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Section 1: Geometric relation between excitation laser and image plane.  

 

Figure S1 Geometry of S-LIDAR system. Note that the figure follows the Gaussian sign convention with the object 

(‘o’) and image (‘i’) distances, originating at the focusing element (blue double arrow) with +o pointing to the left 

and +i to the right while +Y points up.  

The furnace tube, length ‘Lo’ and diameter ‘Do’, is located a distance ‘O0’ (center of tube) from 

the focusing element (focal length ‘f’) while the laser passes through the tube at an angle of ‘θo’ 

with respect to the optical axis, passing through points ‘Pnear’ and ‘Pfar’ as well as the center of the 

furnace at ‘O0’ (see Figure S1).  

The points Pnear and Pfar and the angle θo are set by the fixed system geometry by the following: 

Object / Laser plane parameters: 

𝑷𝒏𝒆𝒂𝒓 = (𝑜𝑛, 𝑦𝑛) = (𝑶𝟎 −
𝑳𝒐
𝟐
,
𝑫𝒐
𝟐
) 

𝑷𝒇𝒂𝒓 = (𝑜𝑓 , 𝑦𝑓) = (𝑶𝟎 +
𝑳𝒐
𝟐
, −
𝑫𝒐
𝟐
) 

𝐭𝐚𝐧𝜽𝒐 =
𝑫𝒐

𝑳𝒐
⁄  

Points Pnear,far can be mapped onto points along the image plane, P’near,far (see Figure S1), by 

means of the lens equation and system magnification, ‘M’: 

𝑃′𝑛𝑒𝑎𝑟,𝑓𝑎𝑟 = (𝑖𝑛,𝑓 , 𝑦′𝑛,𝑓) 



Where: 𝑖𝑛,𝑓 =
𝑜𝑛,𝑓∗𝑓

(𝑜𝑛,𝑓−𝑓)
 , 𝑦′𝑛,𝑓 = 𝑀𝑛,𝑓 ∗ 𝑦𝑛,𝑓 , 𝑎𝑛𝑑 𝑀𝑛,𝑓 =

−𝑖𝑛,𝑓

𝑜𝑛,𝑓
=

−𝑓

(𝑜𝑛,𝑓−𝑓)
 

Substituting in the expressions for 𝑜𝑛,𝑓and 𝑦𝑛,𝑓 into P’near,far yields expressions for the endpoints 

of the image plane: 

𝑷′𝒏𝒆𝒂𝒓 = (𝑖𝑛, 𝑦′𝑛) = (
𝑜𝑛 ∗ 𝑓

(𝑜𝑛 − 𝑓)
,
𝑦𝑛 ∗ 𝑓

(𝑜𝑛 − 𝑓)
) =

(

 
 (𝑶𝟎 −

𝑳𝒐
𝟐 ) 𝒇

((𝑶𝟎 −
𝑳𝒐
𝟐 ) − 𝒇)

 ,
−
𝑫𝒐
𝟐 𝒇

((𝑶𝟎 −
𝑳𝒐
𝟐 ) − 𝒇)

)

 
 

 

𝑷′𝒇𝒂𝒓 = (𝑖𝑓 , 𝑦′𝑓) = (
𝑜𝑓 ∗ 𝑓

(𝑜𝑓 − 𝑓)
,
𝑦𝑓 ∗ 𝑓

(𝑜𝑓 − 𝑓)
) =

(

 
 (𝑶𝟎 +

𝑳𝒐
𝟐 ) ∗ 𝒇

((𝑶𝟎 +
𝑳𝒐
𝟐 ) − 𝒇)

 ,
−
𝑫𝒐
𝟐 ∗ 𝒇

((𝑶𝟎 +
𝑳𝒐
𝟐 ) − 𝒇)

)

 
 

 

From which expressions for the angle of the image plane with respect to the vertical axis, ‘θi’, 

intersection with the horizontal axis, ‘I0’, and image plane length ‘LI’ can be calculated: 

Image Plane Parameters: 

𝑰𝟎 =
𝑶𝟎∗𝒇

(𝑰𝟎−𝒇)
     

Equation S1 Intersection of image plane with optical axis measured from the focusing element (telescope’s 

lens/mirror), see Figure S1. This distance roughly defines the location of the detector with respect to the focusing 

element. 

𝐭𝐚𝐧𝜽𝒊 = −
𝑳𝒐
𝑫𝒐

𝒇

(𝑶𝟎 − 𝒇)
 

𝐭𝐚𝐧𝜽𝒊 = −
𝒇

𝐭𝐚𝐧𝜽𝒐 (𝑶𝟎 − 𝒇)
  

Equation S2 Angle of the image plane with respect to the vertical axis (i.e., the axis perpendicular to the optical 

axis). This angle defines the “off vertical tilt” of the detector (see Figure S1). 

𝑳𝑰 =
𝒇√(𝑳𝒐𝒇)𝟐 +𝑫𝒐

𝟐(𝑶𝟎 − 𝒇)𝟐

((𝑶𝟎 − 𝒇)𝟐 − (
𝑳𝒐
𝟐
)
𝟐
)

 

𝑳𝑰 =
𝒇𝑳𝒐√𝒇𝟐 + (𝐭𝐚𝐧𝜽𝒐)𝟐(𝑶𝟎 − 𝒇)𝟐

((𝑶𝟎 − 𝒇)𝟐 − (
𝑳𝒐
𝟐
)
𝟐
)

 

Equation S3 Length of the image plane as a function of Lo, θo, and O0. This defines the size of the detector (or 

translation range if using a single point detector like a fiber) needed to measure signals across a volume of length Lo 

with a laser that intersects the optical axis at O0 and at an angle of θo. LI is the distance between P’near and P’far. 



  



Derivations for 𝐭𝐚𝐧𝜽𝒊 and 𝑳𝑰 are given below: 

Let:  𝑋 = (𝑂0 − 𝑓) and Substitute 𝑜𝑛 = (𝑂0 −
𝐿𝑜
2
), 𝑜𝑓 = (𝑂0 +

𝐿𝑜
2
) into exp. for 𝑷′𝒏𝒆𝒂𝒓/𝒇𝒂𝒓 

Thus:  𝑖𝑛 = 𝑓
𝑜𝑛

(𝑂0−𝑓−
𝐿𝑜
2
)
= 𝑓

𝑜𝑛

(𝑋−
𝐿𝑜
2
)
, 𝑖𝑓 = 𝑓

𝑜𝑓

(𝑋+
𝐿𝑜
2
)
,   𝑦′

𝑛
= 𝑓

−
𝐷𝑜
2

(𝑋−
𝐿𝑜
2
)
,   𝑦′

𝑓
= 𝑓

𝐷𝑜
2

(𝑋+
𝐿𝑜
2
)
 

For tan 𝜃𝑖 =
𝑖𝑛−𝑖𝑓

𝑦′𝑛−𝑦
′
𝑓

 and 𝐿𝐼 = √(𝑖𝑛 − 𝑖𝑓)
2
+ (𝑦′

𝑛
− 𝑦′

𝑓
)
2

, find (𝒊𝒏 − 𝒊𝒇) and (𝒚′
𝒏
− 𝒚′

𝒇
) 

(𝒊𝒏 − 𝒊𝒇) =  
𝑓𝑜𝑛

(𝑋 − 𝐿𝑜
2
)
−

𝑓𝑜𝑓

(𝑋 + 𝐿𝑜
2
)
= 𝑓

𝑋(𝑜𝑛 − 𝑜𝑓) +
𝐿𝑜
2 (𝑜𝑛 + 𝑜𝑓)

(𝑋2 − (𝐿𝑜
2
)
2
)

 

(𝒚′
𝒏
− 𝒚′

𝒇
) =

−𝑓𝐷𝑜

2(𝑋 − 𝐿𝑜
2
)
−

𝑓𝐷𝑜

(𝑋 + 𝐿𝑜
2
)
=

−𝑓𝐷𝑜𝑋

(𝑋2 − (𝐿𝑜
2
)
2
)
 

Where: (𝑜𝑛 − 𝑜𝑓) = −𝐿𝑜 , (𝑜𝑛 + 𝑜𝑓) = 2𝑂0, 𝑋 = (𝑂0 − 𝑓) 

Thus (𝑖𝑛 − 𝑖𝑓) and (𝑦′
𝑛
− 𝑦′

𝑓
) simplify to:  

(𝒊𝒏 − 𝒊𝒇) =   
𝐿𝑜𝑓

2

((𝑂0 − 𝑓)2 − (
𝐿𝑜
2
)
2
)
=

𝒇

((𝑶𝟎 − 𝒇)𝟐 − (
𝑳𝒐
𝟐
)
𝟐
)
∗ (𝑳𝒐𝒇) 

(𝒚′
𝒏
− 𝒚′

𝒇
) =

−𝑓𝐷𝑜(𝑂0 − 𝑓)

((𝑂0 − 𝑓)2 − (
𝐿𝑜
2
)
2
)
=

𝒇

((𝑶𝟎 − 𝒇)𝟐 − (
𝑳𝒐
𝟐
)
𝟐
)
∗ (−𝑫𝒐(𝑶𝟎 − 𝒇)) 

Which yields:  

𝐭𝐚𝐧𝜽𝒊 =
𝑖𝑛 − 𝑖𝑓

𝑦′
𝑛
− 𝑦′

𝑓

= −
𝑳𝒐
𝑫𝒐

𝒇

(𝑶𝟎 − 𝒇)
 

𝑳𝑰 = √(𝑖𝑛 − 𝑖𝑓)
2
+ (𝑦′

𝑛
− 𝑦′

𝑓
)
2

=
𝒇√(𝑳𝒐𝒇)𝟐 +𝑫𝒐

𝟐(𝑶𝟎 − 𝒇)𝟐

((𝑶𝟎 − 𝒇)𝟐 − (
𝑳𝒐
𝟐
)
𝟐
)

 

 

  



Section 2: Mapping of points from the object plane to the image plane and the system 

spatial resolution as a function of the collection fiber core diameter and distance. 

 

 

Figure S2 Imaging a segment of the S-LIDAR excitation laser of length ‘r’ centered at a distance ‘O’ from the 

focusing element (blue double arrow) onto a collection fiber with a core diameter of ‘C’. Note that for the system 

described in this work, θo = 2.86°, thus the small angle approximation is used to equate the length of the laser 

segment with its projection along the ‘o’ axis.  

Note: figure dimensions exaggerated for clarity. 

 

Figure S3 Image plane detail. Rays originating from points defined by Of and On (see Figure S2 above) arrive at 

the image plane at points P’f = (if, Y’f) and P’n = (in, Y’n) and fall onto a fiber of diameter ‘C’, while point O (the 

center of the measurement) maps to a distance ‘Z’ along the image plane (measured from I0). 

Note: figure dimensions exaggerated for clarity. 

 



For an S-LIDAR system (Figure S2) with an excitation laser intersecting the optical axis at ‘O0’, 

at an angle of ‘θo’ with respect to the optical axis, and with a signal collection fiber with core 

diameter ‘C’ (or detector pixel size), each distance, ‘O’, along the ‘o’ axis maps to a point along 

image plane a distance ‘Z’ from the intersection with the optical axis. Also, not that each point 

‘O’ is measured with a spatial resolution of ‘r’ (between O ± r/2): 

Signal Collection Parameters: 

𝒁 =
±𝒇

(𝑶 − 𝒇)
√(𝑶 −

𝑶𝟎(𝑶 − 𝒇)

(𝑶𝟎 − 𝒇)
)

𝟐

+ (𝑶 − 𝑶𝟎)𝟐(𝐭𝐚𝐧𝜽𝒐)𝟐 

Where Z > 0 for O > O0 and Z < 0 for O < O0  

Equation S4 Position along the image plane, ‘Z’, which corresponds to the point ‘O’  (see Figure S2 and S3). 

𝒓 ≈ −
𝑪

𝒇 𝐭𝐚𝐧𝜽𝒐

(𝑶 − 𝒇)𝟐

(𝑶𝟎 − 𝒇)
 

Equation S5 Spatial resolution for measurement centered at point ‘O’, that is, the region of length ‘r’ centered 

around ‘O’ (i.e., between O+r/2 and O-r/2) from which a signal is collected (see Figure S2). See derivation for an 

exact expression. 

Where f = telescope focal length and O = distance to the measurement point along the optical 

axis from the focusing element (telescope’s mirror/lens). Note that ‘r’ is the region around the 

point ‘O’ for which the collection fiber (core diameter ‘C’) is collecting a signal. 

 

Figure S4 Plot of ‘Z’ (Blue) and ‘r’ (Red) versus position along the furnace tube relative to its center (specifically, 

O-O0). The tube end and center points are marked with ‘+’ (ends in Black and center in Red). While ‘Z’ and ‘r’ are 

not linear functions of ‘O’, fits are provided to demonstrate the fact that these values are approximately linear 

across the length of the furnace tube. 

  



Derivation for ′𝒁′ and ′𝒓′ is given below:  

For the previously described S-LIDAR system, the laser travels in the ‘+o’ direction (see 

Figure S2) along a line given by: 

Y =  tan 𝜃𝑜 (𝑂 − 𝑂0), tan 𝜃𝑜 = −
𝐷𝑜
𝐿𝑜

 

Where Do and Lo are the dimensions of the furnace tube described in Section 1. 

Each point along the laser beam, 𝑃 = (𝑂, tan 𝜃𝑜 (𝑂 − 𝑂0)), maps to a corresponding point 

along the image plane: 

𝑃′ = (
𝑂𝑓

(𝑂 − 𝑓)
, tan 𝜃𝑜 (𝑂 − 𝑂0)

−𝑓

(𝑂 − 𝑓)
) 

Shifting the origin of P’ from the center of the focusing element to the point (𝐼0, 0) yields a 

vector, ‘V’, pointing along the image plane: 

𝑉 = 𝑃′ − (𝐼0, 0) = (
𝑂𝑓

(𝑂 − 𝑓)
−

𝑂0𝑓

(𝑂0 − 𝑓)
, tan 𝜃𝑜 (𝑂 − 𝑂0)

−𝑓

(𝑂 − 𝑓)
) 

𝑉 = 𝑃′ − (𝐼0, 0) =
𝑓

(𝑂 − 𝑓)
(𝑂 −

𝑂0(𝑂 − 𝑓)

(𝑂0 − 𝑓)
,−(𝑂 − 𝑂0) tan 𝜃𝑜) 

Projecting this vector onto the image plane yields (see Figure S3):  

𝒁 =  ±|𝑽| =
±𝒇

(𝑶 − 𝒇)
√(𝑶 −

𝑶𝟎(𝑶 − 𝒇)

(𝑶𝟎 − 𝒇)
)

𝟐

+ (𝑶 − 𝑶𝟎)𝟐(𝐭𝐚𝐧𝜽𝒐)𝟐 

Where Z > 0 for O > O0 and Z < 0 for O < O0. 

For a fiber with core diameter ‘C’, its upper and lower edges can be represented as points 

along the image plane as: 

𝐶 = 𝑌′𝑛 − 𝑌
′
𝑓 

Where only the ‘Y’ projection is used due to the small size and orientation (i.e., the fiber face 

perpendicular to the ‘i’ axis, see Figure S3) of the fiber core.  

𝑌′𝑛 and 𝑌′𝑓 can be mapped to points along the laser, 𝑌𝑛 and 𝑌𝑓, using the lens equation and 

system magnification: 

𝐶 = 𝑌𝑛 ∗ 𝑀𝑛 − 𝑌𝑓 ∗ 𝑀𝑓 

𝑂′𝑓,𝑛 =
𝑂𝑓,𝑛𝑓

(𝑂𝑓,𝑛 − 𝑓)
, 𝑀𝑓,𝑛 =

−𝑓

(𝑂𝑓,𝑛 − 𝑓)
 



Where 𝑶𝒇,𝒏 =  𝑶 ± 𝒓

𝟐
 defines the region around the point ‘O’ from which the system is collecting 

a signal (see Figure S2 and S3). These points, 𝑃𝑓,𝑛 and 𝑃′𝑓,𝑛 are given by: 

𝑃𝑓,𝑛 = (𝑂𝑓,𝑛, 𝑌𝑓,𝑛) =  (𝑂 ±
𝑟

2
, tan 𝜃𝑜 (𝑂 ±

𝑟

2
− 𝑂0)) 

𝑃′𝑓,𝑛 = (𝑂′𝑓,𝑛, 𝑌′𝑓,𝑛) =  (
(𝑂 ± 𝑟

2
)𝑓

((𝑂 ± 𝑟
2
) − 𝑓)

,− tan 𝜃𝑜
((𝑂 ± 𝑟

2
) − 𝑂0) 𝑓

((𝑂 ± 𝑟
2
) − 𝑓)

) 

The expression for the fiber core diameter, 𝑪 =  𝒀′𝒏 − 𝒀
′
𝒇, becomes: 

𝐶 = −𝑓 ∗ tan 𝜃𝑜 ∗ [
(𝑂 − 𝑟

2
−  𝑂0) 

(𝑂 − 𝑟
2
− 𝑓)

−
( 𝑂 + 𝑟

2
− 𝑂0) 

(𝑂 + 𝑟
2
− 𝑓)

] 

Multiply both sides by (𝑂 − 𝑟

2
− 𝑓) ∗ (𝑂 + 𝑟

2
− 𝑓), let 𝐆 = 𝐭𝐚𝐧𝜽𝒐

(𝑶𝟎−𝒇)

𝑪
,  and simplify: 

(𝑂 − 𝑓)2 −
𝑟2

4
= 𝑓 ∗ (tan 𝜃𝑜 ∗

(𝑂0 − 𝑓)

𝐶
) ∗ 𝑟 

𝑟2

4
+ 𝑓𝐺𝑟 − (𝑂 − 𝑓)2 = 0 

Solving for ‘r’ yields: 

𝑟 = 2 ∗ (−𝑓𝐺 ± √(𝑓𝐺)2 + (𝑂 − 𝑓)2) 

𝒓 = 𝟐𝒇𝑮(−𝟏 + √𝟏 + (
(𝑶 − 𝒇)

(𝒇𝑮)
)

𝟐

) 

For (
(𝑶−𝒇)

(𝒇𝑮)
)
𝟐

≪ 𝟏, ‘r’ becomes: 

𝒓 ≈
(𝑶 − 𝒇)𝟐

(𝒇𝑮)
 

𝒓 ≈
𝑪

𝒇 𝐭𝐚𝐧𝜽𝒐

(𝑶 − 𝒇)𝟐

(𝑶𝟎 − 𝒇)
 

 

The exact expression is: 

𝑟 = 2𝑓 tan 𝜃𝑜
(𝑂0 − 𝑓)

𝐶

(

 
 
−1 + √1 + (

(𝑂 − 𝑓)

(𝑓 tan 𝜃𝑜
(𝑂0 − 𝑓)

𝐶
)
)

2

)

 
 

 


