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Abstract: Solar photovoltaic systems have increasingly become essential for harvesting renewable
energy. However, as these systems grow in prevalence, the issue of the end of life of modules is also
increasing. Regular maintenance and inspection are vital to extend the lifespan of these systems,
minimize energy losses, and protect the environment. This paper presents an innovative explainable
AI model for detecting anomalies in solar photovoltaic panels using an enhanced convolutional
neural network (CNN) and the VGG16 architecture. The model effectively identifies physical and
electrical changes, such as dust and bird droppings, and is implemented using the PyQt5 Python tool
to create a user-friendly interface that facilitates decision-making for users. Key processes included
dataset balancing through oversampling and data augmentation to expand the dataset. The model
achieved impressive performance metrics: 91.46% accuracy, 98.29% specificity, and an F1 score of
91.67%. Overall, it enhances power generation efficiency and prolongs the lifespan of photovoltaic
systems, while minimizing environmental risks.

Keywords: solar energy; artificial intelligence; fault detection; sustainability; solar panel; renewable
energy; predictive maintenance

1. Introduction

The reliance on fossil fuels for electricity generation has become a significant con-
tributor to greenhouse gas emissions (GHGs) [1], leading to detrimental effects on the
environment, such as climate change and air pollution. In stark contrast, the adoption of
renewable energy sources, especially solar power, offers a pathway to effectively mitigate
these impacts. According to recent reports, the global renewable energy capacity saw
a remarkable increase of 257 GW in 2021, reaching a total of 3064 GW. Among energy
sources, solar energy emerged as the frontrunner, with an increase of 133 GW, marking a
19% growth and pushing the global solar capacity to 849 GW [2].

China played a pivotal role in this growth, enhancing its solar capacity from 253 GW to
307 GW, making it the largest contributor globally. The United States also made significant
strides, boosting its solar output by 94 GW [3], which represents a 27% increase. This
expansion has shifted the Asia–Pacific region into a leading position, now accounting
for over 60% of the world’s photovoltaic (PV) installations, totaling at least 947 GW. This
trend of increasing solar energy adoption reflects the growing recognition of its potential to
provide sustainable energy solutions, as depicted in Figure 1.

Solar energy not only reduces GHG emissions but also promotes energy security and
economic growth through job creation in the renewable energy sector. Additionally, with
technological advancements in solar panel efficiency and energy storage solutions, the
future looks promising for solar power to play a central role in global energy strategies.
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Figure 1. Evolution of installed solar capacity from 2004 to 2023 [4].

Photovoltaic (PV) cells, depicted in Figure 2, are a solar technology that converts solar
energy into electricity with a nominal efficiency ranging from 15% to 20% [5]. This efficiency,
however, affects the global adoption rate of solar energy [6], as the maximum performance
of PV systems depends on several environmental factors, as shown in Figure 3. These
include the accumulation of dust on the PV surface, operating temperature, hail, snow, wind
speed, shading, air density, and sky conditions. Among these factors, soiling losses due to
dust, dirt, and other particles are particularly detrimental to PV module performance.

Dust refers to any particle less than 10 mm in diameter and originating from various
sources such as sand, dirt, construction debris, rocks, volcanic ash, bird droppings, and
eroded limestone [7]. While dust accumulation can lead to reduced energy generation,
it can also exacerbate soiling effects on panels [8]. Factors such as ambient temperature,
tilt angle, soil conditions, and nearby vegetation significantly influence dust deposition,
along with the cover material of the PV module and the angle of sunlight [9]. Dust can be
deposited in three distinct ways: occult (mist, clouds, high humidity), wet (rainfall), and
dry (wind). The composition of dust varies based on local environmental conditions, with
higher deposition rates occurring near industrial areas, in volcanic regions, and in areas
prone to sandstorms [10].

(a) (b)

Figure 2. PV cell (a), electrical schematic diagram (b).

1.1. Different PV System Faults

PV systems experience a wide range of problems from being located outdoors, which
can significantly lower the PV energy output, reduce the potential, and most importantly
make it impossible to meet different load demands. Three basic categories can be used to
classify faults: physical, environmental, and electrical, as summarized in Figure 3.
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Figure 3. PV system fault classification.

Electrical faults include short circuits, circuit breaks, bypass diode faults, and shunt
resistance insertion faults. These reduce the voltage and current, decreasing the power
output. Environmental faults include shading, which usually causes the bypass effect,
where the corresponding currents are shifted and lower rated than the performance could
be at that point. Physical faults include micro-cracks and internal damages.

PV modules’ performance and efficiency vary based on the dust accumulation level
in their surrounding environment [11]. For example, dust particles significantly reduce
irradiation levels, scattering the wavelengths of the incoming radiation. When a thick layer
of dust coats a module’s surface, it alters its optical properties, increasing light reflection
and decreasing transmissivity, which ultimately leads to a decrease in electrical output.
Additionally, dust accumulation can increase temperatures, causing a slight reduction in
open-circuit voltage (by 2–6%) and short-circuit current (by 15–20%). Research has shown
that a dust level of 4.25 mg/cm² can reduce the output power by 33%, while dusty modules
produced 8.41% less power compared to clean ones.

Artificial intelligence (AI) can assist in prioritizing maintenance tasks and optimizing
the scheduling of inspections and repairs by recognizing patterns and trends. The proposed
AI-based detection system addresses this challenge by using deep learning models to
automatically identify and classify faults from image data. This approach offers an efficient,
cost-effective, and scalable solution for real-time monitoring, ultimately enhancing the
performance and reliability of solar energy systems and supporting the growth of renewable
energy infrastructure.

1.2. Contributions and Limitations

The main contributions of this paper are as follows:

+ Exploring advancements and integrations of AI in solar panel systems.
+ Addressing challenges in detecting and classifying anomalies, which is crucial for

optimizing performance.
+ Identifying and classifying the factors contributing to anomalies in PV power, which

is essential for evaluating their impact on model accuracy.
+ Implementing a model tested with PyQt5, enhancing user decision-making by provid-

ing an intuitive interface that simplifies interaction with the solar energy system.

While the proposed AI-based detection system significantly contributes to enhancing
solar panel system performance, there are some limitations associated with the objectives
of this research:
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- The reliance on image-based data introduces challenges related to environmental
factors, such as lighting.

- The model’s ability to classify rare or unseen anomalies is limited by the diversity of
fault data used in training, potentially reducing the accuracy in real-world applica-
tions.

Despite these limitations, the model provides a solid foundation for further advance-
ments in AI-driven anomaly detection in solar systems.

The remainder of the paper is structured as follows. The related works are discussed
in Section 2. The methodology is presented in Section 3. Section 4 discusses the obtained
results. The conclusions based on the outcome of the analysis phase are presented in
Section 5.

2. Related Works

The advancement of artificial intelligence (AI)-powered dust detection systems has
been the focus of researchers [12]. Various methods, such as k-nearest neighbors (kNN)
and random forest, have been utilized to classify and detect dusty panels, along with the
application of deep learning models for this purpose [13].

Analytical measurement of solar panel performance can be performed using a LDR
and multi-meter [14]. Using a single hidden layer containing nine neurons, an artificial
neural network was established to predict the output voltage of solar panels based on input
metrics like irradiance and dust content. Additionally, a deep residual neural network and
image processing were employed to forecast uneven dust accumulation [15].

The CNN LeNet model with customized dropouts and pooling layers was used to
achieve a mean squared error of 0.0122 and an 80% accuracy. Deep CNN architectures were
also used to develop a model from a dataset of 599 photos, achieving a 93.3% accuracy with
the AlexNet model. The authors studied PV deterioration and irregularity patterns using
various machine learning and deep learning methods, considering the computation time,
characterization techniques, datasets, and feature extraction processes [6,16,17].

2.1. Review of Computer Vision Applications

To broaden the scope of this research, Table 1 provides an overview of notable com-
puter vision applications in various fields. This highlights the diversity and impact of CV
technologies, positioning the proposed study within a broader context of CV advancements.

Table 1. Review of computer vision (CV) applications in various fields.

Reference Year Application

[18] 2024
This paper introduced the RDA-MTE deep learning model for emotion
recognition, integrating real-time emotion analysis with sports behavior
decision-making.

[19] 2023
This survey explored the role of CV in intelligent transportation systems
(ITS), highlighting its applications in traffic monitoring, incident detection,
and road condition monitoring.

[20] 2020 This paper provided an overview of CV-based indoor localization methods,
classifying them based on configuration stage and sensing devices.

[21] 2020 This paper surveyed the use of CV and ambient intelligence for healthcare,
with a particular focus on children’s health.

[22] 2021 This survey compared various CNN architectures, discussing their strengths,
weaknesses, applications, and future research directions.

2.2. Prior Research in PV Fault Detection

Previous studies have primarily focused on testing models for classifying fault detec-
tion in photovoltaic systems. In one study, a deep belief network was created to identify
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dust on PV panels, and the suggested model outperformed previous machine-learning-
based models in terms of accuracy [23]. A combination of the physical lotus effect approach
with the Mobile-Net and VGG-16 CNN methodologies for the evaluation of solar panels
was considered in [24]. Similarly, the performance of other machine learning algorithms,
such as Facebook-prophet, isolation forest, and auto-encoder long short-term memory
(AE-LSTM), was assessed for PV performance research. The outcomes provided straightfor-
ward insights to help with decision-making [25]. The impacts of dust and temperature on
PV power generation were assessed using a deep-learning-based modular neural network
in a subsequent study, which involved six PV modules in Sohar, Oman [26]. This paper
significantly improves the CNN accuracy and performance by implementing the model
within the PyQt5 framework. This advancement enables the classification of six distinct
fault types, employing more advanced CNN architectures. Additionally, the integration
of the model into a user-friendly PyQt5 interface enhances its accessibility and usability,
making it a practical tool for real-world applications. Table 2 provides a comprehensive
summary of prior research in solar panel fault detection.

Table 2. Summary of prior research in solar panel fault detection.

Reference Year Technique

[27] 2019 Region-based CNN with a recall rate over 90% and a false positive rate
around 2–3%, tested on a dataset of nearly 9000 solar panels.

[28] 2022 Defective PV module region object detection using the Res-CNN3
framework.

[29] 2020 UNet, FPNet, and LinkNet are examples of deep neural networks
(DNNs). The accuracy of this work was 89.63%.

[30] 2020
The suggested approach, which uses a fine-tuned pre-trained CNN,
performed better than current methods and achieved a high fault
detection accuracy of 73.53%. The accuracy achieved was 73.53%.

[31] 2021 A CNN correctly categorized a range of issues using photos taken by
unmanned aerial aircraft (UAVs). It had an accuracy of 95.07%.

[32] 2021
Convolutional neural network (CNN) and chaos synchronization
detection method (CSDM) hybrid algorithm for PV module failure
detection research. The accuracy achieved was 86.75%.

[33] 2021
One-dimension convolutional neural networks (1-D CNN) and
multilayer perceptrons (MLP) are examples of deep neural networks. It
had a rate of 89.75%.

3. Materials and Methods
3.1. CNN Model

The primary goal of this project is to automate the detection of anomalies in solar
panels using a deep learning approach [34]. The system classifies images of solar panels
into different categories based on whether they are faulty or functioning correctly. The
system learns to detect and classify visual patterns from labeled solar panel images using
a convolutional neural network (CNN), specifically fine-tuned from the VGG16 architec-
ture [35]. The CNN model works by processing large datasets of solar panel images to
identify unique features and patterns associated with anomalies, such as cracks, dirt, or
physical damage. The trained model can accurately predict the type of anomaly or confirm
that the panel is functioning normally when provided with new, unseen images [36].

3.2. Ensemble Learning Classifier

Ensemble learning improves machine learning results by integrating multiple mod-
els [37]. This approach involves training a group of classifiers or an ensemble, and then
combining their predictions for classifying unseen examples through a voting mechanism.
By leveraging this strategy, the prediction performance can surpass that of any single
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model. The fundamental idea is to train a diverse group of classifiers and allow them
to contribute their insights. An ensemble model is developed by merging base models,
addressing classification or regression challenges that individual models may struggle
to solve effectively [38]. Consequently, ensemble learning can yield superior outcomes
compared to using a standalone model [39].

3.3. Explainable Artificial Intelligence (XAI): LIME Approach

Machine learning models have often been viewed as opaque “black boxes”, but explain-
able artificial intelligence (XAI) techniques have emerged to clarify their functioning [40].
These methods aim to enhance users’ trust in machine learning models by providing in-
sights into how they operate. Two widely used XAI approaches for tabular data are Shapley
additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME).
LIME, in particular, offers local explanations that are independent of the underlying model,
allowing for greater interpretability across different machine learning frameworks [41]. It
illustrates how each feature influences the results for a particular instance. The classifi-
cation models also indicate the probability of the instance belonging to a specified class.
Moreover, it utilizes visual plots to highlight the importance of each feature within each
class, enhancing the interpretability and understanding of the model’s decisions [42].

3.4. Solar Panel Dataset Description

A dataset was designed to evaluate the performance of various ensemble machine
learning classifiers and convolutional neural networks (CNNs) in detecting physical and
electrical alterations to solar panel surfaces, such as dust, snow, bird droppings, and other
changes. It comprises six distinct classes for classification. While the dataset is reasonably
comprehensive, some imbalance exists in the number of images collected, due to their
sourcing from online platforms. Table 3 provides details about the dataset, and Figure 4
illustrates examples of the six different classes present within it.

Capturing images at a moderate distance with minimal glare can help reduce noise
and enable more precise pixel analysis. Optimal lighting conditions are also beneficial,
as they can enhance a model’s ability to identify subtle fault indicators such as dust
accumulation, physical damage, or electrical anomalies. These guidelines are intended to
improve the robustness of fault detection across various environmental conditions and
were incorporated to facilitate effective image capture for our model.

3.5. The Proposed Detection of Solar Panel Anomalies

The proposed architecture consists of three key phases: preprocessing, feature ex-
traction, and data augmentation, which generates new data points from existing ones to
effectively increase the dataset size, followed by the classification phase. Figure 5 illustrates
the model integrated with the ensemble classifier. Each component of the proposed model
is elaborated upon in the following sections.

3.5.1. Data Pre-Processing Phase

The dataset underwent oversampling to achieve a balance across all categories, re-
sulting in each folder containing 205 images. The images were sourced from a directory
housing solar panel images and were resized to 100 × 100 pixels for uniformity. To simplify
the computation, RGB images were converted to grayscale. The dataset was then split into
training and testing sets, allocating 80% for training and 20% for testing.
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Figure 4. Classes of solar panels.

Table 3. Description of solar panel dataset.

Class Bird-Drop Clean Dusty Electrical
Damage

Physical
Damage

Snow
Covered

Num of
Images 206 194 191 104 70 124

Figure 5. Proposed solar panel anomaly detection and classification model.

3.5.2. Feature Extraction Phase

The input image is encoded into a compact knowledge representation by the autoen-
coder, which employs a bottleneck architecture to facilitate this compression [43]. The
network employs an unsupervised learning algorithm for representation learning. The
autoencoder’s core principle is to utilize its hidden layer to encode incoming sensor data,
effectively creating an optimal feature representation before generating an output. This
process allows the model to capture essential patterns in the data, while reducing the
dimensionality. To create an output x that is a reconstruction of the original input x, an
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autoencoder reformulates the unlabeled dataset into a supervised learning problem. It
utilizes a bottleneck structure that constrains the flow of information through the network,
leading to a learned compression of the input image. This approach minimizes redundancy
by focusing on the variations present in the input data. An autoencoder consists of two
main components: an encoder and a decoder. The encoder transforms the input into a
latent space representation using its activation function, capturing the essential features,
while reducing dimensionality. This process enables effective learning and reconstruction
of the original data.

3.5.3. Data Augmentation Phase

To further enhance the robustness of the model, the data augmentation phase played
a crucial role by creating additional training samples from the original dataset [44]. In this
phase, a variety of image transformations, such as rotation, shifting, shearing, zooming,
and horizontal flipping, were applied to introduce diversity to the training data. These
augmentations simulated different real-world scenarios, such as varying orientations and
scales of solar panels, changes in camera angles, or environmental conditions like shadows
or slight misalignments. This phase not only helped the model generalize better to unseen
data, making it more effective in real-world conditions, but also significantly reduced the
risk of overfitting, where the model might otherwise have only learned to perform well
on the training data and failed on new data. By artificially expanding the dataset with
transformations, the model encountered a wider variety of possible input scenarios, making
it more adaptable to different environmental conditions such as lighting variations, dust
accumulation, or weather effects like snow and cloud cover.

3.5.4. Model Fine-Tuning

The system utilized the pre-trained VGG16 model [45], a deep convolutional neural
network originally designed for large-scale image classification tasks [46], and fine-tuned
it specifically for the solar panel dataset [47].The VGG16 architecture was selected for its
simplicity, effectiveness, and suitability for the specific requirements of solar panel anomaly
detection. While newer models such as ResNet and EfficientNet have demonstrated
superior performance in various tasks, VGG16 was chosen due to its straightforward
architecture when fine-tuning a pre-trained model for fault detection in photovoltaic
systems. VGG16 has proven to be highly effective in image classification tasks, making it a
reliable model for detecting anomalies in solar panels based on image data. Furthermore,
VGG16 performs well with transfer learning, which allowed us to leverage pre-trained
weights on large datasets, thus enhancing the model’s ability to generalize to smaller,
domain-specific datasets, like those used in this study. The use of transfer learning with
VGG16 provided an efficient means of improving model performance without requiring
extensive computational resources or large amounts of labeled data.

The decision to use VGG16 was grounded in its proven track record, simplicity, and
adaptability to the specific goals of this research, ensuring a reliable and efficient solution
for the task of solar panel anomaly detection.

During this process, the earlier layers of the network responsible for detecting low-
level features such as edges, textures, and shapes were kept frozen, as they are generally
sufficient to be effective across different domains. However, the last few layers, which
capture high-level features and make final predictions, were unfrozen and retrained on
the solar panel dataset. By retraining these high-level layers, the model adapts to domain-
specific features such as physical defects, environmental conditions, or anomalies like
dust, cracks, or shading, which are critical for accurate fault detection in solar panels. This
fine-tuning significantly improved the model’s ability to identify these specialized features,
increasing its accuracy and robustness in detecting anomalies. This approach is especially
beneficial because it combines the power of transfer learning with domain adaptation,
enabling the system to efficiently learn from a relatively small dataset, while leveraging the
general knowledge acquired from large-scale pre-training on broader image data.
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3.5.5. Classification Phase

The model utilizes CNN layers to classify predictor variables. CNNs have proven
effective in various energy-related applications due to their ability to predict outcomes,
irrespective of the underlying probability distributions of the different labels. Their paral-
lel architecture and learning capabilities enhance their efficiency in pattern classification,
allowing them to effectively categorize observations into distinct classes. While these
networks may have a lower fault tolerance, their research has shown that they can approxi-
mate any arbitrary function by adjusting the number of hidden layers and their associated
parameters. The structure of the proposed deep neural network is detailed in Table 4 and
illustrated in Figure 6.

Figure 6. Methodology for the proposed architecture.
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Table 4. Description of CNN architecture.

Input Layer

Feature Input Layer: This is the entry point of the data into the neural network.

numFeatures: The number of input features that the network expects. It
is essential that the input data match this dimensionality.

Normalization:

The ’zscore’ argument indicates that the input data will be
normalized by subtracting the mean and dividing by the
standard deviation. This normalization can help in
speeding up training and improving convergence.

First Hidden Layer Block

Fully Connected Layer
(1500 Neurons):

This dense layer has 1500 neurons and will learn from the
input features.

Batch Normalization Layer: Normalizes the activations of the neurons, helping
improve the training speed and stability of the network.

Leaky Rectified Linear Unit (Leaky
Relu) Activation Function:

This function allows small negative values when the
neuron is not active. It can sometimes prevent “dead
neurons” in a network.

Dropout Layer (60%): Randomly sets 60% of the layer’s outputs to zero during
training to prevent overfitting.

Second Hidden Layer Block

Fully Connected Layer: 1000 neurons in the fully connected layer.

Relu Activation Function: Standard Relu activation function, which sets all negative
values to zero.

Dropout Layer: 50% dropout rate.

Third Hidden Layer Block

Fully Connected Layer: 500 neurons in the dense layer.

Leaky Relu Activation Function: Leaky Relu activation.

Dropout Layer: 40% dropout rate

Fourth Hidden Layer Block

Fully Connected Layer: 250 neurons in the fully connected layer.

Relu Activation Function: Standard Relu activation function, which sets all negative
values to zero.

Dropout Layer: 40% dropout rate.

Output Layer

Fully Connected Layer:
This has a neuron for each class in the classification task.
If there are 10 classes, numClasses would be 10, and there
would be 10 neurons.

SoftMax Layer: Converts the output of the previous layer into probability
scores for each class.

Classification Layer: Determines the final output class based on the
probabilities from the SoftMax layer
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3.5.6. Real-Time Predictions

Once the model has been trained, it can be used to classify new images of solar
panels in real time. This provides fast and accurate anomaly predictions, enabling quick
responses to detected issues. By utilizing deep learning, this system can assist engineers
and technicians in rapidly identifying faulty solar panels, enabling timely repairs and
maintenance. The deep learning-based approach improves the operational efficiency by
reducing the need for manual inspections, potentially lowering maintenance costs and
minimizing downtime for solar energy systems.

3.6. Technologies for Model Implementation
3.6.1. Tensorflow and Keras

The entire model was built using TensorFlow and Keras [48], two of the most widely
adopted libraries for machine learning and deep learning.

• TensorFlow: This framework handles the complex mathematical operations of deep
learning (e.g., gradient descent, backpropagation) and allows a model to execute
efficiently on both GPUs and CPUs. TensorFlow also simplifies the training and
deployment of neural networks, making it easy to integrate with various platforms.

• Keras: Keras acts as a high-level API over TensorFlow, providing an intuitive interface
for defining layers, building models, and conducting experiments. In this project,
Keras was used to define the architecture of the VGG16 model, as well as the custom
layers added during fine-tuning.

3.6.2. Vgg16 Pre-Trained Model

VGG16 is a convolutional neural network (CNN) that is widely used for image clas-
sification tasks [49]. It was first introduced in 2014 by the Visual Geometry Group (VGG)
at the University of Oxford. This deep network comprises 16 layers and has achieved
state-of-the-art results on several benchmark datasets, including ImageNet, which con-
tains over 14 million images spanning 1000 categories. VGG16 has proven to be highly
effective due to its structure, shown in Figure 7, and its ability to generalize across various
image classification problems. VGG16’s availability in deep learning frameworks such as
Keras and TensorFlow further simplifies its use, offering easy implementation for machine
learning tasks, especially when using pre-trained models through transfer learning.

Figure 7. Architecture of VGG16.

3.6.3. Transfer Learning

Transfer learning [50] is a technique where a model trained on one task is reused for
another, related task, as depicted in Figure 8. This is particularly useful when limited data
are available for the second task. In this paper, transfer learning was applied to leverage
the power of VGG16, which was pre-trained on ImageNet, to detect anomalies in solar
panels. The process of transfer learning with VGG16 started by loading the pre-trained
model from the Keras library. The weights of the initial layers were frozen, allowing the
model to retain the general features it had learned from ImageNet (such as edges, textures,
and shapes). The final layers were then trained on our specific solar panel dataset, allowing
the model to fine-tune itself for the task of detecting faults or anomalies in solar panels.
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Figure 8. Architecture of transfer learning.

3.6.4. Fine-Tuning

Fine-tuning [35] the last few layers of VGG16 allowed the model to adapt its high-level
feature recognition to the specific characteristics of solar panel anomalies. By unfreezing
these layers, the model could learn features relevant to this task, such as cracks or dirt
that impact solar panel efficiency. In this project, we specifically used transfer learning
and fine-tuning on VGG16 to build an efficient model for detecting solar panel anomalies.
The combination of VGG16’s robust pre-trained features and our specific dataset led to
improved accuracy and reduced the need for extensive data collection. Overall, VGG16
combined with transfer learning provides a powerful framework for image classification
tasks, offering both high accuracy and ease of use, particularly when datasets are small
or noisy. It is an effective tool for the rapid deployment of machine learning models in
real-world applications such as solar panel fault detection.

The dataset, code, and developed application utilized for this research are publicly
accessible, to enhance reproducibility, transparency, and accessibility for future studies in
the domain of photovoltaic system fault detection. The dataset comprises labeled images of
solar panels under various conditions, including classes for clean, dusty, physically damaged,
electrically damaged, bird-dropping-covered, and snow-covered panels. This comprehensive
dataset enables robust training and evaluation of the machine learning models employed.

The code repository, available on GitHub, includes the following components:

• Data Preprocessing Scripts: These scripts prepare the dataset by resizing, normalizing,
and augmenting images to increase the robustness and prevent model overfitting. Key
techniques include rotation, flipping, and zooming, to simulate real-world environ-
mental conditions.

• Model Training and Evaluation: The repository contains the code for training the
convolutional neural network (CNN) model, specifically leveraging a fine-tuned
VGG16 architecture to classify anomalies in solar panels. The model is designed to
identify faults with high accuracy, utilizing both transfer learning and fine-tuning to
adapt to the specific characteristics of the solar panel dataset.

• PyQt5 Application Interface: A user-friendly interface developed with PyQt5 allows
users to seamlessly interact with the model. This application simplifies the process
of uploading images, viewing predictions, and understanding results, making it
accessible to non-technical users as well.

• Explainability Features: The repository also includes code for implementing local
interpretable model-agnostic explanations (LIME), an explainable AI technique. This
feature helps users understand the factors influencing the model’s predictions, foster-
ing trust and interpretability in AI-driven fault detection.
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The link to the GitHub repository is provided in the Data Availability Statement
section of this paper, ensuring that researchers and practitioners can replicate, validate, and
build upon the methodologies developed in this study.

4. Results and Discussion

The following sections discuss in detail the data collection of environmental faults in
solar panels and provide a comparative analysis of the trained and tested fault images. A
PC with 16 GB RAM and a core i7 8th generation processor with Nvidia GPU was used,
and the experimental configuration was created using Google Colabs and TensorFlow 2.4.0.
A total of 889 real images of solar panels under various fault circumstances were taken.
The images were subsequently separated into 80 and 20 percent groups for the training
and testing of several neural networks using images of solar panels.

4.1. Performance Evaluation

Confusion matrixes are a valuable tool for evaluating the performance of machine
learning models, enabling the assessment of metrics such as the AUC–ROC curve, recall,
precision, and accuracy. They systematically assign predictions to the original classes of
the data, helping to identify the classification accuracy for each record and highlighting
potential areas of concern. In the matrix, the rows represent the actual labels from the
training dataset, while the columns reflect the predicted outcomes of the model. This
visualization aids in diagnosing the model’s effectiveness in accurately categorizing data.

A confusion matrix is a valuable tool for evaluating the performance of algorithms
that classify outputs into binary categories, such as positive or negative (yes or no). It
comprises four cells, each representing a unique combination of expected and actual
outcomes. These cells help identify true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN), allowing for a comprehensive analysis of a model’s accuracy
and effectiveness in classification tasks. The following four outcomes are possible:

• True Positive (TP): This means that a prediction was correct. This is occasionally
described as sensitivity.

• True Negative (TN): This denotes a negative prediction that materialized. This quality
is known as specificity.

• False Positive (FP): Although the value was predicted to be positive, it turned out to
be negative. Type-I errors are frequently used to describe this.

• False Negative (FN): The actual number was positive despite the negative forecast. A
Type-II mistake is another name for this.

The expressions for all the statistical parameters are given as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

TNR =
TN

TN + FP
(3)

F1-Score = 2 × Pr × Re
Pr + Re

(4)

4.2. Model Hyperparameter Setting

The parameters utilized during the training of the CNN are detailed in Table 5. The
training process was executed with a 20% hold-out for validation, employing a mini-batch
size of 16 and 100 epochs. The trained CNN was then tested, and the accuracy was
computed to validate the algorithm’s effectiveness. In the training, the Adam optimization
algorithm with a learning rate of 3e − 4, Mini-Batch Size 16, L2 regularization with a factor
of 0.0001, and piecewise learning rate schedule was used, with a drop factor of 0.9 every
3 epochs. The execution environment was the CPU.
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Table 5. Parameter values for CNN during training.

Parameter Value

Solar Panel

Optimizer: Adam

Learning Rate: 0.0001

Loss Function: Cross entropy

Metrics: Accuracy

Batch Size: 15

Epochs: 100

4.3. Model Evaluation

In the feature extraction process using an encoder/decoder approach, the first layer
consisted of an autoencoder with 2500 hidden nodes trained on the training dataset. The
second layer employed another autoencoder, this time with 3400 hidden nodes, which were
trained on the features obtained from the first layer. Subsequently, a SoftMax layer was
trained on the features extracted from the second autoencoder. To enhance the efficiency, a
dimensionality reduction procedure was applied to eliminate features that contributed the
least to the predictive variable. Retaining these irrelevant features could have negatively
impacted the model’s overall performance.

A thorough analysis of the confusion matrix presented in Figure 9 reveals that some
key misclassifications occurred between categories such as physical damage, cleaning,
and dust. These misclassifications may have arisen due to the similarities in the visual
features of these categories, particularly when certain types of faults like physical damage
appeared visually similar to dust accumulation or dirt on the surface of the solar panel. To
better understand these misclassifications, we analyzed the correlation matrix heatmap
of the dataset, which visually illustrates the relationships between features. The heatmap
highlights which features were most strongly correlated with each other. High correlations
between features can introduce redundancy, which may affect the stability of the model
and its ability to distinguish between similar categories. The proposed model achieved
an accuracy of 91.46%, reflecting its overall effectiveness, but also indicating areas for
improvement in distinguishing between visually similar faults.

Figure 9. Correlation matrix of the solar panel dataset for the proposed model.
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4.4. Xai (LIME) Feature Importance

LIME evaluates the local fidelity of a model, which ensures that it effectively captured
characteristics relevant to the predictions made. While local fidelity aims to describe a
prediction’s context, it may not always align perfectly with the global behavior of a model.
LIME analyzes the immediate surroundings of a prediction to assess its local accuracy and
provide an explanation. For instance, if a prediction is accurate but not aligned with the
global model, LIME seeks high probability features in that vicinity to clarify the model’s
decision-making process.

4.5. Pyqt5 Implementation

The results obtained from the PyQt5 interface demonstrate the high accuracy of the
developed model in detecting anomalies in photovoltaic (PV) panels, as shown in Figure 10.
Built with PyQt5, the user interface provides a practical and user-friendly platform for
real-time interaction with the fault detection system. It allows users to upload images
of PV panels and receive immediate diagnostic feedback, displaying predictions directly
on-screen, along with visual indicators of the identified faults.

Figure 10. Results with PyQt5 implementation.

The high accuracy achieved by the model, as illustrated in this figure, demonstrates
the effectiveness of combining CNN architecture with fine-tuning on a solar panel-specific
dataset. The fine-tuning of the VGG16 CNN model enabled it to learn the unique features
associated with common PV panel faults, such as dust accumulation, physical damage, and
electrical anomalies, which are critical for maintaining an optimal solar energy output.

This interactive application facilitates the timely identification and diagnosis of faults,
reducing the need for manual inspection and contributing to improved operational effi-
ciency and reduced downtime in solar energy systems.

Generating a report from the application involves three steps, as shown in Figure 11.
First, the user is prompted to upload an image of a solar panel that they wish to analyze
for potential anomalies, using the Upload Button . This can be achieved by selecting an
image file from the device or by simply dragging and dropping it into the designated area
of the application interface. Once the image has been uploaded, a Preview Screen displays
the image, allowing the user to confirm or remove it if needed. At this stage, the user
can proceed by selecting the Start Processing button, which initiates the anomaly detection
analysis of the uploaded image.

After processing, the application moves to the Prediction Results Screen, where
the detected anomaly type, such as “Dusty”, is displayed along with a confidence level
(e.g., 94.9%). Additionally, a detailed chart visualizes the model’s confidence levels across
various potential anomalies, such as ”Bird-drop”, “Dusty”, and “Physical-Damage”. Users
can download this chart for documentation purposes by selecting the Download Chart



Sensors 2024, 24, 7407 16 of 20

button. Finally, to begin a new analysis, users can reset the application using the Start Over
button, which clears previous data and returns the interface to the initial upload screen.

(a) (b)

(c)

Figure 11. SPAD upload image (a), image preview (b), and prediction result implementation (c).

5. Conclusions and Future Works

Developing technologies to control solar panel energy generation has proven essential
for higher reliability and lower costs. As a renewable energy source, solar panels provide
power without releasing any pollution. However, dirt, a significant environmental element
impacting energy generation, negatively affects the performance of solar panels. When dirt
builds up on the surface of a solar panel, the amount of light that strikes it is diminished,
thereby reducing the panel’s ability to produce electrical energy. This paper successfully
implemented a deep-learning model to classify solar panel anomalies by fine-tuning the
VGG16 architecture. By leveraging pre-trained models, extensive data augmentation, and
powerful optimization techniques such as the Adam optimizer, the model can accurately
predict anomalies in solar panels based on image data. The model performed well through
the effective application of transfer learning and data augmentation, achieving better
validation performance and reducing overfitting.

The reported test accuracy underscores the potential of this implementation in real-
world scenarios. The proposed model achieved a 91.46% accuracy, specificity of 98.29%, and
F1 score of 91.67%. The model could properly classify various fault sources, demonstrating
its effectiveness in practical applications.

While the model showed robust performance in anomaly detection, it is important
to note some limitations. The model’s performance heavily depends on the quality and
diversity of the training data. In cases where images are of low resolution or under
suboptimal lighting conditions, the detection accuracy could be affected. Despite these
limitations, the model’s robustness, particularly in the classification of dirt-related issues,
positions it as a valuable tool for real-time monitoring of solar fields. In practice, it can
help optimize maintenance schedules, reduce energy losses due to panel inefficiency, and
extend the lifespan of solar installations.
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In light of this study’s findings, several potential areas for future research and practical
application have been identified. Future research should focus on evaluating the long-term
effects of dust accumulation on photovoltaic performance, exploring how variations in
dust type, density, and particle size influence energy output. Furthermore, we envision
integrating video input, such as drone-captured footage, into the system to enable real-time
status detection of solar fields. This addition would enhance the monitoring capabilities of
the application, providing dynamic, in situ assessments of panel conditions and further
expanding the practical applications of this study.
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PV Photovoltaic
PVS Photovoltaic System
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