
Citation: Mutambik, I. An

Entropy-Based Clustering Algorithm

for Real-Time High-Dimensional IoT

Data Streams. Sensors 2024, 24, 7412.

https://doi.org/10.3390/s24227412

Academic Editors: João Alexandre

Lobo Marques and Simon James Fong

Received: 11 October 2024

Revised: 19 November 2024

Accepted: 19 November 2024

Published: 20 November 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

An Entropy-Based Clustering Algorithm for Real-Time
High-Dimensional IoT Data Streams
Ibrahim Mutambik

Department of Information Science, College of Humanities and Social Sciences, King Saud University,
P.O. Box 11451, Riyadh 4545, Saudi Arabia; imutambik@ksu.edu.sa

Abstract: The rapid growth of data streams, propelled by the proliferation of sensors and Internet of
Things (IoT) devices, presents significant challenges for real-time clustering of high-dimensional data.
Traditional clustering algorithms struggle with high dimensionality, memory and time constraints,
and adapting to dynamically evolving data. Existing dimensionality reduction methods often neglect
feature ranking, leading to suboptimal clustering performance. To address these issues, we introduce
E-Stream, a novel entropy-based clustering algorithm for high-dimensional data streams. E-Stream
performs real-time feature ranking based on entropy within a sliding time window to identify
the most informative features, which are then utilized with the DenStream algorithm for efficient
clustering. We evaluated E-Stream using the NSL-KDD dataset, comparing it against DenStream,
CluStream, and MR-Stream. The evaluation metrics included the average F-Measure, Jaccard Index,
Fowlkes–Mallows Index, Purity, and Rand Index. The results show that E-Stream outperformed
the baseline algorithms in both clustering accuracy and computational efficiency while effectively
reducing dimensionality. E-Stream also demonstrated significantly less memory consumption and
fewer computational requirements, highlighting its suitability for real-time processing of high-
dimensional data streams. Despite its strengths, E-Stream requires manual parameter adjustment and
assumes a consistent number of active features, which may limit its adaptability to diverse datasets.
Future work will focus on developing a fully autonomous, parameter-free version of the algorithm,
incorporating mechanisms to handle missing features and improving the management of evolving
clusters to enhance robustness and adaptability in dynamic IoT environments.

Keywords: Internet of Things (IoT); IoT data clustering; NSL-KDD dataset; memory consumption;
sliding time window

1. Introduction

The rapid proliferation of sensors in everyday life has led to an explosion in the
volume of data streams. These streams, which consist of continuous sequences of data
entries associated with integrated and precise timestamps, are expanding swiftly [1,2].
Numerous applications now generate vast and unpredictable volumes of data streams,
primarily due to the growing presence of the Internet of Things (IoT), which connects
real-time data sources. Efficient real-time analysis of these streams is crucial for obtaining
valuable insights across various domains, including transportation, healthcare, social media,
transaction logs, and internet activity [3,4]. Nevertheless, despite advancements in data
analysis techniques, the exponential growth of data and its flow from diverse sources pose
a significant challenge for analysts.

Clustering, one of the prominent methods for streamlining the analysis of data
streams [5,6], has garnered considerable attention as the volume of data streams continues
to increase [7]. Clustering aims to group data into meaningful clusters, facilitating better un-
derstanding and analysis. However, clustering algorithms face additional challenges when
working with data streams, such as memory and time constraints, high dimensionality, and
the necessity of processing data dynamically as it arrives [7,8].

Sensors 2024, 24, 7412. https://doi.org/10.3390/s24227412 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24227412
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6819-5244
https://doi.org/10.3390/s24227412
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24227412?type=check_update&version=2

Sensors 2024, 24, 7412 2 of 16

Dimensionality reduction is closely linked to clustering in high-dimensional data
streams, as it directly impacts clustering performance by addressing computational over-
head, reducing noise, and improving the ability to identify meaningful patterns [8]. By
transforming the data into a lower-dimensional space while retaining essential features,
dimensionality reduction not only enhances computational efficiency but also increases
the clustering accuracy. In dynamic data stream scenarios, dimensionality reduction is
particularly crucial, as it ensures scalability and enables real-time analysis.

Three key challenges impact clustering in data streams, as follows: volume, velocity,
and volatility [9–11]. The volume challenge requires algorithms to process large amounts
of data rapidly. Velocity refers to the rapid rate at which new data are generated, while
volatility represents a dynamic environment where evolving patterns constantly shift as
data progresses [10,11].

As data continuously changes, algorithm structures and parameters must adapt in
real time to handle new data streams. Clustering algorithms, thus, face challenges in
adapting to shifting conditions that are not present in static datasets, particularly within
rapidly evolving IoT environments [12,13]. Additionally, data streams often stem from
unpredictable contexts, lacking prior knowledge of data distribution, which complicates
the selection of the optimal parameters for outlier detection algorithms. Moreover, it is
impractical to label the immense volume of data generated by the vast number of IoT
devices in real-world scenarios, making unsupervised learning essential [7,13].

Numerous studies have focused on methods for dimensionality reduction within
clustering algorithms, such as Hu [14] and Esfandiari [15]. However, these investigations
largely overlooked the importance of feature ranking to pinpoint the most significant fea-
tures. Feature ranking enhances dimensionality reduction by identifying and prioritizing
the most relevant attributes, further improving the clustering performance in terms of both
accuracy and resource efficiency. A more recent study by Ghosh [16] explored dimensional-
ity reduction through genetic algorithms utilizing discrete wavelet transformation, single
entropy, and spatial data. Nevertheless, this approach struggled to address continuously
evolving data streams.

This leads to the following central research question: How can we develop an efficient,
real-time feature selection method for clustering high-dimensional data streams that adapts
to the dynamic nature of IoT environments?

In response, this paper introduces a novel entropy-based feature selection method
called Entropy-Based Clustering for Data Streams (E-Stream). By integrating real-time
feature ranking with dimensionality reduction, E-Stream improves the clustering efficiency
and accuracy in high-dimensional data streams. E-Stream ranks features in real time based
on their entropy, helping to identify the most essential feature subset. This subset is then
applied to the DenStream algorithm for clustering, which optimizes memory usage and
boosts system precision [17,18].

The remainder of this paper is structured as follows: Section 2 reviews the related
works, including discussions on feature selection techniques and clustering algorithms
for anomaly detection in data streams. Section 3 describes the methodology, providing
a detailed explanation of the proposed algorithm along with its mathematical founda-
tions, pseudocode, and a summary of the evaluation criteria and datasets used. Section 4
presents the results and analysis. Finally, Section 5 provides conclusions and suggestions
for future work.

2. Review of Literature

With the expansion of IoT applications, an enormous volume of data is now being
produced on a scale never before seen, driven by rapid technological advancements [19,20].
These data streams frequently involve multiple dimensions, posing challenges for both
data processing and decision-making processes [21,22]. Richard Bellman was the first to
coin the term curse of dimensionality, which pertains to the difficulty of managing high-
dimensional datasets [23,24]. This challenge involves analyzing and managing datasets

Sensors 2024, 24, 7412 3 of 16

containing hundreds or even thousands of features, often derived from IoT sensors and
devices. The abundance of features can introduce noise into the data streams, leading to
increased complexity and model overfitting and diminished precision, along with higher
computational demands for clustering techniques [25–27].

One of the primary challenges in clustering high-dimensional data streams lies in
effectively evaluating these infinite streams of continuously evolving data while managing
their storage for future analysis [28–30]. A key attribute of an efficient clustering method
is its capacity to identify anomalies within such high-dimensional data streams [31–34].
In existing research, numerous algorithms have been introduced to tackle the problem of
anomaly detection in these streams.

For instance, the MR-Stream algorithm [35,36] was developed to detect outliers. It
functions by employing an online phase that stores condensed information on the evolving
multi-density data as core mini-clusters, followed by an offline phase where a modified
density-based clustering algorithm is applied to generate the final clusters. Furthermore,
a grid-based approach is utilized to handle noise and variations in data densities. This
algorithm has been comprehensively assessed using several quality metrics across both
synthetic and real-world datasets, demonstrating notable improvements in scalability and
clustering performance within multi-density data settings. However, MR-Stream struggles
with computational overhead in high-dimensional spaces because of its reliance on grid
structures, which can be inefficient when dealing with a large number of dimensions.

The Clustering Online Data Streams into Arbitrary Shapes (CODAS) algorithm is rec-
ognized as one of the pioneering approaches for online clustering [37,38]. It was developed
to form clusters of various shapes using a stream-based clustering technique. CODAS
works in real time, forming high-quality clusters from micro-clusters to summarize data
points, and it can handle multidimensional data streams. Each micro-cluster is represented
as a tuple T = (N,C,R,E), where N is the number of data points, C is the centroid, R is the
radius, and E is the energy level. However, the clusters generated by the algorithm are static
and do not evolve over time, limiting its applicability to dynamic data streams. Moreover,
CODAS does not incorporate feature ranking or dimensionality reduction, which can lead
to decreased efficiency in high-dimensional contexts.

To overcome this shortcoming, CODAS was advanced into a more sophisticated
version, CluStream, which implements a two-phase mechanism to manage evolving data
streams. This development marked the introduction of the first fully online clustering
algorithm capable of handling such streams [39,40]. CluStream functions in the following
two phases: first, micro-clusters are either formed or merged into existing ones. In the
second phase, these micro-clusters are processed offline to form macro-clusters, which help
define the final clusters. CluStream is efficient in generating high-quality clusters and can
adapt to the evolving nature of data streams while also identifying noise. However, similar
to other density-based clustering methods, CluStream demands significant processing
time and does not effectively address the challenge of high dimensionality, as it lacks
mechanisms for real-time feature ranking or dimensionality reduction.

An alternative improvement to CODAS has been proposed under the name i-CODAS,
which emphasizes preserving distinct local radii for each micro-cluster [41,42]. In contrast to
standard CODAS, similar to other density-based clustering methods, the radii for all micro-
clusters are set and applied globally. Nonetheless, determining the optimal radius for micro-
clusters is often difficult, and a single radius may not be appropriate for every micro-cluster.
In reality, choosing an unsuitable radius can significantly reduce the clustering accuracy.
The i-CODAS approach addresses this issue by dynamically adjusting each micro-cluster’s
radius according to newly added data points, enabling real-time optimization of local radii.
The data inside clusters is organized into micro-clusters, which are then represented in a
clustering graph that shows their relationships. The final phase involves forming clusters
of varying shapes based on this graph. Despite these benefits, i-CODAS faces the following
key drawback: its substantial memory usage, particularly in high-dimensional data streams;
it does not incorporate feature ranking or dimensionality reduction to mitigate this issue.

Sensors 2024, 24, 7412 4 of 16

A completely online clustering approach based on density, known as DenStream, was
later proposed [17,18]. DenStream continually adjusts the radii of micro-clusters to achieve
optimal local values, effectively addressing a notable limitation of CluStream. It utilizes a
two-tiered micro-cluster system, where less significant micro-clusters are stored temporarily,
and an online pruning mechanism is employed to retrieve these clusters when needed. The
experimental results show that DenStream provides a significant improvement compared
to other clustering techniques. However, DenStream does not incorporate any form of
feature ranking or dimensionality reduction, making it less efficient when dealing with
high-dimensional data streams, as it may suffer from increased computational complexity
and memory consumption.

To address these limitations, our proposed E-Stream algorithm builds upon DenStream
by integrating real-time, entropy-based feature ranking within a sliding time window. This
approach effectively reduces the dimensionality of the data stream by selecting the most in-
formative features, thereby enhancing the computational efficiency and clustering accuracy.
Unlike existing methods, E-Stream directly tackles the curse of dimensionality by reducing
the number of dimensions in real time without compromising essential data characteristics.

A novel clustering technique for online data streams, named cluster-based efficient
density grid method (CEDGM), was introduced by Tareq [43]. This approach leverages
density grids for clustering with the primary objective of minimizing the number of
distance function calculations while improving the overall precision of clusters. The
algorithm operates in real time and is divided into two phases. In the first phase, core
micro-clusters (CMCs) are generated, which are then merged to form macro-clusters during
the second phase. This grid-based method has demonstrated effectiveness in reducing the
number of distance computations and enhancing clustering outcomes, especially when
applied to multi-density data such as sound datasets. Nevertheless, CEDGM exhibits a
significant limitation, as it struggles to optimize memory usage, particularly in the presence
of high-dimensional and sparse data. Additionally, it does not employ feature ranking or
dimensionality reduction techniques to address high-dimensionality challenges.

In summary, while various clustering algorithms have been developed to process
high-dimensional data streams, they often lack mechanisms for real-time feature ranking
and dimensionality reduction, leading to inefficiencies in computational performance and
memory usage. The proposed E-Stream algorithm addresses these gaps by incorporating
entropy-based feature ranking, enabling efficient clustering of high-dimensional data
streams with reduced computational overhead and improved accuracy.

3. Methodology

The E-Stream algorithm was created and implemented in Python. Its performance
was subsequently evaluated against the following three widely used clustering algorithms:
DenStream, CluStream, and MR-Stream. For the assessment, the NSL-KDD dataset [44,45],
a well-established benchmark in clustering and anomaly detection for data streams, was
used. This dataset, comprising over 4.8 million records of network traffic data, proved
to be highly suitable for evaluating the algorithm’s effectiveness. Throughout the experi-
mentation, anomalies were introduced to assess both the clustering accuracy and anomaly
detection performance. The E-Stream algorithm’s performance was compared to the base-
line methods across various tests. Each test was repeated five times with different subsets of
data points, and the average results were calculated to determine the E-Stream algorithm’s
overall efficiency.

3.1. E-Stream Algorithm

The E-Stream technique enhances the previous DenStream method. This new approach
operates entirely in real time, specifically crafted to cluster high-dimensional data streams.
It accomplishes this by utilizing feature ranking and ordering based on the information
content found within the features. The process calculates entropy for selected features
concerning a specific time window.

Sensors 2024, 24, 7412 5 of 16

3.2. Overview of the E-Stream Algorithm
3.2.1. Dimensionality Reduction

The goal of dimensionality reduction is to reduce the number of dimensions while
preserving essential information. The algorithm utilizes feature ranking and ordering,
driven by the informational value of the features. Entropy serves as a critical measure for
assessing the information contained within the features. The entropy of specific features is
calculated relative to the time window. As time progresses, varying weights are assigned
to features based on their entropy over time—a concept known as temporal entropy—as
explained in Equation (1).

H(xi, t1, t2) =
∑t2

t1 ∑n
i=1 −p(xi,t)log[p(xi,t)]

t2 − t1 + 1
(1)

Determining the significance of various features over time requires establishing a
specific time frame for analysis. This time frame, called a window, moves along the
timeline and accumulates a sequence of data points. These points are then used to compute
the entropy for each feature within the chosen window. Feature ranking plays a crucial
role in determining the relative significance of features. The length of the time window is
defined as w = t2 − t1 + 1. At any given time t, the average temporal entropy is calculated
over the defined time window. Consequently, the formula transitions from Equation (1) to
Equation (2).

H(xi, t) =
∑t

t−w+1 ∑n
i=1 −p(xi,t)log[p(xi,t)]

w
(2)

In order to enhance the model’s efficiency, a recursive approach is applied. Once the
feature rankings are computed using temporal entropy, they are then ordered from the
most important to the least.

3.2.2. Reducing the Entropy Window

Within the selected time frame, entropy is calculated concerning the features, facilitat-
ing the reduction of high-dimensional data. The process begins when the incoming data
stream is received. The main objective is to minimize the dimensionality of the dataset
while preserving the essential information it contains. This is accomplished by assessing
the entropy for each feature over the time window. As time progresses, different features
are assigned varying levels of importance based on their computed entropy, a concept
referred to as temporal entropy.

3.2.3. Entropy-Based Clustering for Dynamic Data Streams (DenStream)

After completing the data reduction stage, the process moves into clustering the
continuous stream of data and detecting any anomalies. In this step, calculating the
window size is critical to ensuring it surpasses the speed of the data stream by starting
a window counter. For each data stream in the dataset, the maximum ratio (Rmax) is
first determined, and then the minimum ratio (Rmin) is calculated from Rmax. For every
incoming data point, the corresponding micro-cluster is identified, and, if required, a new
potential micro-cluster is generated. The procedure then updates the current micro-clusters
and refreshes the energy levels of the core micro-clusters, while the energy for both potential
and weak micro-clusters is updated separately. Finally, the macro-cluster graph is revised.

The focus here is on managing micro-clusters, which are small groups of data points
that are continuously adjusted as new data are processed or old data discarded. These
micro-clusters fall into the following three categories: potential, core, and weak.

• Potential micro-clusters are groups under evaluation to assess whether they fulfill the
criteria to become core micro-clusters. These are still in an assessment phase and have
not yet achieved core status;

Sensors 2024, 24, 7412 6 of 16

• Core micro-clusters are those that have met the necessary criteria and are deemed
significant, as they are held in buffer memory. These clusters provide critical insights
and are prioritized for more detailed analysis, reflecting important data patterns;

• Weak micro-clusters refer to clusters that, due to the windowing mechanism, have
lost their significance and no longer qualify as core micro-clusters. These clusters are
gradually removed, allowing memory resources to be dedicated solely to the most
relevant clusters.

In conclusion, this process is designed to dynamically refine micro-clusters as data
evolves. By categorizing them into potential, core, and weak groups, the system ensures
efficient management and storage of the most relevant clusters, enabling accurate and
up-to-date analysis.

3.2.4. Micro-Cluster Discovery

The initial phase of the search process consists of scanning a group of weak micro-
clusters contained within the buffer using Equation (3). This filtering step is designed to
eliminate irrelevant micro-clusters and concentrate on finding the micro-cluster pertinent
to the task. If no suitable weak micro-cluster is identified, the algorithm restarts the
search, trying to detect the target micro-cluster in the next set of micro-clusters. If the first
two attempts are unsuccessful, the algorithm redirects its attention to the primary micro-
cluster set in an effort to identify the core micro-cluster that fulfills the search parameters.
In instances in which more than one micro-cluster meets the requirements of Equation (3),
the algorithm selects one at random.

d(Xi, C) < R (3)

3.2.5. Micro-Cluster Modification

When a micro-cluster receives a new data point, its associated metadata are constantly
updated. Should micro-cluster T (Nt, N′t, Ct, Rt, Et, ELt, and Mt) already be present at
that moment and a new set of data points Xt + 1 has been assigned to it, the metadata are
refreshed in real time at t + 1. The procedure for updating the local density Nt + 1 includes
an increment, as stated in Equation (4).

Local density, Nt+1 = Nt + 1 (4)

When T is either classified as a weak micro-cluster T ∈ MC weak or a potential
micro-cluster T ∈ MC potential and its density surpasses the predetermined threshold
Nt = The density, it transitions to the core group of micro-clusters (MC core). If T was pre-
viously part of, or has just been assigned to, a core micro-cluster (T ∈ MC core), its radius
(Rt + 1) is repeatedly modified through the forgetting process outlined in Equation (5).

Radius, Rt+1 = min
([

Rt +

{
2 × d(Xt+1, Ct)

Rt
− 1

}
× 1

Decay

]
, Rmax

)
(5)

The radius of the micro-cluster is only adjusted when a data point is detected within
the shell region, as points residing within the kernel region exert minimal effect on the
radius expansion. In contrast, a point situated further from the center plays a larger role
in this adjustment. When the data point Xt + 1 is positioned within the shell, both the
updated data count N′t + 1 and the new center of the micro-cluster Ct + 1 are recalculated
using Equations (6) and (8).

N′
t+1 = N′

t + 1 (6)

Center, Ck
t+1 =

(
N′

t+1 − 1
)
× Ck

t + Xk
t+1

N′
t+1

(7)

For dimensions k = 1, 2, 3, . . . , D, where D denotes the number of dimensions of the
data point, a new energy update function has been introduced. This function is aimed at

Sensors 2024, 24, 7412 7 of 16

continuously adjusting the energy of the micro-cluster Et + 1. The energy accumulated
by the micro-cluster is inversely related to the distance between the cluster center and the
data points, demonstrating a well-balanced relationship. Equation (8) illustrates how the
energy Et + 1 of the newly identified core micro-cluster is updated. Bold changes reflect
clarifications and wording adjustments.

Energy, Et+1 = Et +

{
Rt − d(Xt+1, Ct)

Rt

}
× 1

Decay
(8)

3.2.6. Storing Weak Micro-Clusters in a Buffer

As the clustering process advances with each incoming data point, the energy levels
of core micro-clusters progressively diminish, reflecting changes within the data stream. A
core micro-cluster is considered inactive when its energy falls to zero or lower. Inactive
micro-clusters are defined as those with energy levels less than or equal to zero E ≤ 0,
meaning they are temporarily irrelevant. Once detected, these micro-clusters are transferred
to buffer memory, and their energy is reset to half of the original value E = 0.5. The inactive
clusters are stored in this buffer for potential future use but do not engage in the active
clustering graph, as any overlapping connections are broken.

3.2.7. Elimination of Micro-Clusters

The energy allocated to each fading micro-cluster stored in the buffer is reduced by
a decay factor, along with a reduction in the core micro-cluster’s energy (as described in
Section 3.2.1). This approach helps to identify micro-clusters that have gradually weakened
over time and are no longer relevant to the active data stream. A micro-cluster is deemed
inactive if it is linked to zero or non-positive energy E ≤ 0, resulting in its permanent
removal from the system’s memory.

4. Results

This section presents a comparative analysis of the E-Stream algorithm’s performance
against DenStream, CluStream, and MR-Stream algorithms [17,18,21,22]. The configuration
for the E-Stream algorithm included parameters such as a window size of 11, percentage of
0.88, decay rate of 50, micro-core threshold of 11, maximum radius of 0.1, and minimum
radius of 0.05. For the other algorithms, the parameters are set with a decay rate of 50,
a radius of 0.01, minimum threshold of 3, lambda set to 0.997, grid granularity at 10,
minimum points of 3, and horizon of 2. To evaluate the clustering quality of the E-Stream
algorithm after dimensionality reduction, an anomaly generation process was applied to
the real-world NSL-KDD dataset. Subsequently, the runtime performance of E-Stream
was benchmarked against DenStream, CluStream, and MR-Stream. The experiments were
conducted five times, each with distinct random seeds. The NSL-KDD dataset comprises
TCP connection logs from a LAN network, containing a total of 145,586 instances across
40 attributes.

4.1. Quality Evaluation

The quality of the E-Stream algorithm’s execution was assessed using the various
metrics outlined below.

F-Measures

The F-Measure, often referred to as the F-Score, or F1 Score, combines precision and
recall into a single metric. Precision is defined as the ratio of true positive predictions
to the total number of positive predictions made, while recall measures the ratio of true
positive predictions to the total number of actual positive instances. The F-Measure balances
both precision and recall, with values ranging between 0 and 1, where 1 represents the

Sensors 2024, 24, 7412 8 of 16

best possible score and 0 the worst [21,22]. The formula for the F-Measure is given by
the following:

F − measure(C, G) =
2 ∗ precision(C, G) ∗ Recall(C, G)

precision(C, G) + Recall(C, G)
(9)

The comparison of the performances of the E-Stream, DenStream, CluStream, and
MR-Stream algorithms on the NSL-KDD dataset, based on average F-Measure results, is
depicted in Figure 1. The evaluation outcomes reveal that the E-Stream algorithm surpassed
the other stream clustering algorithms (DenStream, CluStream, and MR-Stream) in terms
of the F-Measures, with respective scores of 85%, 83%, 63%, and 4%. Despite E-Stream’s
minor edge over DenStream, it still exhibited significant improvements compared to the
CluStream and MR-Stream algorithms. Additionally, the E-Stream algorithm effectively
reduced the data’s dimensionality, leading to fewer computations with memory overheads.

Sensors 2024, 24, x FOR PEER REVIEW 8 of 17

4.1. Quality Evaluation
The quality of the E-Stream algorithm’s execution was assessed using the various

metrics outlined below.

F-Measures
The F-Measure, often referred to as the F-Score, or F1 Score, combines precision and

recall into a single metric. Precision is defined as the ratio of true positive predictions to
the total number of positive predictions made, while recall measures the ratio of true pos-
itive predictions to the total number of actual positive instances. The F-Measure balances
both precision and recall, with values ranging between 0 and 1, where 1 represents the
best possible score and 0 the worst [21,22]. The formula for the F-Measure is given by the
following: 𝐹 − measure(𝐶,𝐺) = 2 ∗ precision(𝐶,𝐺) ∗ Recall(𝐶,𝐺)precision(𝐶,𝐺) + Recall(𝐶,𝐺) (9)

The comparison of the performances of the E-Stream, DenStream, CluStream, and
MR-Stream algorithms on the NSL-KDD dataset, based on average F-Measure results, is
depicted in Figure 1. The evaluation outcomes reveal that the E-Stream algorithm sur-
passed the other stream clustering algorithms (DenStream, CluStream, and MR-Stream)
in terms of the F-Measures, with respective scores of 85%, 83%, 63%, and 4%. Despite E-
Stream’s minor edge over DenStream, it still exhibited significant improvements com-
pared to the CluStream and MR-Stream algorithms. Additionally, the E-Stream algorithm
effectively reduced the data’s dimensionality, leading to fewer computations with
memory overheads.

Figure 1. Comparative evaluation of E-Stream, DenStream, CluStream, and MR-Stream on the NSL-
KDD dataset: F-Measure performance and dimensionality efficiency.

4.2. Jaccard Index (JI)
The Jaccard Index (JI) is a statistical method used to assess similarity and diversity

among sample sets. It functions as an external assessment metric, as shown in several

Figure 1. Comparative evaluation of E-Stream, DenStream, CluStream, and MR-Stream on the
NSL-KDD dataset: F-Measure performance and dimensionality efficiency.

4.2. Jaccard Index (JI)

The Jaccard Index (JI) is a statistical method used to assess similarity and diversity
among sample sets. It functions as an external assessment metric, as shown in several
studies, such as Zhang et al. [21] and Osman et al. [22]. The formula for the Jaccard Index
is as follows:

Jaccard(C, G) =

√
|TP|

|TP|+ |FN|+ |FP| (10)

where

• TP represents true positives;
• FP stands for false positives;
• FN refers to false negatives.

Sensors 2024, 24, 7412 9 of 16

The experimental results presented in Figure 2 compare the E-Stream, DenStream,
CluStream, and MR-Stream algorithms using the Jaccard Index on the NSL-KDD dataset. E-
Stream outperformed the baseline algorithms, achieving Jaccard Index values of 67%, 66%,
47%, and 6%, respectively. While the difference between E-Stream and DenStream in terms
of the Jaccard score is minor, the E-Stream algorithm presents a substantial improvement
when compared to CluStream and MR-Stream.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 17

studies, such as Zhang et al. [21] and Osman et al. [22]. The formula for the Jaccard Index
is as follows: Jaccard(𝐶,𝐺) = ට |்||்|ା|ிே|ା|ி| (10)

where
• TP represents true positives;
• FP stands for false positives;
• FN refers to false negatives.

The experimental results presented in Figure 2 compare the E-Stream, DenStream,
CluStream, and MR-Stream algorithms using the Jaccard Index on the NSL-KDD dataset.
E-Stream outperformed the baseline algorithms, achieving Jaccard Index values of 67%,
66%, 47%, and 6%, respectively. While the difference between E-Stream and DenStream
in terms of the Jaccard score is minor, the E-Stream algorithm presents a substantial im-
provement when compared to CluStream and MR-Stream.

Figure 2. Performance of E-Stream, DenStream, CluStream, and MR-Stream on the NSL-KDD da-
taset in terms of the Jaccard Index.

4.3. Fowlkes–Mallows Index (FM)
The Fowlkes–Mallows Index (FM) serves as a metric for assessing the resemblance

between two sets of clusters. When the FM score is higher, this signifies a greater align-
ment between the clusters and the actual classification. This index is derived from the
following formula: 𝐹𝑀 = ට |்||்|ା|ி| |்||்|ା|ிே| (11)

The experimental results, as illustrated in Figure 3, demonstrate that the E-Stream
algorithm consistently outperformed the other algorithms (i.e., DenStream, CluStream,

Figure 2. Performance of E-Stream, DenStream, CluStream, and MR-Stream on the NSL-KDD dataset
in terms of the Jaccard Index.

4.3. Fowlkes–Mallows Index (FM)

The Fowlkes–Mallows Index (FM) serves as a metric for assessing the resemblance
between two sets of clusters. When the FM score is higher, this signifies a greater align-
ment between the clusters and the actual classification. This index is derived from the
following formula:

FM =

√
|TP|

|TP|+|FP| ·
|TP|

|TP|+|FN| (11)

The experimental results, as illustrated in Figure 3, demonstrate that the E-Stream
algorithm consistently outperformed the other algorithms (i.e., DenStream, CluStream, and
MR-Stream) in all four experiments. E-Stream achieved the highest F-Measure (FM) scores,
ranging from 35.5% to 36.2%, highlighting its robustness in clustering tasks. DenStream
followed closely, with FM values between 34.5% and 34.9%, showing strong performances,
albeit slightly behind E-Stream. CluStream exhibited moderate results, with FM scores
around 28%, consistently lagging behind E-Stream and DenStream. MR-Stream performed
the weakest, with FM values consistently below 2%, indicating its limited effectiveness

Sensors 2024, 24, 7412 10 of 16

compared to the other algorithms. These findings confirm that E-Stream is the most effective
clustering algorithm across all experiments, as reflected in Figure 3.

Sensors 2024, 24, x FOR PEER REVIEW 10 of 17

and MR-Stream) in all four experiments. E-Stream achieved the highest F-Measure (FM)
scores, ranging from 35.5% to 36.2%, highlighting its robustness in clustering tasks.
DenStream followed closely, with FM values between 34.5% and 34.9%, showing strong
performances, albeit slightly behind E-Stream. CluStream exhibited moderate results,
with FM scores around 28%, consistently lagging behind E-Stream and DenStream. MR-
Stream performed the weakest, with FM values consistently below 2%, indicating its lim-
ited effectiveness compared to the other algorithms. These findings confirm that E-Stream
is the most effective clustering algorithm across all experiments, as reflected in Figure 3.

Figure 3. Fowlkes–Mallows Index comparison for E-Stream, DenStream, CluStream, and MR-
Stream on the NSL-KDD dataset.

4.3.1. Purity
Purity is a measure utilized to evaluate the effectiveness of the E-STREAM algorithm.

It is calculated by dividing the count of elements within each cluster by the total number
of ground truth instances [46,47]. Purity scores vary from 0 to 1, with 0 indicating low
purity and 1 indicating high purity. 𝑃𝑢𝑟𝑖𝑡𝑦 = ∑ ಿసభ (12)

The experimental results, as depicted in Figure 4, show that the E-Stream algorithm
consistently outperformed the other algorithms—DenStream, CluStream, and MR-
Stream—across all four experiments in terms of purity. E-Stream achieved the highest pu-
rity, with scores ranging from 37.2% to 37.8%, demonstrating its robust clustering accu-
racy. DenStream followed closely, with purity scores between 34.3% and 34.8%, showing
strong but slightly weaker performances compared to E-Stream. CluStream exhibited
moderate performances, with purity levels ranging from 26.9% to 27.5%. In contrast, MR-
Stream consistently underperformed, with purity scores between 0.8% and 1.2%,

Figure 3. Fowlkes–Mallows Index comparison for E-Stream, DenStream, CluStream, and MR-Stream
on the NSL-KDD dataset.

4.3.1. Purity

Purity is a measure utilized to evaluate the effectiveness of the E-STREAM algorithm.
It is calculated by dividing the count of elements within each cluster by the total number of
ground truth instances [46,47]. Purity scores vary from 0 to 1, with 0 indicating low purity
and 1 indicating high purity.

Purity =
∑N

i=1 nd
i

ni
(12)

The experimental results, as depicted in Figure 4, show that the E-Stream algorithm con-
sistently outperformed the other algorithms—DenStream, CluStream, and MR-Stream—across
all four experiments in terms of purity. E-Stream achieved the highest purity, with scores
ranging from 37.2% to 37.8%, demonstrating its robust clustering accuracy. DenStream
followed closely, with purity scores between 34.3% and 34.8%, showing strong but slightly
weaker performances compared to E-Stream. CluStream exhibited moderate performances,
with purity levels ranging from 26.9% to 27.5%. In contrast, MR-Stream consistently under-
performed, with purity scores between 0.8% and 1.2%, indicating its limited effectiveness
in aligning clusters with true labels. These findings clearly indicate that E-Stream is the
most accurate algorithm in terms of purity, as reflected in Figure 4.

Sensors 2024, 24, 7412 11 of 16

Sensors 2024, 24, x FOR PEER REVIEW 11 of 17

indicating its limited effectiveness in aligning clusters with true labels. These findings
clearly indicate that E-Stream is the most accurate algorithm in terms of purity, as reflected
in Figure 4.

Figure 4. Comparative purity analysis for E-Stream, DenStream, CluStream, and MR-Stream on the
NSL-KDD dataset.

4.3.2. Rand Index
The Rand Index is a statistical tool that measures how similar two different groupings

are, specifically focusing on the level of agreement between the clustering results and the
actual data labels [48,49]. This index is calculated by the following formula:

Rand Index = |்|ା|்ே||்|ା|்ே|ା|ி|ା|ிே| (13)

The experimental results, as shown in Figure 5, highlight the superior performance
of the E-Stream algorithm, which consistently achieved the highest Rand Index (RI) scores
across all four experiments. E-Stream’s Rand Index values ranged from 32.7% to 33.2%,
indicating its strong ability to generate clusters that closely align with the actual data la-
bels. DenStream followed closely behind, with Rand Index scores ranging from 30.7% to
31.6%, performing well but slightly below E-Stream. CluStream exhibited moderate per-
formance, with Rand Index values between 24.9% and 25.1%. In contrast, MR-Stream con-
sistently underperformed, with the lowest Rand Index scores ranging from 10.4% to
11.1%, indicating poor clustering accuracy. These results emphasize that E-Stream con-
sistently produced the most accurate clusters, as demonstrated in Figure 5.

Figure 4. Comparative purity analysis for E-Stream, DenStream, CluStream, and MR-Stream on the
NSL-KDD dataset.

4.3.2. Rand Index

The Rand Index is a statistical tool that measures how similar two different groupings
are, specifically focusing on the level of agreement between the clustering results and the
actual data labels [48,49]. This index is calculated by the following formula:

RandIndex =
|TP|+|TN|

|TP|+|TN|+|FP|+|FN| (13)

The experimental results, as shown in Figure 5, highlight the superior performance of
the E-Stream algorithm, which consistently achieved the highest Rand Index (RI) scores
across all four experiments. E-Stream’s Rand Index values ranged from 32.7% to 33.2%,
indicating its strong ability to generate clusters that closely align with the actual data
labels. DenStream followed closely behind, with Rand Index scores ranging from 30.7%
to 31.6%, performing well but slightly below E-Stream. CluStream exhibited moderate
performance, with Rand Index values between 24.9% and 25.1%. In contrast, MR-Stream
consistently underperformed, with the lowest Rand Index scores ranging from 10.4%
to 11.1%, indicating poor clustering accuracy. These results emphasize that E-Stream
consistently produced the most accurate clusters, as demonstrated in Figure 5.

4.4. Complexity Assessment

In the assessment of the computational complexity, the performance of the E-Stream
algorithm was evaluated against the DenStream, CluStream, and MR-Stream algorithms,
with an emphasis on memory consumption and computational efficiency. It is essential for
stream clustering algorithms to ensure both minimal memory consumption and computa-
tional efficiency during their execution. Figure 6 presents the memory usage and processing
efficiency of all tested algorithms on the NSL-KDD dataset.

Sensors 2024, 24, 7412 12 of 16Sensors 2024, 24, x FOR PEER REVIEW 12 of 17

Figure 5. Rand Index comparison for E-Stream, DenStream, CluStream, and MR-Stream on the NSL-
KDD dataset.

4.4. Complexity Assessment
In the assessment of the computational complexity, the performance of the E-Stream

algorithm was evaluated against the DenStream, CluStream, and MR-Stream algorithms,
with an emphasis on memory consumption and computational efficiency. It is essential
for stream clustering algorithms to ensure both minimal memory consumption and com-
putational efficiency during their execution. Figure 6 presents the memory usage and pro-
cessing efficiency of all tested algorithms on the NSL-KDD dataset.

Figure 6. Memory usage and computational power comparison of E-Stream, DenStream, CluStream,
and MR-Stream on the NSL-KDD dataset.

Figure 5. Rand Index comparison for E-Stream, DenStream, CluStream, and MR-Stream on the
NSL-KDD dataset.

Sensors 2024, 24, x FOR PEER REVIEW 12 of 17

Figure 5. Rand Index comparison for E-Stream, DenStream, CluStream, and MR-Stream on the NSL-
KDD dataset.

4.4. Complexity Assessment
In the assessment of the computational complexity, the performance of the E-Stream

algorithm was evaluated against the DenStream, CluStream, and MR-Stream algorithms,
with an emphasis on memory consumption and computational efficiency. It is essential
for stream clustering algorithms to ensure both minimal memory consumption and com-
putational efficiency during their execution. Figure 6 presents the memory usage and pro-
cessing efficiency of all tested algorithms on the NSL-KDD dataset.

Figure 6. Memory usage and computational power comparison of E-Stream, DenStream, CluStream,
and MR-Stream on the NSL-KDD dataset.

Figure 6. Memory usage and computational power comparison of E-Stream, DenStream, CluStream,
and MR-Stream on the NSL-KDD dataset.

As illustrated in Figure 6, the E-Stream algorithm exhibited comparatively lower
memory consumption than the DenStream algorithm. This can be attributed to E-Stream’s
use of a buffer to temporarily store data, and once the data points are no longer required,
they are discarded to optimize memory usage. Notably, the E-Stream algorithm consumed
substantially less memory than both CluStream and MR-Stream.

Moreover, a comparison of the computational efficiency between the E-Stream algo-
rithm and the DenStream, CluStream, and MR-Stream algorithms is displayed in Figure 6.

Sensors 2024, 24, 7412 13 of 16

The figure demonstrates that the E-Stream algorithm requires significantly less computa-
tional resources compared to the other algorithms, with CluStream demanding the most
computational power, while E-Stream exhibited the most efficient usage.

The experimental results consistently demonstrate that the E-Stream algorithm sur-
passed the other baseline stream clustering algorithms across a range of evaluation metrics.
This strong performance can be attributed to its ability to reduce memory consumption
and computational overhead, facilitated by its dimensionality reduction process. Addition-
ally, the findings suggest that the E-Stream algorithm consistently produced high-purity
results, even after reducing the dataset’s dimensions while still preserving key data fea-
tures. Figure 7 summarizes the comparison of the E-Stream algorithm’s performance
with DenStream, CluStream, and MR-Stream, using the NSL-KDD dataset across various
evaluation metrics.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 17

As illustrated in Figure 6, the E-Stream algorithm exhibited comparatively lower
memory consumption than the DenStream algorithm. This can be attributed to E-Stream’s
use of a buffer to temporarily store data, and once the data points are no longer required,
they are discarded to optimize memory usage. Notably, the E-Stream algorithm con-
sumed substantially less memory than both CluStream and MR-Stream.

Moreover, a comparison of the computational efficiency between the E-Stream algo-
rithm and the DenStream, CluStream, and MR-Stream algorithms is displayed in Figure
6. The figure demonstrates that the E-Stream algorithm requires significantly less compu-
tational resources compared to the other algorithms, with CluStream demanding the most
computational power, while E-Stream exhibited the most efficient usage.

The experimental results consistently demonstrate that the E-Stream algorithm sur-
passed the other baseline stream clustering algorithms across a range of evaluation met-
rics. This strong performance can be attributed to its ability to reduce memory consump-
tion and computational overhead, facilitated by its dimensionality reduction process. Ad-
ditionally, the findings suggest that the E-Stream algorithm consistently produced high-
purity results, even after reducing the dataset’s dimensions while still preserving key data
features. Figure 7 summarizes the comparison of the E-Stream algorithm’s performance
with DenStream, CluStream, and MR-Stream, using the NSL-KDD dataset across various
evaluation metrics.

Figure 7. Breakdown of the evaluation metrics for E-Stream, DenStream, CluStream, and MR-
Stream on the NSL-KDD dataset.

5. Conclusions and Discussion
This paper presented the E-Stream algorithm, an improvement over the previous

DenStream algorithm, offering a fully online approach for clustering high-dimensional
data streams. E-Stream utilizes feature prioritization and ordering based on the infor-
mation content of features, achieved by calculating the entropy of selected features within
a defined time window. The algorithm’s effectiveness in both dimensionality reduction

Figure 7. Breakdown of the evaluation metrics for E-Stream, DenStream, CluStream, and MR-Stream
on the NSL-KDD dataset.

5. Conclusions and Discussion

This paper presented the E-Stream algorithm, an improvement over the previous
DenStream algorithm, offering a fully online approach for clustering high-dimensional data
streams. E-Stream utilizes feature prioritization and ordering based on the information
content of features, achieved by calculating the entropy of selected features within a
defined time window. The algorithm’s effectiveness in both dimensionality reduction
and clustering accuracy was assessed through comparisons with other algorithms such
as DenStream, CluStream, and MR-Stream. While our evaluation using the NSL-KDD
dataset demonstrates the potential of E-Stream, we acknowledge that relying on a single
dataset may limit the generalizability of our findings. These results demonstrate that

Sensors 2024, 24, 7412 14 of 16

E-Stream outperforms the baseline algorithms by effectively preserving essential data
features while reducing dimensionality. Moreover, the E-Stream algorithm exhibited
significantly lower memory consumption and computational requirements compared to
DenStream, CluStream, and MR-Stream, further highlighting its efficiency in processing
high-dimensional data streams.

Despite its advantages, the E-Stream algorithm has some limitations. It is not fully au-
tonomous, requiring manual adjustment of specific parameters by the user. Implementing a
fully autonomous, parameter-free algorithm would greatly enhance its adaptability across
various datasets. Furthermore, the current algorithm assumes a consistent number of active
features during execution, which ignores the possibility of missing or unavailable features.
Since many datasets are likely to have absent features, incorporating mechanisms to ad-
dress such scenarios is crucial for broader applicability. Another notable limitation is the
lack of comparison with high-dimensionality reduction algorithms such as the Generalized
Hebbian Algorithm (GHA) for online principal component analysis (PCA). Including such
algorithms in our comparative analysis could provide deeper insights into the performance
and scalability of E-Stream relative to established dimensionality reduction techniques.
Additionally, the evaluation primarily compares E-Stream with core clustering algorithms,
without direct comparison to existing feature ranking and selection methods for data
streams. Including such comparisons would provide a more comprehensive assessment of
the algorithm’s effectiveness in feature selection.

Moreover, the experiments were conducted using simulated datasets rather than real-
world conditions. Conducting experiments in real experimental setups, such as deploying E-
Stream on IoT hardware platforms, such as an ESP32 board with MQTT servers for real-time
data transmission from IoT sensors, would provide practical insights into latency, scalability,
and resource consumption under real-world IoT conditions. This would significantly
strengthen the evaluation by bridging the gap between theoretical and applied performance.

Future work will focus on addressing challenges such as the incorrect merging of
clusters, which occurs when overlapping moving clusters are erroneously combined. We
also plan to benchmark E-Stream against established high-dimensionality reduction algo-
rithms like GHA for online PCA to evaluate its performance in relation to these methods.
Additionally, enhancing the management of evolving clusters that may adopt various
shapes during execution is a priority. Furthermore, we aim to evaluate the algorithm on IoT
hardware platforms and multiple datasets to provide a more comprehensive understand-
ing of its real-world performance. Future work should also include a sensitivity analysis
to evaluate the impact of variations in the configuration parameters on the algorithm’s
overall performance. This will help identify optimal parameter settings and assess the
robustness of the approach under diverse conditions. By tackling these issues, the E-Stream
algorithm can be further refined to provide more robust and adaptable clustering solutions
for high-dimensional data streams.

Funding: This research was funded by the Researchers Supporting Project (number: RSP2024R233),
King Saud University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: All participants involved in the study provided informed consent.

Data Availability Statement: Data can be made available upon request to ensure privacy re-strictions
are upheld.

Acknowledgments: The author would like to extend his sincere appreciation to the Researchers
Supporting Project (RSP2024R233), King Saud University, Riyadh, Saudi Arabia.

Conflicts of Interest: The author declares no conflict of interest.

Sensors 2024, 24, 7412 15 of 16

References
1. Al-amri, R.; Murugesan, R.K.; Man, M.; Abdulateef, A.F.; Al-Sharafi, M.A.; Alkahtani, A.A. A Review of Machine Learning and

Deep Learning Techniques for Anomaly Detection in IoT Data. Appl. Sci. 2021, 11, 5320. [CrossRef]
2. Manokaran, J.; Vairavel, G. Smart Anomaly Detection Using Data-Driven Techniques in IoT Edge: A Survey. In Proceedings of

the Third International Conference on Communication, Computing and Electronics Systems: ICCCES 2021, Coimbatore, India,
28–29 October 2022; pp. 685–702. [CrossRef]

3. Nguyen, T.-A.; Le, L.T.; Nguyen, T.D.; Bao, W.; Seneviratne, S.; Hong, C.S.; Tran, N.H. Federated PCA on Grassmann Manifold for
IoT Anomaly Detection. IEEE/ACM Trans. Netw. 2024, 32, 4456–4471. [CrossRef]

4. Adhikari, D.; Jiang, W.; Zhan, J.; Rawat, D.B.; Bhattarai, A. Recent Advances in Anomaly Detection in Internet of Things: Status,
Challenges, and Perspectives. Comput. Sci. Rev. 2024, 54, 100665. [CrossRef]

5. Chatterjee, A.; Ahmed, B.S. IoT Anomaly Detection Methods and Applications: A Survey. Internet Things 2022, 19, 100568.
[CrossRef]

6. Chen, Z.; Chen, D.; Zhang, X.; Yuan, Z.; Cheng, X. Learning Graph Structures with Transformer for Multivariate Time-Series
Anomaly Detection in IoT. IEEE Internet Things J. 2022, 9, 9179–9189. [CrossRef]

7. Stampe, L.; Stockdiek, J.L.; Grimme, B.; Grimme, C. Benchmarking Sentence Embeddings in Textual Stream Clustering with
Applications to Campaign Detection. In Proceedings of the 2024 International Joint Conference on Neural Networks (IJCNN),
Yokohama, Japan, 30 June 2024–5 July 2024; pp. 1–8. [CrossRef]

8. de Sousa, R.G.; Meira Neto, A.C.; Fantinato, M.; Peres, S.M.; Reijers, H.A. Integrated Detection and Localization of Concept Drifts
in Process Mining with Batch and Stream Trace Clustering Support. Data Knowl. Eng. 2024, 149, 102253. [CrossRef]

9. Faroughi, A.; Boostani, R.; Tajalizadeh, H.; Javidan, R. ARD-Stream: An Adaptive Radius Density-Based Stream Clustering.
Future Gener. Comput. Syst. 2023, 149, 416–431. [CrossRef]

10. Islam, M.K.; Sarker, B. An Online Clustering Approach for Evolving Data-Stream Based on Data Point Density. In Proceedings of
the International Conference on Emerging Technologies and Intelligent Systems: ICETIS 2021, Al Buraimi, Oman, 25–26 June
2022; pp. 105–115. [CrossRef]

11. Sun, J.; Du, M.; Sun, C.; Dong, Y. Efficient Online Stream Clustering Based on Fast Peeling of Boundary Micro-Cluster. IEEE Trans.
Neural Netw. Learn. Syst. 2024, 1–14. [CrossRef]

12. Kasongo, S.M.; Sun, Y. A Deep Learning Method with Wrapper Based Feature Extraction for Wireless Intrusion Detection System.
Comput. Secur. 2020, 92, 101752. [CrossRef]

13. Farhan, I.B.; Jasim, A.D. A Survey of Intrusion Detection Using Deep Learning in Internet of Things. Iraqi J. Comput. Sci. Math.
2022, 3, 83–93. [CrossRef]

14. Hu, S.; Wang, R.; Ye, Y. Interactive Information Bottleneck for High-Dimensional Co-Occurrence Data Clustering. Appl. Soft
Comput. 2021, 111, 107837. [CrossRef]

15. Esfandiari, A.; Khaloozadeh, H.; Farivar, F. Interaction-Based Clustering Algorithm for Feature Selection: A Multivariate Filter
Approach. Int. J. Mach. Learn. Cybern. 2023, 14, 1769–1782. [CrossRef]

16. Ghosh, T.; Kirby, M. Linear Centroid Encoder for Supervised Principal Component Analysis. Pattern Recognit. 2024, 155, 110634.
[CrossRef]

17. Alhenawi, E.; Al-Sayyed, R.; Hudaib, A.; Mirjalili, S. Feature Selection Methods on Gene Expression Microarray Data for Cancer
Classification: A Systematic Review. Comput. Biol. Med. 2022, 140, 105051. [CrossRef] [PubMed]

18. Wang, Y.; Jin, H.; Chen, X.; Wang, B.; Yang, B.; Qian, B. Online-Dynamic-Clustering-Based Soft Sensor for Industrial Semi-
Supervised Data Streams. Sensors 2023, 23, 1520. [CrossRef]

19. Kumar Dinkar, A.; Alimul Haque, M.; Kumar Choudhary, A. Enhancing IoT Data Analysis with Machine Learning: A Compre-
hensive Overview. LatIA 2024, 2, 9. [CrossRef]

20. Miah, M.A.R.; Kabir, R.; Sidq, L. An Integration of IoT and IoE Towards Sustainable Building Energy Management. In Proceedings
of the 2023 IEEE PES 15th Asia-Pacific Power and Energy Engineering Conference (APPEEC), Chiang Mai, Thailand, 6–9 December
2023; pp. 1–6. [CrossRef]

21. Zhang, Y.; Liu, J.; Shen, W. A Review of Ensemble Learning Algorithms Used in Remote Sensing Applications. Appl. Sci. 2022,
12, 8654. [CrossRef]

22. Osman, A.I.; Nasr, M.; Farghali, M.; Rashwan, A.K.; Abdelkader, A.; Al-Muhtaseb, A.H.; Ihara, I.; Rooney, D.W. Optimizing
Biodiesel Production from Waste with Computational Chemistry, Machine Learning and Policy Insights: A Review. Env. Chem.
Lett. 2024, 22, 1005–1071. [CrossRef]

23. François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M.G.; Pineau, J. An Introduction to Deep Reinforcement Learning. Found.
Trends® Mach. Learn. 2018, 11, 219–354. [CrossRef]

24. Li, J.; Du, X.; Martins, J.R.R.A. Machine Learning in Aerodynamic Shape Optimization. Prog. Aerosp. Sci. 2022, 134, 100849.
[CrossRef]

25. Asif, M.; Ihsan, A.; Khan, W.U.; Ranjha, A.; Zhang, S.; Wu, S.X. Energy-Efficient Backscatter-Assisted Coded Cooperative NOMA
for B5G Wireless Communications. IEEE Trans. Green. Commun. Netw. 2023, 7, 70–83. [CrossRef]

26. Zhao, S. Energy Efficient Resource Allocation Method for 5G Access Network Based on Reinforcement Learning Algorithm.
Sustain. Energy Technol. Assess. 2023, 56, 103020. [CrossRef]

https://doi.org/10.3390/app11125320
https://doi.org/10.1007/978-981-16-8862-1_45
https://doi.org/10.1109/TNET.2024.3423780
https://doi.org/10.1016/j.cosrev.2024.100665
https://doi.org/10.1016/j.iot.2022.100568
https://doi.org/10.1109/JIOT.2021.3100509
https://doi.org/10.1109/IJCNN60899.2024.10650595
https://doi.org/10.1016/j.datak.2023.102253
https://doi.org/10.1016/j.future.2023.07.027
https://doi.org/10.1007/978-3-030-85990-9_10
https://doi.org/10.1109/TNNLS.2024.3382033
https://doi.org/10.1016/j.cose.2020.101752
https://doi.org/10.52866/ijcsm.2022.01.01.009
https://doi.org/10.1016/j.asoc.2021.107837
https://doi.org/10.1007/s13042-022-01726-0
https://doi.org/10.1016/j.patcog.2024.110634
https://doi.org/10.1016/j.compbiomed.2021.105051
https://www.ncbi.nlm.nih.gov/pubmed/34839186
https://doi.org/10.3390/s23031520
https://doi.org/10.62486/latia20249
https://doi.org/10.1109/APPEEC57400.2023.10561933
https://doi.org/10.3390/app12178654
https://doi.org/10.1007/s10311-024-01700-y
https://doi.org/10.1561/2200000071
https://doi.org/10.1016/j.paerosci.2022.100849
https://doi.org/10.1109/TGCN.2022.3216209
https://doi.org/10.1016/j.seta.2023.103020

Sensors 2024, 24, 7412 16 of 16

27. Alamu, O.; Olwal, T.O.; Djouani, K. Cooperative NOMA Networks with Simultaneous Wireless Information and Power Transfer:
An Overview and Outlook. Alex. Eng. J. 2023, 71, 413–438. [CrossRef]

28. Kolajo, T.; Daramola, O.; Adebiyi, A. Streaming Data and Data Streams. In Wiley StatsRef: Statistics Reference Online; Wiley:
Hoboken, NJ, USA, 2021; pp. 1–16. [CrossRef]

29. Al-Khamees, H.A.; Al-A’araji, N.; Al-Shamery, E.S. Survey: Clustering Techniques of Data Stream. In Proceedings of the 2021 1st
Babylon International Conference on Information Technology and Science (BICITS), Babil, Iraq, 28–29 April 2021; pp. 113–119.
[CrossRef]

30. Soleymanian, M.; Mashayekhi, H.; Rahimi, M. An Incremental Clustering Algorithm Based on Semantic Concepts. Knowl. Inf.
Syst. 2024, 66, 3303–3335. [CrossRef]

31. Al-Ali, A.R.; Gupta, R.; Zualkernan, I.; Das, S.K. Role of IoT Technologies in Big Data Management Systems: A Review and Smart
Grid Case Study. Pervasive Mob. Comput. 2024, 100, 101905. [CrossRef]

32. Liu, X.; Dong, X.; Jia, N.; Zhao, W. Federated Learning-Oriented Edge Computing Framework for the IIoT. Sensors 2024, 24, 4182.
[CrossRef] [PubMed]

33. Nuryanto, U.W.; Basrowi, B.; Quraysin, I. Big Data and IoT Adoption in Shaping Organizational Citizenship Behavior: The
Role of Innovation Organizational Predictor in the Chemical Manufacturing Industry. Int. J. Data Netw. Sci. 2024, 8, 225–268.
[CrossRef]

34. Srirama, S.N. A Decade of Research in Fog Computing: Relevance, Challenges, and Future Directions. Softw. Pract. Exp. 2024, 54,
3–23. [CrossRef]

35. Amini, A.; Saboohi, H.; Herawan, T.; Wah, T.Y. MuDi-Stream: A Multi Density Clustering Algorithm for Evolving Data Stream.
J. Netw. Comput. Appl. 2016, 59, 370–385. [CrossRef]

36. Zubaroğlu, A.; Atalay, V. Data Stream Clustering: A Review. Artif. Intell. Rev. 2021, 54, 1201–1236. [CrossRef]
37. Zeng, S.; Yang, C. Risk Evaluation of Livestream E-Commerce Platforms Based on Expert Trust Networks and CODAS. Expert.

Syst. Appl. 2025, 260, 125408. [CrossRef]
38. Khargotra, R.; Alam, T.; Thu, K.; András, K.; Singh, T. Optimization of Design Parameter of V-Shaped Perforated Blocks in

Rectangular Duct of Solar Air Heater by Using Hybrid BWM-CODAS Technique. Sol. Energy Mater. Sol. Cells 2024, 264, 112627.
[CrossRef]

39. Gao, D. An Autoencoder-Based Fast Online Clustering Algorithm for Evolving Data Stream. In Proceedings of the 2023 2nd Asia
Conference on Algorithms, Computing and Machine Learning, Shanghai, China, 17–19 March 2023; ACM: New York, NY, USA,
2023; pp. 90–95. [CrossRef]

40. Sun, J.; Du, M.; Lew, Z.; Dong, Y. TWStream: Three-Way Stream Clustering. IEEE Trans. Fuzzy Syst. 2024, 32, 4927–4939. [CrossRef]
41. Akhter, J.; Ahmed, M.M.; Samsuddoha, M. Online Clustering Technique with Adaptable Threshold and Radius for Evolving Data

Stream. In Proceedings of the 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI),
Rajshahi, Bangladesh, 8–9 July 2021; pp. 1–6. [CrossRef]

42. Al-amri, R.; Murugesan, R.K.; Almutairi, M.; Munir, K.; Alkawsi, G.; Baashar, Y. A Clustering Algorithm for Evolving Data
Streams Using Temporal Spatial Hyper Cube. Appl. Sci. 2022, 12, 6523. [CrossRef]

43. Tareq, M.; Sundararajan, E.A.; Mohd, M.; Sani, N.S. Online Clustering of Evolving Data Streams Using a Density Grid-Based
Method. IEEE Access 2020, 8, 166472–166490. [CrossRef]

44. Mohd, N.; Singh, A.; Bhadauria, H.S. Intrusion Detection System Based on Hybrid Hierarchical Classifiers. Wirel. Pers. Commun.
2021, 121, 659–686. [CrossRef]

45. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A Detailed Analysis of the KDD CUP 99 Data Set. In Proceedings of the 2009
IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009;
pp. 1–6. [CrossRef]

46. Mandal, P.; Mondal, S.; Cep, R.; Ghadai, R.K. Multi-Objective Optimization of an EDM Process for Monel K-500 Alloy Using
Response Surface Methodology-Multi-Objective Dragonfly Algorithm. Sci. Rep. 2024, 14, 20757. [CrossRef]

47. Acharya, B.R.; Sethi, A.; Das, A.K.; Saha, P.; Pratihar, D.K. Parametric Optimization of Micro-Tool Fabrication through Sheet-EDG
Using Nature-Inspired Algorithms. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 72. [CrossRef]

48. Xie, J.; Dai, M.; Xia, S.; Zhang, J.; Wang, G.; Gao, X. An Efficient Fuzzy Stream Clustering Method Based on Granular-Ball
Structure. In Proceedings of the 2024 IEEE 40th International Conference on Data Engineering (ICDE), Utrecht, The Netherlands,
13–16 May 2024; pp. 901–913. [CrossRef]

49. Ma, F.; Wang, C.; Huang, J.; Zhong, Q.; Zhang, T. Key Grids Based Batch-Incremental CLIQUE Clustering Algorithm Considering
Cluster Structure Changes. Inf. Sci. 2024, 660, 120109. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.aej.2023.03.057
https://doi.org/10.1002/9781118445112.stat08310
https://doi.org/10.1109/BICITS51482.2021.9509923
https://doi.org/10.1007/s10115-024-02063-0
https://doi.org/10.1016/j.pmcj.2024.101905
https://doi.org/10.3390/s24134182
https://www.ncbi.nlm.nih.gov/pubmed/39000960
https://doi.org/10.5267/j.ijdns.2023.9.026
https://doi.org/10.1002/spe.3243
https://doi.org/10.1016/j.jnca.2014.11.007
https://doi.org/10.1007/s10462-020-09874-x
https://doi.org/10.1016/j.eswa.2024.125408
https://doi.org/10.1016/j.solmat.2023.112627
https://doi.org/10.1145/3590003.3590020
https://doi.org/10.1109/TFUZZ.2024.3369716
https://doi.org/10.1109/ACMI53878.2021.9528140
https://doi.org/10.3390/app12136523
https://doi.org/10.1109/ACCESS.2020.3021684
https://doi.org/10.1007/s11277-021-08655-1
https://doi.org/10.1109/CISDA.2009.5356528
https://doi.org/10.1038/s41598-024-71697-5
https://doi.org/10.1007/s40430-023-04633-9
https://doi.org/10.1109/ICDE60146.2024.00074
https://doi.org/10.1016/j.ins.2024.120109

	Introduction
	Review of Literature
	Methodology
	E-Stream Algorithm
	Overview of the E-Stream Algorithm
	Dimensionality Reduction
	Reducing the Entropy Window
	Entropy-Based Clustering for Dynamic Data Streams (DenStream)
	Micro-Cluster Discovery
	Micro-Cluster Modification
	Storing Weak Micro-Clusters in a Buffer
	Elimination of Micro-Clusters

	Results
	Quality Evaluation
	Jaccard Index (JI)
	Fowlkes–Mallows Index (FM)
	Purity
	Rand Index

	Complexity Assessment

	Conclusions and Discussion
	References

