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Abstract: Compressed sensing (CS) is an innovative signal acquisition and reconstruction technology
that has broken through the limit of the Nyquist sampling theory. It is widely employed to opti-
mize the measurement processes in various applications. One of the core challenges of CS is the
construction of a measurement matrix. However, traditional random measurement matrices are often
impractical. Additionally, many existing deterministic binary measurement matrices fail to provide
the required flexibility for practical applications. In this study, inspired by the observation that pseudo-
random sequences share similar properties with random sequences, we constructed a deterministic
sparse measurement matrix with a flexible measurement number based on an pseudo-random
sequence—the Legendre sequence. Empirical analysis of the phase transition and an assessment
of the practical features of the proposed measurement matrix were conducted. We validated the
effectiveness of the proposed measurement matrix on randomly synthesized signals and images. The
results of our simulations reveal that our proposed measurement matrix performs better than several
other measurement matrices, particularly in terms of accuracy and efficiency.

Keywords: compressed sensing; deterministic binary measurement matrix; Legendre sequence;
phase transition

1. Introduction

In numerous applications of wireless sensor networks (WSNs), such as wireless
body sensor networks (WBSNs) [1], micro-seismic monitoring wireless sensor networks
(MMWSNs) [2], and wireless video monitoring systems (WVMSs) [3], sensors face limita-
tions in energy, bandwidth, computational capability, and storage space. To sustain the
lifespan of WSNs and conserve their bandwidth, it is crucial to reduce the amount of data
transmitted. Compressed sensing (CS) allows for the acquisition of fewer measurements
directly at the sensor, significantly reducing the amount of data to be transmitted.

Compressed sensing (CS) [4] is a novel signal acquisition and reconstruction tech-
nology that has broken through the limit of the Nyquist sampling theory. By utilizing
sparsity, CS allows signals to be sampled at rates significantly below the Nyquist rate by
projecting them onto a measurement matrix. The original signal can then be efficiently
recovered by solving an optimization problem based on the sparse representation of the
signal. CS transfers the computational burden from the encoder to the decoder, which
is particularly suitable for sensors with constrained computational capabilities. Thanks
to these advantages, CS is extensively employed to optimize the measurement process
in diverse applications, including synthetic aperture radar (SAR), wireless body area
networks [1], the health monitoring of pipelines [5], micro-seismic monitoring [2], and
magnetic resonance imaging [6].

One of the core issues of CS is the measurement process. In sensors, the data are
projected onto a measurement matrix to reduce the number of required measurements.
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Considering the limitations in the computational capability and storage space of sensors,
the measurement matrix must be simple and efficient. Many measurement matrices have
been proposed, primarily falling into two categories: random measurement matrices and
deterministic measurement matrices.

Initially, random measurement matrices with elements following independent identi-
cal distribution (IID) [7] or Bernoulli distribution [8] were proposed. Having been proven
to follow the restricted isometry property (RIP) [8] with high probability, they have been
extensively researched. Inspired by the fact that symmetric sign ensembles offer computa-
tional advantages over Gaussian ensembles, Zhang G. et al. [9] proposed a measurement
matrix based on the symmetric sign ensemble and demonstrated that the random sparse
measurement matrix follows the RIP with high probability. Although random measurement
matrices have good properties, they are often impractical. Furthermore, as they cannot be
reproduced, they must be transmitted from the encoder to the decoder and require a large
amount of storage space, which is impractical.

Deterministic measurement matrices can overcome the limitations of random measurement
matrices. Specifically, deterministic sparse measurement matrices consist of only two elements:
‘0’ and ‘1’. They have low computational complexity and require minimal storage space,
making them particularly suitable for resource-restrained sensors. Numerous deterministic
sparse measurement matrices have been proposed. DeVore R. A. [10] proposed a determin-
istic sparse measurement matrix using finite fields, but its size is constrained to p2 × pr+1

where p is a prime number and r is an integer. Li S. et al. [11] constructed several types of de-
terministic measurement matrices based on finite geometry; however, their dimensions are
restricted to specific size of (q 3+ q2 + q + 1

)
∗
[(

q2 + 1
)(

q2 + q + 1
)

], q3 ∗ [q 2(q2 + q + 1
)
],

(q 3 + 1
)
∗
[
q2(q2 − q + 1

)]
, and (q 2 + 1

)
∗
[
q2(q2 + 1

)]
where q is a prime power. Xia S. T.

et al. [12] and Tong F. H. et al. [13] constructed deterministic sparse measurement matrices
based on finite geometry and unitary geometry. However, similar to the matrices created by
Li S. et al. [11], their dimensions are likewise constrained. Naidu R. R. et al. [14] proposed
a deterministic sparse measurement matrix based on Euler’s square; however, its size is
constrained to M × c(Mµ)2 where M represents the measurement number, µ represents
the mutual coherence, and c ∈ [1, 2) . Lu C. et al. [15] constructed the deterministic bipo-
lar measurement matrix utilizing pseudo-random sequences, utilizing pseudo-random
sequences; however, the number of measurements is constrained to 2r − 1 where r is an
integer. Zhang G. et al. [16] proposed a more flexible deterministic bipolar measurement
matrix based on Legendre sequences; however, the number of measurements is constrained
to prime integer or even integer. Lu W. et al. [17] proposed a deterministic sparse mea-
surement matrix with a flexible measurement number using the bipartite graph. However,
based on our experimental results, its performance still requires further improvement.
There are also many other deterministic sparse measurement matrices based on coding
theory [18,19], expander graphs [20], balanced incomplete block designs [21], etc. However,
due to the specific construction methods of deterministic sparse measurement matrices,
their dimensions are often constrained to certain values, highlighting the need for more
flexible designs.

Inspired by [9] and the observation that pseudo-random sequences share similar
properties with random sequences, we constructed a deterministic sparse measurement
matrix using an pseudo-random sequence known as the Legendre sequence.

The primary contributions of this paper include the following:

(1) A simple deterministic sparse measurement matrix is proposed utilizing the Legendre
sequence. The proposed measurement matrix has a flexible measurement number,
exhibits low computational capability, and requires small storage space.

(2) Empirical analysis of the phase transition is carried out and an evaluation of the
practical features of the proposed measurement matrix is performed.

(3) The performance of the proposed measurement matrix is compared with that of
several state-of-the-art measurement matrices using random signals and images.
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This paper is organized as follows: In Section 2, we review the theories of CS and
the Legendre sequence. Section 3 introduces the methodology used for constructing the
measurement matrix. Additionally, the phase transitions and practical features of the
proposed measurement matrix are analyzed. In Section 4, experiments on random signals
and images are conducted. Finally, in Section 5, the conclusion is presented.

2. Background
2.1. Theory of CS

The underlying assumption in this paper is that the signal x ∈ RN itself is naturally
sparse. That means than x ∈ RN has k ≪ N non-zero elements naturally.

There are mainly two steps in CS: the measurement process and the recovery process.
In the measurement process, x is measured by projecting it onto the measurement matrix
Φ, as shown in Equation (1):

y = Φx (1)

Since Φ is a matrix with a size of M × N, where M < N, x is projected into a lower-
dimensional space. Clearly, the measurement ratio is M/N.

In the recovery process, x needs to be reconstructed from y by solving Equation (1).
However, because M < N, this process becomes ill-posed. According to compressed
sensing theory, if x is sparse, it can be approximately reconstructed by solving the following
l0− optimization problem (2):

min∥x∥0 s.t. y = Φx (2)

However, this problem is NP-hard, thus a greedy algorithm, such as orthogonal
matching pursuit (OMP) [22] can be used to find a good-enough solution. Donaho et al. [4]
demonstrated that if the measurement matrix satisfies the RIP under a specific condition,
problem (2) can be replaced with the l1− optimization problem (3), which can be solved
efficiently using the basis pursuit (BP) algorithm [23].

min∥x∥1 s.t. y = Φx (3)

The RIP is an important criterion to verify whether Φ is a proper measurement matrix.

Definition 1. For a measurement matrix, Φ ∈ RM×N , and any k-sparse signal, if there exists a
constant δs ∈ (0, 1), such that

(1 − δs)∥x∥2
2 ≤ ∥Φx∥2

2 ≤ (1 + δs)∥x∥2
2 (4)

then, Φ is said to satisfy the RIP with order k. And the smallest number δk is called the restricted
isometry constant (RIC) of order k.

We can evaluate whether a matrix is a good measurement matrix by checking whether
it satisfies the condition (4) for a large k. However, RIP merely provides a sufficient
condition to guarantee the accurate recovery of signals, which is very conservative in
practical applications.

Phase transition is more precise, serving as both a necessary and sufficiency condition.
It is widely used to evaluate the effectiveness of measurement matrices [24] and recovery
algorithms [25,26]. Let α = M/N represent the sampling ratio and β = k/N denote
the sparsity ratio. It was observed that the plane of (α, β) can be partitioned into two
distinct phases, as shown by the significant phase transition curve during signal recovery,
as shown in Figure 1. In one phase, the original signal can be perfectly recovered, and in the
other phase, recovery fails, with equally high probability. Phase transition is an important
criterion and has garnered extensive research attention. The phase transition threshold for
the Gaussian random measurement matrix was investigated in [27]. Numerical experiments
demonstrated a nearly perfect alignment between the empirical 50% success curve and the
theoretical bound [27].
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Figure 1. Phase diagram for l1 minimization. Dark region: reconstruction success probability above
50%. Light region: reconstruction success probability below 50%.

2.2. Theory of Legendre Sequence

The research indicates that pseudo-random sequences exhibit similar properties to
random sequences and can serve as substitutes in numerous scenarios. Benefiting from
this, pseudo-random sequences are widely used in spectrum communication [28], data
encryption [29], and many other fields [30]. The Legendre sequence has a more flexible
period compared to other pseudo-random sequences.

Let p > 2 be a prime number, and a be a coprime integer of p; if the congruence

s2 = (a)p (5)

has an integer solution s, then a is referred to as a quadratic residue of modp; otherwise, it
is termed a quadratic non-residue modulo p.

We define the Legendre symbol as(
a
p

)
=

{
0, a is quadratic residue of mod p

+1, a is quadratic non − residue of mod p
(6)

For any integer g, it follows (
gp
p

)
= 0 (7)

and (
0
p

)
= 0 (8)

Consequently, we can derive a Legendre sequence as(
0
p

)
,
(

1
p

)
,
(

2
p

)
, (9)

It has been proven that when p is a prime number in the form of 4t − 1 (where
t is a positive integer), the Legendre sequence with a period of p is a pseudo-random
sequence [31]. It is necessary to note that there are significantly more prime numbers in
the form of 4t − 1 compared to integers in the form of 2r − 1(where r is a positive integer),
which represents the periods of most other pseudo-random sequences. For example, the
periods of m-sequences between 100 and 1000 are limited to 127, 255, and 511, while the
Legendre sequences, in contrast, offer a notably flexible selection of periods, as shown in
Table 1.
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Table 1. Prime numbers in the form of 4t − 1 between 100 and 1000.

103 107 127 131 139 151 163 167 179 191

199 211 223 227 239 251 263 271 283 307

311 331 347 359 367 379 383 419 431 439

443 463 467 479 487 491 499 503 523 547

563 571 587 599 607 619 631 643 647 659

683 691 719 727 739 743 751 787 811 823

827 839 859 863 883 887 907 911 919 947

967 971 983 991

3. Proposed Method
3.1. Construction of Proposed Measurement Matrix

Our measurement matrix is applicable to signals of length N = 4t − 1, where t is a
positive integer and N is a prime number. The construction method is as follows:

1. Let p = N, the following numbers are obtained:
(
12)

p,
(
22)

p,· · · ,
((

p−1
2

)2
)

p
.

2. If i = 1, 2, · · · , p − 1 appears among the numbers obtained in step 1. Let si = 0;
otherwise, let si = +1.

3. Let s0 = 0; then, a Legendre sequence, S =
{

s0, s1, · · · , sp−1
}

, can be obtained.
4. A p × p matrix Q can be constructed using (10):

Q =


s0 s1 · · · sp−2 sp−1
s1 s2 · · · sp−1 s0
...

...
. . .

...
...

sp−2 sp−1 · · · sp−4 sp−3
sp−1 s0 · · · sp−3 sp−2

 (10)

5. The top M, (1 < M < p) rows from matrix Q are selected. Then, a M × p determinis-
tic sparse measurement matrix is obtained. According to compressed sensing theory,
when M exceeds a certain threshold, the signal can be reconstructed with high prob-
ability. Therefore, M can be set based on the sparsity of the signal. Typically, M is
required to satisfy the condition M > Cklog(N/k), where N is the signal dimension
and C is a constant related to the desired reconstruction accuracy.

3.2. Analysis of Phase Transition

We analyzed the empirical phase transition of the proposed measurement matrix
and compared it with several state-of-the-art alternatives. It is worth noting that for de-
terministic sparse measurement matrices with inflexible measurement numbers, analysis
of their phase transitions becomes unfeasible. The compared measurement matrices in-
cluded the Gaussian random measurement matrix [7], the random symmetric measurement
matrix [9], the random binary measurement matrix [9], and the bipartite graph measure-
ment matrix [17]. The latter is a deterministic sparse measurement matrix with a flexible
measurement number, and the others are random measurement matrices.

The Gaussian random measurement matrix is a classic and highly effective measure-
ment matrix. It is one of the most commonly used benchmarks in the study of measurement
matrices due to its excellent performance. The random symmetric and random binary mea-
surement matrices are classic matrices that share structural similarities with our proposed
measurement matrix. Additionally, we included the bipartite graph measurement matrix
in our comparisons due to the fact that it is a classic deterministic sparse matrix, known for
its flexibility in dimensions and good sparsity properties.
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In the Gaussian random measurement matrix, the entries are independently sam-
pled from a Gaussian normal distribution with a mean of 0 and a variance of 1. In the
random symmetric measurement matrix, the entries are independently sampled from a
symmetric signs distribution, where each element takes the value of + 1√

N
or − 1√

N
with

equal probability. In the random binary matrix, the entries are independently sampled
from a distribution where each element takes the value of + 2√

N
or 0 with equal probability.

The bipartite graph measurement matrix, constructed using the Progressive Edge-Growth
(PEG) algorithm, is a low-density parity-check (LDPC) matrix that generally contains d
non-zero elements in each column, where d << N.

Phase transition was achieved utilizing the methodology described in references [25,32,33],
as follows. For a fixed N = 239, α varied from 0.1 to 0.95 with a step size of 0.05, and k
varied from 1 to M with a step size of 1. At each combination of (α, β), 300 sparse signals
were measured using different measurement matrices and then recovered using the OMP
algorithm [22]. Let x be the original signal and x̂ be the recovered signal. For each trial, if

∥x − x̂∥2
∥x∥2

< 0.01 (11)

we declare that the recovery is successful. Then, for each (α, β)-tuple and each measurement
matrix, we can obtain the exact recovery rate. Since it was observed that the empirical 50%
success curve closely aligned with the theoretical bound [27], we employed the logistic
regression method as outlined in references [25,32,33]. That is, for each α, the phase
transition referred to the value of β that yielded a 50% exact recovery rate in this study.

For greater universality, empirical analysis of the phase transitions was conducted
on various measurement matrices for two types of randomly synthesized sparse signals:
Gaussian sparse signals and binary uniform sparse signals. The generation process was
as follows: the non-zero elements of the Gaussian sparse signal followed a standard
Gaussian distribution, whereas the non-zero elements of the binary uniform signal followed
a uniform distribution in the range [0, 1].

The empirical analysis results are depicted in Figure 2. Obviously, the Gaussian ran-
dom measurement matrix, the random symmetric measurement matrix, and the random
binary measurement matrix exhibited similar phase transition curves. And the determinis-
tic bipartite graph measurement matrix demonstrated a superior phase transition curve
compared to the aforementioned random measurement matrices in the cases of Gaus-
sian sparse signals, while exhibiting similar phase transition curves for binary uniform
sparse signals. Furthermore, our proposed measurement matrix outperformed all other
measurement matrices for both Gaussian sparse signals and binary uniform sparse signals.

Figure 2. Phase transitions of several measurement matrices for (a) Gaussian sparse signals and
(b) binary uniform sparse signals.
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3.3. Analysis of Practical Features

The aforementioned phase transition property of the proposed measurement matrix
ensures its effective ability to capture information. Nevertheless, in practical applications,
certain practical features of measurement matrices must be taken into consideration, includ-
ing computational complexity in the measurement process and memory cost. The practical
features of the aforementioned measurement matrices are analyzed in Table 2. For fairness,
we assumed that the size of the measurement matrix was M × N, and each floating-point
element required B bits of storage space. Evidently, the proposed measurement matrix
possesses the following advantages:

(1) A flexible number of measurements: The proposed measurement matrix provides a
flexible number of measurements.

(2) Low computational complexity: As a sparse measurement matrix, the proposed matrix
requires only addition operations during the measurement process, without involving
multiplication. Compared to multiplication, addition operations are computationally
less intensive, especially in binary matrices, where bit-wise addition is much simpler
and less computationally expensive than multiplication. Therefore, this approach
significantly reduces computational load.

(3) Low memory cost: The Gaussian random matrix, characterized by its floating-point
entries, requires the largest storage space, specifically M × N× B bits. In contrast,
for the symmetric measurement matrix and the random binary measurement matrix,
since the two possible values can be encoded with just 1 bit, their storage space
is significantly reduced to M × N bits. The bipartite graph measurement matrix
requires N × d × log2M bits, as it only stores the positions of the non-zero entries.
The measurement matrix proposed in this paper only requires the storage of a single
Legendre sequence, as all other columns can be generated by cyclically shifting
this Legendre sequence, which requires merely N bits. This storage requirement is
significantly lower compared to the other measurement matrices discussed.

The aforementioned advantages make our proposed measurement matrix more suit-
able for practical applications, especially in scenarios involving resource-constrained sen-
sors. In the following section, we compare the performance of our proposed measurement
matrix with the above measurement matrices using random signals and images.

Table 2. Computational complexities of various measurement matrices.

Φ
Randomness or
Deterministic Measurement-Flexible Memory Cost (Bits) Multiplierless

Gaussian random Randomness Yes BMN No
Random symmetric Randomness Yes MN No

Random binary Randomness Yes MN No
Bipartite graph Deterministic Yes N × d × log2 M Yes

This paper Deterministic Yes N Yes

4. Experimental Results and Analysis

In this section, we compare the performance of our proposed measurement matrix with
several existing ones: the Gaussian random measurement matrix [7], the random symmetric
measurement matrix [9], the random binary measurement matrix [9], and the bipartite
graph measurement matrix [17]. The phase transitions and practical characteristics of all of
these measurement matrices were analyzed in Section 3. To ensure greater versatility, we
employed two types of signals as test signals: randomly synthesized signals and images.
The OMP algorithm [22] was used for signal recovery.

All experiments were conducted using Matlab R2014a on a computer equipped with
an Intel Core i7-6700 CPU (3.4 GHz) and 16 GB of RAM, running Windows 10.
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4.1. Random Synthesized Sparse Signals

In this part, two kinds of randomly generated sparse signals were used as test signals:
Gaussian random sparse signals and binary uniform sparse signals. Their generation
method was elaborated on in Section 3. In the noiseless scenario, the performance of
the measurement matrix was assessed by the ratio between the number of successful
reconstructions and the total number of trials. A successful reconstruction condition is
defined in (11), and number of total trials was 300.

Figure 3 depicts the perfect recovery percentages of different measurement matrices
as sparsity k varies with M = 263 and N = 599. Figure 4 illustrates the perfect recovery
percentages of various measurement matrices as M changes with k = 100 and N = 431.
Our proposed measurement matrix demonstrated superior performance, particularly in
practical applications due to its enhanced features.

Figure 3. Exact recovery percentages of various measurement matrices against different values of k
for (a) Gaussian random sparse signals and (b) uniform random sparse signals with M = 263 and
N = 599.

Figure 4. Exact recovery percentages of various measurement matrices for (a) Gaussian random
sparse signals and (b) uniform random sparse signals with k = 100 and N = 431, against varying M.

In a noisy scenario, the process can be represented as

y = Φx + e (12)

where e ∈ RM represents Gaussian white noise. In this experiment, ∥e∥2 = 0.1 ∗ ∥y∥2.
SNR was used to evaluate the performance of different measurement matrices, which is
defined as

SNR = 20log10

(
∥x∥2

∥x − x̂∥2

)
(13)
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where x is the original signal, and x̂ is the reconstructed signal.
The SNRs of different measurement matrices for Gaussian random sparse signals and

uniform random sparse signals against changes in M with k = 100 and N = 431 are shown
in Table 3. It can be seen that for both Gaussian random sparse signals and uniform random
sparse signals, our proposed measurement matrix exhibited a higher SNR compared to
the other measurement matrices. This suggests that our proposed measurement matrix
exhibits greater robustness to noise compared to the others.

Table 3. Recovery SNRs of various measurement matrices in noisy case with k = 100 and N = 431.

Measurement
Number This Paper Gaussian

Random
Random
Symmetric

Random
Sparse

Bipartite
Graph

Gaussian random
sparse signals

220 7.77 7.62 7.66 7.69 7.76
280 17.80 17.59 17.75 17.77 17.77
340 20.03 19.79 19.99 19.98 20.00
400 21.40 21.16 21.37 21.38 21.38

Uniform random
sparse signals

220 −0.90 −0.91 −0.92 −0.92 −0.91
280 1.62 1.47 1.47 1.47 1.49
340 5.16 4.91 4.97 5.01 5.01
400 10.28 10.01 10.13 10.12 10.19

4.2. Two-Dimensional Image

In this part, we evaluate the performance of various measurement matrices for image
reconstruction under compressed sensing. As shown in Figure 5, the tested images included
six commonly used test images, two medical images, and two aerial images. The size of all
images was 223*223. We utilized block-based compressive sensing to recover the tested
images. As compressed sensing relies on sparsity, we achieved image sparsity by retaining
a certain proportion of coefficients under the discrete Fourier transform. In this paper, this
proportion was set to 30%.

Figure 5. Test images: (a) Lena, (b) Baboon, (c) Barbara, (d) Cameraman, (e) Goldhill, (f) Peppers,
(g) Bone1, (h) Bone2, (i) Aerial image1, and (j) Aerial image2.

In the block-based compressive sensing, the size of image sub-blocks was set as
223 × 1. This means that each column of the original image was treated as a sub-block.
Each sub-block was compressed individually in the measurement process. In the recovery
process, each image block was separately reconstructed using OMP and then assembled to
reconstruct the complete image.
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The peak signal-to-noise ratio (PSNR) was used to assess the quality of the recov-
ered image. For two images of m × n, G, and Ĝ, the PSNR was calculated using the
following expression:

PSNR = 10log10

(
2232

MSE

)
(14)

where the mean square error (MSE) is defined as

MSE =
∥∥G − Ĝ

∥∥2
2/(m × n) (15)

Table 4 presents the PSNR value for various images under different measurement ma-
trices with the measurement number of 120. Our proposed measurement matrix achieved
the highest peak signal-to-noise ratio (PSNR) among the compared measurement matrices.

Table 4. Recovery PSNRs of various images.

Images This Paper Gaussian Random Random Symmetric Random Sparse Bipartite Graph

Lena 28.96 23.95 25.10 24.98 25.75
Baboon 27.48 23.81 24.13 24.00 24.94
Barbara 30.53 26.74 27.22 26.93 28.00
Cameraman 27.00 23.11 22.92 23.18 24.27
Goldhill 31.64 26.56 27.46 27.11 28.48
Peppers 30.39 26.14 26.67 26.10 26.98
Bone1 33.49 31.34 31.36 31.18 30.59
Bone2 34.08 29.13 30.77 29.88 31.80
Aerial image1 25.66 21.13 20.52 20.27 22.67
Aerial image2 29.85 24.93 25.29 25.81 26.83

In addition to the PSNR, we employed the structural similarity measure (SSIM) as a
complementary evaluation metric. As shown in Table 5, the results indicate that with a
measurement number of 120, our matrix achieved the highest SSIM value compared to
the other measurement matrices. This indicates that our proposed measurement matrix
outperformed other measurement matrices in preserving the structural details.

Table 5. Recovery SSIM of various images.

Images This Paper Gaussian Random Random Symmetric Random Sparse Bipartite Graph

Lena 0.842 0.723 0.757 0.731 0793
Baboon 0.835 0.719 0.723 0.723 0.763
Barbara 0.859 0.782 0.784 0.796 0.831
Cameraman 0.772 0.605 0.644 0.616 0.709
Goldhill 0.907 0.796 0.841 0.826 0.868
Peppers 0.870 0.765 0.808 0.793 0.823
Bone1 0.935 0.889 0.894 0.897 0.897
Bone2 0.910 0.830 0.871 0.850 0.885
Aerial image1 0.859 0.721 0.760 0.741 0.811
Aerial image2 0.840 0.638 0.712 0.693 0.772

Figures 6–8 individually show the visually reconstructed results of the images “Lena”,
“Bone2”, and “Aerial Image2.” The details of the areas within the red boxes are shown in
Figures 9–11, respectively. For the Lena and Aerial Image2 images, the block effects in the
reconstructed images using our proposed measurement matrix were significantly reduced,
resulting in smoother images. In the Bone2 image, our matrix effectively minimized
artifacts that were present with other matrices, demonstrating its superior performance in
preserving intricate textures and details.
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Figure 6. Reconstructions of Lena: (a) Gaussian random measurement matrix, (b) our proposed
measurement matrix, (c) random binary measurement matrix, (d) random symmetric measurement
matrix, and (e) bipartite graph measurement matrix.

Figure 7. Reconstructions of Bone2: (a) Gaussian random measurement matrix, (b) our proposed
measurement matrix, (c) random binary measurement matrix, (d) random symmetric measurement
matrix, and (e) bipartite graph measurement matrix.

Figure 8. Reconstructions of Aerial image2. (a) Gaussian random measurement matrix, (b) our
proposed measurement matrix, (c) random binary measurement matrix, (d) random symmetric
measurement matrix, and (e) bipartite graph measurement matrix.

Figure 9. Details of reconstructed Lena: (a) Gaussian random measurement matrix, (b) our proposed
measurement matrix, (c) random binary measurement matrix, (d) random symmetric measurement
matrix, and (e) bipartite graph measurement matrix.

Figure 10. Details of reconstructed Bone2: (a) Gaussian random measurement matrix, (b) our
proposed measurement matrix, (c) random binary measurement matrix, (d) random symmetric
measurement matrix, and (e) bipartite graph measurement matrix.



Sensors 2024, 24, 7406 12 of 13

Figure 11. Details of reconstructed Aerial image2: (a) Gaussian random measurement matrix, (b) our
proposed measurement matrix, (c) random binary measurement matrix, (d) random symmetric
measurement matrix, and (e) bipartite graph measurement matrix.

5. Conclusions

We propose a simple and adaptable deterministic sparse measurement matrix utilizing
the Legendre sequence. Empirical analysis illustrates that its phase transition outperforms
both random and bipartite graph measurement matrices. Additionally, the matrix exhibits
favorable practical features. The simulation results confirm that it surpasses random
and deterministic bipartite graph measurement matrices in reconstruction quality. In
future work, we will conduct a more in-depth investigation into the pseudo-random
properties of sequences and explore alternative construction methods for deterministic
measurement matrices.
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