significant energy
savings compared to benchmark schemes, showcasing the algorithm’s effectiveness in
various scenarios.

While the study primarily focused on simulation-based evaluation, the authors ad-
dressed practical implementation challenges. A modified action space reduces compu-
tational complexity, and the policy rollout algorithm is inherently efficient. Simulation
results further indicated adaptability to real-world network conditions. Although direct
resource consumption analysis in real networks was absent, the emphasis on computa-
tional efficiency and adaptability suggested the possibility of practical deployment. Further
research and real-world experiments are needed to quantify resource requirements and
assess large-scale feasibility.

Related work using MDP for BS on/off switching exists, with energy efficiency eval-
uated against realistic traffic patterns in ns-3 simulations [28]. MDP’s ability to identify
optimal decisions in dynamic systems makes it attractive for managing 5G networks with
high user mobility. This is aligned with the conclusions drawn by Junhyuk Kim et al. [29]
regarding MDP’s potential for achieving network energy efficiency.

Ali El Amine et al. [12] have proposed a reinforcement learning-based approach to
optimize energy consumption in 5G Heterogeneous Networks (HetNets) by dynamically
adjusting small base station (SBS) sleep modes. The core idea is to enable SBSs to switch
between various sleep levels based on traffic load, interference, and buffer status, balancing
energy efficiency with Quality of Service (QoS).

The problem is formulated as a Markov Decision Process (MDP), where each SBS
acts as an agent learning the optimal sleep mode policy. The SBS’s state is defined by
throughput, buffer size, and estimated interference. Available actions are different sleep
mode levels, including active and deeper energy-saving modes. The proposed Q-learning
algorithm allows SBSs to learn the optimal policy by exploring actions and observing their
impacts. A weighting parameter balances energy saving and QoS priorities. Simulations
demonstrated significant energy savings compared to baseline schemes. The algorithm
adapts to varying traffic and interference, ensuring appropriate sleep modes for optimal
balance. Investigating the impact of user offloading from inactive SBSs to the macro base
station (MBS) revealed a potential trade-off between reduced data loss/delay and decreased
overall energy efficiency due to higher MBS power consumption.

While primarily theoretical and simulation-based, the approach suggests real-world
potential due to its distributed decision-making, limited action space, and consideration of
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practical factors. However, challenges like hardware requirements, coordination, learning
time, and security/reliability need to be addressed for real-world deployment.

Further research is required to assess feasibility and effectiveness in real networks.
Future work should focus on overcoming practical challenges and adapting the algorithm
for specific real-world scenarios.

To tackle the challenge of energy consumption in 5G millimeter wave networks, Abdul-
halim Fayad et al. [14] have leveraged the power of a Genetic Algorithm (GA). This heuristic
approach seeks to minimize power consumption while upholding Quality of Service (QoS)
by intelligently assigning users to base stations and allocating power resources.

The GA operates by first generating a diverse population of potential solutions. Each
solution represents a specific user–base station assignment and power allocation scheme.
These solutions are then evaluated using a fitness function that considers power consump-
tion and QoS factors like active base stations, transmission power, and user data rates. The
GA favors solutions with lower power consumption and acceptable QoS, selecting them
for the next generation. New solutions are created through crossover (combining elements
of selected solutions) and mutation (randomly modifying solutions), ensuring a broad
exploration of the solution space. This iterative process continues refining the solutions
over generations until the GA converges on the optimal or near-optimal user–base station
assignment and power allocation scheme for energy efficiency.

Simulations have showcased the GA’s effectiveness in curbing 5G mmWave network
power consumption, especially in scenarios with a large number of users where exact
methods become computationally prohibitive. While the solution does not explicitly
address user mobility, the inherent high density of base stations in mmWave networks may
mitigate the impact of fast user movement. This density increases the likelihood of users
remaining within a base station’s coverage or experiencing shorter handoffs, potentially
enhancing the algorithm’s robustness to mobility. However, further research and real-world
testing are necessary to definitively assess the algorithm’s performance under fast user
mobility scenarios.

Abu Jahid et al. [15] have proposed a novel approach to improve energy efficiency in
green cellular networks, focusing on cloud radio access networks (C-RANs) powered by
renewable energy sources. Their solution involves a dynamic point selection coordinated
multipoint (DPS CoMP)-based load-balancing scheme to optimize throughput and energy
efficiency by minimizing reliance on the traditional power grid.

This approach addresses the intermittent nature of renewable energy by integrating
it with the grid and tackles spatial/temporal traffic variations by dynamically adjusting
cell coverage and base station activity based on real-time traffic demand. A heuristic
load-balancing algorithm intelligently associates users with base stations based on signal
quality and traffic load, enabling offloading or sleep modes for underutilized base stations.
While not explicitly addressing real-world resource utilization, the paper acknowledges
potential challenges like computational complexity, communication overhead, hardware
requirements, scalability, real-time adaptability, and the energy overhead of coordination.
Despite these challenges, the proposed heuristic algorithm aims for computational efficiency
and real-time adaptability. Simulation results show promising energy savings. Further
research and real-world trials are necessary to fully assess its feasibility and resource
requirements in large-scale deployments.

Silvestre Malta et al. [13] have proposed using the SARSA reinforcement learning
algorithm to manage 5G base station sleep modes, optimizing energy consumption while
maintaining Quality of Service (QoS). The approach considers various 5G use cases and
their latency requirements. The system model, designed to optimize energy efficiency
in 5G networks, incorporates traffic modulation, energy consumption, and sleep mode
policies. Traffic patterns were simulated using a Poisson process, while the energy model
accounts for the time spent in each sleep mode and the energy expended during transitions.
The SARSA (State–Action–Reward–State–Action) algorithm is employed to learn the opti-
mal sleep mode actions in various states, balancing energy savings with latency penalties.
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SARSA, an on-policy temporal difference learning algorithm, learns the optimal actions
to take in different states to maximize rewards. States are defined by the current sleep
mode level and packet buffer load, while actions correspond to the different sleep modes
the base station (BS) can switch to. The algorithm assigns rewards for energy savings and
penalties for delays or high buffer loads. A Q-table stores each state–action pair’s estimated
values (Q-values), which represent the expected future rewards. The policy for selecting
actions is then updated based on these Q-values, striking a balance between exploration
(trying new actions) and exploitation (choosing actions known to yield high rewards).

Simulations demonstrated that significant energy savings are achievable, particularly
in low-traffic scenarios or when prioritizing energy reduction. Savings of up to 80% are
possible while still meeting latency requirements. The system’s adaptability to varying
traffic and latency constraints enables energy optimization without sacrificing QoS.

The algorithm’s behavior adapts to the specific QoS requirements of different 5G use
cases. In eMBB (enhanced Mobile Broadband) scenarios, where high data rates are priori-
tized, significant energy savings are possible, especially with relaxed latency thresholds.
In mMTC (massive Machine-Type Communication) scenarios, involving many devices
with low data rates and moderate latency tolerance, energy savings are achievable but may
be lower than in eMBB. URLLC (Ultra-Reliable Low-Latency Communication), with its
stringent latency and reliability demands, allows for energy savings, but these are generally
lower, especially with strict latency thresholds.

The system’s adaptability to latency thresholds allows it to cater to the unique re-
quirements of each use case. The “Buflim” parameter, which controls the maximum buffer
latency, provides further flexibility in prioritizing either energy savings or QoS. While the
focus of this work is on theoretical modeling and simulation, the authors suggest potential
real-world applicability due to the algorithm’s adaptability to varying traffic and latency
constraints. However, practical challenges such as hardware requirements, coordination
among base stations, learning time for the algorithm, and ensuring security and reliability
need further exploration before real-world deployment.

In their work, Hasna Fourati et al. [16] presented ESGA-5G, an energy-saving scheme
that leverages the power of a Genetic Algorithm (GA) to optimize the on/off states of small
base stations (SBSs) in 5G Heterogeneous Networks (HetNets). The central objective was
to strike a balance between minimizing energy consumption and satisfying user traffic
demand. ESGA-5G’s implementation starts with the creation of a random population of
potential solutions, where each solution, represented as a chromosome, encodes the on/off
states of the SBSs. These solutions are evaluated using a fitness function that takes into
account both energy consumption and penalties for any unmet traffic demand. Chromo-
somes with higher fitness values, signifying lower energy consumption and fulfilled traffic
demand, are selected as parents for the next generation using tournament selection. The
genetic information of these parent chromosomes is then combined through crossover to
create offspring. To introduce diversity and prevent the algorithm from becoming stuck in
local optima, random bit flips, or mutations, are applied to the offspring.

The resulting offspring, along with some of the top-performing parents, form the new
population, replacing the old one. This iterative process of evaluation, selection, crossover,
and mutation continues until a satisfactory solution is found or a predetermined number
of generations is reached. The best solution emerging from this process represents the
near-optimal on/off states for the SBSs, achieving minimal energy consumption while
fulfilling traffic demand.

Results showed that ESGA-5G outperforms Particle Swarm Optimization (PSO) in
terms of energy savings, underscoring the potential of Genetic Algorithms for energy
optimization in the complex landscape of 5G HetNets.

In their quest for greener 5G networks, Munjure Mowla and a team of researchers [17]
embarked on a journey to optimize energy efficiency in the intricate world of small cell
networks (SCNs). They envisioned a hybrid backhauling approach, skillfully weaving
together the strengths of passive optical networks (PONs) and millimeter wave (mmWave)
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technologies. A PON, with its shared medium and passive components, shines under the
pressure of heavy traffic, while mmWave, offering high data rates and flexibility, proves
more energy-conscious during periods of low load.

The team’s challenge was to create an adaptive strategy that could seamlessly switch
between PON and mmWave depending on the ever-changing traffic patterns, ensuring
that power consumption remained minimal while data rates were consistently met. This
led them to formulate an optimization problem, seeking the most energy-efficient path
for each traffic scenario. However, the complexity of this problem demanded a more
practical solution.

Thus, a heuristic approach was born. By utilizing a simplified energy consumption
model, they developed a computationally efficient method to determine the optimal switch-
ing threshold in real time. This allowed the network to make intelligent decisions on
the fly, always selecting the most energy-efficient backhauling technology for the current
traffic conditions.

The results were impressive. Compared to traditional single-technology approaches,
the hybrid approach showcased significant energy savings, reaching up to 32% in some
scenarios. It offered a level of adaptability and flexibility that was previously unattainable,
proving that the future of 5G networks could be both powerful and sustainable.

In their quest for greener 5G networks, Daniela Renga et al. in [18] unveiled DCASM,
a clever strategy to conserve energy in 5G base stations without sacrificing performance.
DCASM harnesses the power of Advanced Sleep Modes (ASMs), allowing base stations to
slip into deeper states of slumber when traffic is light, thus slashing energy consumption.
However, with deeper sleep comes a longer wake-up call, a trade-off that DCASM deftly
manages. At the heart of DCASM lies a delicate balancing act between energy savings and
delay constraints. The system taps into real-world mobile traffic patterns and employs an
ANN-based prediction algorithm to anticipate future demand. Based on the application’s
sensitivity to delays, it establishes a maximum average time for a base station to rouse itself
from its sleep. The crux of the matter is optimizing the “hold time” (T2)—the duration
spent in the intermediate sleep mode, sleep mode 2 (SM2), before descending into the
deepest sleep mode, sleep mode 3 (SM3).

DCASM’s ingenuity lies in its dynamic adaptability. During periods of low traffic,
it encourages base stations to sleep longer, maximizing energy conservation. Conversely,
as traffic surges, it ensures they remain in lighter sleep states or even fully awake, ready
to respond promptly. This dynamic approach guarantees that average wake-up times
stay within the predefined limits, making it ideal even for applications that demand swift
responses. The brilliance of DCASM extends beyond theory. A closed-form expression
enables the calculation of optimal sleep durations, streamlining its implementation in real
5G base stations. This practicality, combined with its ability to significantly reduce energy
consumption while upholding performance guarantees, positions DCASM as a promising
solution for a sustainable 5G future.

In the intricate landscape of 5G dense small cell networks (SCNs), Wei Kuang Lai et al. [19]
envisioned a power-saving strategy that revolves around the concept of clustering. The goal is
ambitious: to selectively switch off base stations, thus minimizing energy consumption, while
ensuring that users continue to enjoy a satisfactory Quality of Service (QoS). Recognizing the
computational challenge of finding the optimal on/off configuration for base stations (BSs),
Lai proposes a three-phase heuristic approach. The first phase involves partitioning the
network into clusters based on BS load. Heavily burdened BSs are designated as the cores
of these clusters. Next, within each cluster, an exhaustive search is conducted to identify
the ideal combination of active and inactive BSs. This search aims to minimize the number
of active BSs while still upholding the required QoS. Finally, the algorithm extends its reach
to the boundaries between clusters, evaluating whether users served by BSs on the edges
could be handed over to neighboring clusters, further reducing energy consumption.

The clustering algorithm itself is a well-orchestrated process. It begins by calculating
the load on each BS, taking into account the resource blocks (RBs) demanded by its users
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and the total available RBs. BSs are then classified as underloaded, medium loaded, or
overloaded using predefined thresholds. Heavily loaded BSs, or the two most loaded
ones if none meet the “heavily loaded” criteria, are chosen as cluster cores. The remaining
BSs then align themselves with the nearest core BS, forming clusters. Should any cluster
become too large, it is split into two, with the two most loaded BSs within it assuming the
role of new cores.

Through simulations, this clustering-based scheme has proven its ability to signifi-
cantly reduce power consumption without compromising QoS. Its performance shined
particularly in scenarios where users were not uniformly distributed, outperforming ex-
isting approaches. In essence, this heuristic clustering algorithm serves as a powerful
tool, effectively dividing a network into manageable subproblems, enabling the efficient
on/off control of BSs within each cluster, and paving the way for a more energy-conscious
5G future.

Mosheer J. Daas et al. [22] have proposed a novel energy management framework
for 5G ultra-dense networks (UDNs) using graph theory. The framework is designed to
address the increased energy demands of 5G networks due to the integration of small cells
(SCs) alongside macro cells (MCs). The key idea is to dynamically control power-saving
modes in the radio network by modeling the network as a graph and then using graph
theory methods to determine the order in which nodes (cells) are switched off or on.

The algorithm, called STAR5, prioritizes nodes for power-saving based on their traffic
load and type (SC or MC). It aims to maximize power savings while maintaining full
network coverage and minimizing control plane signaling. The paper evaluated the
algorithm’s performance under different network densification levels, load factors, and
real-life network scenarios. The results showed that the proposed framework could achieve
significant power savings, up to 25% at full load and 65% during off-peak hours, without
compromising network performance.

In this groundbreaking work, the authors embarked on a journey to model complex 5G
ultra-dense networks (UDNs) using the elegant language of graph theory. They constructed
a sophisticated energy management framework upon this foundation, paving the way for
intelligent power control. The power of graph theory was further harnessed to determine
the sequence in which nodes should be powered off or on, employing the Weighted Degree
Centrality metric as a guiding principle. Through rigorous evaluation under diverse
network conditions, the authors showcased the efficacy of their algorithm in achieving
substantial power savings, underscoring its potential to revolutionize energy efficiency in
the realm of 5G UDNs.

Overall, the paper presents a promising approach to energy management in 5G UDNs,
leveraging graph theory to optimize power consumption while maintaining network
performance.

Kuo-Chi Chang et al. [20] have proposed an energy-saving technology for 5G base
stations using Internet of Things (IoT) collaborative control. It addresses the issue of high
energy consumption in dense 5G networks, particularly during periods of low traffic.
The technology involves dynamically putting low-load base stations into a sleep mode to
conserve energy.

The paper introduced a centralized dynamic sleep method based on a genetic algo-
rithm. This method considers all possible combinations of base station sleep states to find
the optimal configuration that minimizes energy consumption while maintaining network
performance. The genetic algorithm is used to efficiently search for the best solution in a
large solution space.

The proposed approach also includes a clustering algorithm that groups base stations
based on their cooperation factors. This allows for coordinated sleep decisions within
clusters, further enhancing energy savings. The clustering algorithm is dynamic, adapting
to changes in network traffic and user demand.

Simulation results demonstrated the effectiveness of the proposed technology in
reducing energy consumption and improving energy efficiency in 5G base station networks.
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The centralized sleep strategy based on the genetic algorithm is shown to be effective
in finding optimal sleep combinations, while the clustering algorithm helps to reduce
computational complexity, making the approach more practical for real-world deployment.

Kooshki et al. [13] introduced the 3xE scheme, an energy-efficient approach for cell-less
radio access networks (RANs) in 5G and beyond. This scheme aims to optimize energy use
by selectively deactivating underutilized access points (APs) while maintaining Quality of
Service (QoS).

The algorithm considers both interference and load when deciding which APs to put
into sleep mode. It first identifies APs that contribute more interference than useful signal
and deactivates them. Then, it evaluates the remaining APs based on their load and impact
on overall energy efficiency, further optimizing the network’s energy usage.

This algorithm can be classified as a heuristic optimization algorithm, as it aims to
find a good solution efficiently rather than guaranteeing the absolute optimal solution. It
incorporates elements of greedy algorithms and iterative improvement to achieve this goal.

The algorithm also takes into account the QoS provided to customers by including
a constraint that ensures each user’s throughput meets a minimum requirement. By
optimizing energy usage and considering QoS, the algorithm aims to improve the overall
network performance and user experience.

Zhi Lin et al. in [23] introduced two novel and robust beamforming (BF) schemes to
improve the secrecy energy efficiency (SEE) of Satellite–Terrestrial Integrated Networks
(STINs) in mmWave band shared with cellular systems. The SEE metric is evaluated to
gauge performance and is defined as the ratio of the achievable sum rate to the total power
consumption. The element of novelty of the proposal is achieved through the following:
hybrid analog–digital beamforming, robust design for the imperfect knowledge of the
AoDs (angles of departure) for wiretap channels, leveraging interference from BSs to
enhance the SEE performance of ESs (earth stations), optimization algorithms such as the
Charnes–Cooper approach and the SCA (sequential convex approximation) method to
solve the nonconvex optimization problem associated with hybrid beamforming design,
and joint optimization of the BF weight vectors at the satellite.

While the authors acknowledge the computational complexity, they highlight the
importance of selecting feasible initial points for the iterative optimization algorithms. One
key aspect of the solution is that it takes into consideration realistic scenarios involving
both single and multiple ESs. For a single ES, the authors propose using an iterative
optimization algorithm that involves two stages: first obtaining the digital beamformer
using the Charnes–Cooper approach, with auxiliary variables converted into second-order
cone (SOC) constrains solved using semi-definite relaxation (SDR) and randomization
techniques, and, second, using bisection search and SDR to obtain the analog beamformer.
To further improve the solution, the authors utilize the iterative penalty function approach
to minimize the difference between the trace and maximum eigenvalue of the beamforming
matrices, ensuring rank-1 constraint. For more complex scenarios with multiple ESs, the
authors adopt the SCA method, approximating original non-convex problems with a series
of convex problems. The algorithm iteratively solves the convex problems, refining the
solution until convergence. Similarly to the case of a single ES, the authors optimize digital
and analog beamformers by adding steps to handle multi-user scenarios, including auxiliary
variables and first-order Taylor series expansions to approximate non-convex constraints.

This solution takes into consideration practical constraints like imperfect channel
state information (CSI), the use of massive antenna arrays due SNIR requirements, and
RF chain limitation at the base station. Simulation results showed that the proposed
hybrid beamforming approach consistently outperforms digital beamforming, and in-
terleaved and localized hybrid architecture has better performance compared to fully
connected architecture.

A similar approach involving beamforming techniques, which also takes into consid-
eration jamming and eavesdropping attacks, is provided by Yifu Sun et al. in [24]. They
propose a block coordinate descent (BCD) framework that jointly optimizes the user’s
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received decoder, the terrestrial and aerial digital precoders, and the multilayer RIS ana-
log precoder. The BCD framework includes techniques like the heuristic beamforming
scheme, SCA approach, and a monotonic vertex-update algorithm with a penalty convex-
concave procedure (P-CCP), to address the non-convexity of the optimization problem.
This approach also takes into consideration the imperfection of CSI.

Simulation results have shown an enhancement of 0.0814 and 0.1190 bps/Hz/Joule in
comparison with the SDR-based BF scheme and SCA-based BF scheme, respectively.

Although energy efficiency is not their main focus, Hehao Niu et al. in [25] indi-
rectly contribute to improving it by considering the use of artificial noise (AN) and phase
shifters. These techniques can reduce the power consumption of intelligent reflecting
surface (IRS)-assisted simultaneous wireless information and power transfer SWIPT net-
works, maintaining a secrecy performance that is the prime objective. An IRS-assisted
secrecy SWIPT network is a wireless communication system that uses an IRS to improve
the security of SWIPT. The authors’ solution is focused on maximizing the minimum ro-
bust information rate among the legitimate information receivers (IRs) in the presence of
imperfect CSI.

Badie et al. in [26] and Abdulwahib et al. in [27] obtained 5G network energy efficiency
indirectly by saving the overall solution computational load in vehicular network authenti-
cation. The former accomplished this by focusing on reducing re-authentication overhead
through the bilinear pairing of points on the elliptic curve and blockchain technology, while
the latter employed a combination of lightweight cryptography, optimized design, and
fog computing.

3. Identifying Pros and Cons of Available Solutions

The algorithms designed to enhance 5G and beyond 5G networks’ energy efficiency
analyze several key features:

• Mobility prediction: anticipating user movement to optimize resource allocation;
• Traffic offloading: shifting users from congested base stations to less busy ones;
• Sleep modes: putting base stations into low-power states during periods of inactivity;
• Renewable energy: utilizing solar or wind power to supplement the network’s

energy supply;
• Clustering: grouping base stations based on load or cooperation factors to simplify

algorithm complexity;
• Hybridization of the solutions: using multiple algorithms, obtaining the value of their

benefits while lowering limitations;
• Optimization of the solution computational load: reducing the number of operations

in the solution transaction.

These features are integrated into various algorithms, often employing reinforcement
learning, genetic algorithms, or heuristic solutions, to achieve not only energy efficiency
but also to maintain Quality of Service (QoS) for users and the security of communication.

Table 1, Features of energy efficiency studies of 5G networks, summarizes the different
algorithms, highlighting that most leverage sleep modes, a standard 5G power-saving
mechanism. A few solutions also explore alternative approaches like adjusting backhaul
technologies based on network load or simply switching base stations on/off.

Table 2, Features of studies of beyond 5G new networks, compares different ap-
proaches of new network architectures to improve energy efficiency through hybrid beam-
forming design while providing communication capabilities similar to cellular networks in
any geographical area.

Further enhancements have been incorporated to improve QoS, reduce algorithm
complexity, or further boost energy efficiency. These include the following:

• Renewable energy integration: supplementing power supply during peak load times
with solar energy;

• Clustering: simplifying algorithms by grouping base stations;
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• Traffic offloading: ensuring user QoS while improving efficiency by moving users
from low-traffic to high-traffic base stations;

• Mobility prediction: predicting traffic load to optimize base station sleep modes.

Implementing any of these energy-efficient algorithms can lead to significant energy
savings ranging from 10% to 80%. The actual savings depend on factors like peak hours,
network density, algorithm parameters, coordination between base stations and the central
controller, network topology, and latency.

In Tables 3 and 4, we have analyzed the advantages and limitations of each studied
solution, and motivated by our findings, we propose a hybrid solution of the studied ones
in order to achieve better energy efficiency overall. In future works, we aim to measure
the results of our solution against a data set of data records tracking resources available
for cells of a 2G, 4G, and 5G real network. Similarly, we aim to benchmark our proposed
solution against the studied ones in this article having the same data set.

Our main contributions are summarized below:

• Examining the literature and identifying available solutions in the last five years;
• Identifying the advantages and limitations of available solutions;
• Identifying a theoretical solution to improve the energy efficiency of communication

networks through the hybridization of available solutions, highlighting unexplored
areas that will be measured in future studies.
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Table 1. Features of energy efficiency studies of 5G networks.

Feature Study 1 [9] Study 2 [10] Study 3 [11] Study 4 [12] Study 5 [14] Study 6 [15] Study 7 [13] Study 8 [16] Study9 [17] Study 10
[18]

Study 11
[19]

Study 12
[20]

Study 13
[21]

Study 14
[22]

Mobility
Prediction No

Yes, semi-
Markov

model and
landmarks

Yes,
considers

user
positions

and
velocities

No No No No No No No No No No No

Interference No No No No No No No No No No No Yes No

Traffic
Offloading

Yes,
considers
dynamic

offloading

No No

Yes,
considers
offloading

impact

No

Yes,
considers

load
balancing.

No No
Yes,

load-based
switching

No Yes Yes Yes Yes

Sleep Modes
Yes,

Advanced
Sleep Modes

Yes, on/off
sleep modes

Yes, simple
on/off

switching

Yes,
multi-level

SMs

Yes, BS
switching

on/off

Yes, sleep
mode for

lightly
loaded BSs

Yes, four
sleep modes

Yes, binary
on/off states

for BSs
No

Yes,
Advanced

Sleep Modes
No Yes Yes

Yes, based
on their

traffic load
and type

(macro cell
or small cell)

Renewable
Energy

Integrates
solar power No No No No Integrates

solar power No No No. No No No No No

Clustering No No No No No No No No No No Yes Yes No No

Algorithm Stochastic Genetic,
Heuristic

Markov
Decision
Process
(MDP)

Reinforcement
Learning

Integer
Linear

Program
(ILP)

Heuristic SARSA ESGA-5G Heuristic DCASM Heuristic Genetic Heuristic START5

Evaluation
Metrics

Energy gain,
consump-

tion,
blocking

probability,
reactivation
delay, cost

Energy
Reduction

Gain

Energy con-
sumption,

QoS metrics

Energy con-
sumption,
data loss,

delay.

Energy con-
sumption,

throughput,
energy

efficiency, no
of

switched-off
BSs

Energy con-
sumption
gain, load

factor,
energy

saving index,
energy

efficiency,
spectral

efficiency,
radio

efficiency

Energy
savings,

latency, QoS
for different

use cases

Energy
savings

Energy
savings

Energy
savings,

average BS
reactivation

delay

Energy
efficiency,

throughput,
total power
consump-
tion, no of
turned-off

BS

No. of active
base stations,

energy
efficiency,
algorithm

complexity,
probability

of user
connection
dropped

Energy
efficiency,

throughput,
power con-
sumption,
inimum

Individual
EE of Active

RUs

Power
saving gain,

conver-
gence,

network
densifica-
tion, load

factors

EE improve-
ments Up to 65% Up to 68% Between 20

to 60%
Not

evaluated
Between 22

to 33% Up to 69% Up to 80% Between 28
to 54% Up to 32% Up to 85% Not

evaluated
Between
2–2.7%

Between 30
to 60%

Between 25
to 65%
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Table 2. Features of studies of beyond 5G new networks.

Features Study 1 [23] Study 2 [24] Study 3 [25]

Metrics Maximize SEE Maximize SEE Improve secrecy

Optimization variable Hybrid BF Hybrid BF BF, Alternating Optimization

Takes into consideration imperfect CSI Yes, for wiretap channels Yes, for jamming and wiretap channels Yes, for direct and cascaded channels of the
legitimate and eavesdropping links

Other constraints SINR requirements, analog precoder power,
transmit power

Target rate requirements, wiretap rate
requirements, transmit power constraints, RIS

unit-modula constraint

Worst case QoS constraints and the UMC of
the phase shifter

Use of SCA Yes Yes Yes

Charnes–Cooper approach Yes No No

Use of interference No Yes No

EE improvements NA 0.0814 and 0.1190 bps/Hz/Joule NA

Table 3. Advantages and limitations of energy efficiency studies of 5G networks.

Study Strength Limitation Real Network Deployment Considerations

Study 1 [9] Comprehensive, multiple techniques, green sources Assumes renewable power source availability, complex infrastructure Assumes ideal solar conditions, may require complex energy
management systems

Study 2 [10] Proactive, considers mobility, minimizes wastage from idle cells Relies on accurate mobility prediction Not explicitly addressed, but mentions centralized control and
potential for scalability

Study 3 [11] Dynamic, adaptive to real-time user behavior High computational complexity Not explicitly addressed, but computational complexity could be a
challenge

Study 4 [12] Distributed, adaptable to traffic/interference Learning phase required, potential for suboptimal policies Requires real-time monitoring and adaptation to network conditions

Study 5 [14] Provides optimal (ILP) and heuristic (GA) solutions, considers BS
switching and user QoS Complexity of ILP, GA needs parameter tuning Implementation complexity for joint optimization and BS switching

Study 6 [15] Considers dynamic point selection CoMP, load balancing, cell
zooming Heuristic approach may not guarantee global optimality Requires coordination between BSs and central controller

Study 7 [13] Adaptive to traffic patterns, balances energy saving and QoS Requires training, may not generalize to all scenarios Real-time traffic estimation and BS control needed

Study 8 [16] Simple, efficient, good energy-saving performance May not be optimal for complex network topologies Practicality of frequent BS switching, impact on QoS

Study 9 [17] Adaptive to traffic load, balances energy efficiency & data rate Requires accurate traffic prediction, potential for handover overhead Requires coordination between fronthaul and backhaul, potential for
increased complexity

Study 10 [18] Simple, adaptable to traffic patterns, guarantees delay constraints Limited to low traffic periods, assumes Poisson arrivals Requires real-time traffic estimation and prediction
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Table 3. Cont.

Study Strength Limitation Real Network Deployment Considerations

Study 11 [19] Suitable for dense small cell networks using clustering approach
reducing complexity, adaptability to non-uniform UE distribution

Static network assumption -> may need to re-run to obtain the optimal,
focus on downlink throughput, does not take into consideration

mobility prediction
Not explicitly considered

Study 12 [20] Reduced complexity, centralized solution, GA, dynamic clustering,
reduced complexity

Assumption of full coverage, limited consideration on mobility;
centralized solution (SPOF)

Use of traffic patterns from real networks but do not consider impact of
real network deployments

Study 13 [21]
Energy efficient, stable performance with variety of user density and

traffic load, interference management, QoS awareness, linear
complexity of the algorithm

Does not take into account latency, reliability, or mobility
Does not explicitly consider aspects such as the computational

complexity of the algorithm in large-scale networks or the potential
impact of channel variations on the algorithm’s performance

Study 14 [22]
Adaptability to network conditions, consideration of Node Type,

minimization of control plane signaling, enhanced network
robustness, applicability in real world scenarios

Implementation complexity, simplified power model, assumption of
full coverage, limited consideration of mobility, centralized approach

Scalability is thought to be based on minimizing signaling; simulation
based on different traffic profiles and using real network topologies

Table 4. Studies’ comparisons of beyond 5G new networks.

Comparison Study 1 [23] Study 2 [24] Study 3 [25]

Advantages Improved SEE, robust to imperfect AoD, CSI Improved SEE, enhanced security, robust to CSI, flexible and adaptable Improved secrecy, robust to CSI

Disadvantages Limited to STIN scenarios Increased complexity due to RIS, computation intensive for
large networks High computational
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4. Possible Areas of Improvement

In forthcoming investigations, we aim to mitigate the identified limitations of existing
5G networks and beyond 5G new networks’ energy efficiency solutions, as outlined in
Table 3, Advantages and limitations of energy efficiency studies of 5G networks, and
Table 4, Studies’ comparisons of beyond 5G new networks. Specifically, we recognize the
following challenges:

• Solutions based on reinforcement learning [12,13] necessitate a learning phase, poten-
tially delaying implementation;

• Approaches like [11,14,16,22] may entail high computational complexity, posing scala-
bility concerns;

• Heuristic algorithms such as [14,15,17,18,21] may not guarantee optimal solutions;
• Some solutions necessitate complex infrastructure, such as renewable power sources [9,15]

or specific backhauling technologies [17];
• Approaches need hybrid solutions to achieve maximum improvement of EE [24,25];
• Approaches need to take into consideration real network constraints and complex-

ities like the imperfection of CSI, different ES scenarios [24,25], or computational
load [26,27].

Our future research will explore strategies to overcome these constraints or use the
advantages and develop more efficient, scalable, and readily deployable energy-saving
mechanisms for cellular networks.

The inherent complexity of networks, coupled with high user mobility, data through-
put demands, and base station density, pose challenges in implementing algorithms that
efficiently manage these factors. Existing approaches may lead to computationally intensive
and potentially suboptimal solutions.

This study has helped us establish the next step in our future research and has hope-
fully helped other researchers obtain a clear overview of the discussed topic. Thus, our
goal will be to investigate online algorithms to determine optimal base station sleep mode
strategies. We will evaluate the impact of these algorithms on energy efficiency, network
signaling overhead, and user Quality of Service (QoS). Furthermore, we plan to explore the
hybridization of online algorithms with other techniques such as clustering the BSs and
HOs of users to lower consumption networks and renewable energy utilization, if available.

To ensure practical relevance, we aim to measure the energy efficiency of these strate-
gies and the algorithm’s time to convergence, and to compute power needs using real-world
network data collected with a service assurance solution monitoring a real 2G, 4G, and 5G
core network. This data-driven approach will allow us to validate our findings and provide
insights into the efficacy of proposed solutions in real-world scenarios.

To make the theoretical solution more clear, please refer to the block diagram depicted
in Figure 4.
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5. Conclusions

The exploration of energy efficiency solutions for 5G and beyond 5G networks has
revealed a diverse range of innovative approaches, each with its own strengths and limita-
tions. The surveyed research underscores the concerted effort to address these networks’
escalating energy demands, driven by the surge in data traffic, device proliferation, and the
integration of heterogeneous technologies. The proposed solutions leverage a spectrum of
techniques, including sleep modes, traffic offloading, renewable energy integration, clus-
tering, the hybridization of solutions, and sophisticated algorithms such as reinforcement
learning and genetic algorithms.

While these solutions offer promising avenues for energy conservation, they also
underscore the inherent complexities and challenges in attaining optimal energy efficiency.
The trade-offs between energy savings, Quality of Service (QoS), computational complexity,
and infrastructure requirements necessitate careful consideration and adaptation to specific
network scenarios. For instance, reinforcement learning-based approaches, while adaptive,
require a learning phase that could impact immediate deployment. Similarly, certain
algorithms, though effective, may exhibit high computational complexity, potentially
hindering scalability in large-scale networks.

The future trajectory of energy-efficient 5G and beyond 5G networks hinges on the con-
tinuous exploration and refinement of these solutions. Addressing limitations such as the
learning phase in reinforcement learning, computational complexity of certain algorithms,
and need for specialized infrastructure will be pivotal. The integration of online algorithms,
which can adapt to real-time network dynamics, alongside clustering techniques, renewable
energy sources, traffic offloading to lower consumption networks, and the hybridization of
all these, presents a promising direction for further research. The dynamic clustering of
base stations based on real-time traffic patterns and cooperation factors can enable more
granular control over energy-saving mechanisms, while the incorporation of renewable
energy sources can contribute to a greener and more sustainable network ecosystem.

The successful realization of energy-efficient strategies will necessitate a holistic ap-
proach that considers the dynamic nature of networks, users’ diverse and evolving de-
mands, and the continuous advancements in technology. The pursuit of sustainable and
high-performing networks will remain a central focus as we navigate the complexities of the
ever-evolving telecommunications landscape. The convergence of cutting-edge research,
real-world data-driven insights, and collaborative efforts across industry and academia
will be instrumental in shaping the future of energy-efficient 5G and beyond 5G networks.
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