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Abstract: The underwater imaging process is often hindered by high noise levels, blurring, and
color distortion due to light scattering, absorption, and suspended particles in the water. To ad-
dress the challenges of image enhancement in complex underwater environments, this paper pro-
poses an underwater image color correction and detail enhancement model based on an improved
Cycle-consistent Generative Adversarial Network (CycleGAN), named LPIPS-MAFA CycleGAN
(LM-CycleGAN). The model integrates a Multi-scale Adaptive Fusion Attention (MAFA) mechanism
into the generator architecture to enhance its ability to perceive image details. At the same time, the
Learned Perceptual Image Patch Similarity (LPIPS) is introduced into the loss function to make the
training process more focused on the structural information of the image. Experiments conducted on
the public datasets UIEB and EUVP demonstrate that LM-CycleGAN achieves significant improve-
ments in Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), Average Gradient
(AG), Underwater Color Image Quality Evaluation (UCIQE), and Underwater Image Quality Measure
(UIQM). Moreover, the model excels in color correction and fidelity, successfully avoiding issues such
as red checkerboard artifacts and blurred edge details commonly observed in reconstructed images
generated by traditional CycleGAN approaches.

Keywords: underwater image enhancement; cycle-consistent generative adversarial networks;
multi-scale adaptive fusion attention; learned perceptual image patch similarity

1. Introduction

Underwater imaging plays a crucial role across various fields, including marine
ecology research, underwater archaeology, underwater engineering, and marine resource
exploration [1–4]. However, underwater images often degrade during acquisition and
transmission due to multiple factors [5]. For instance, the optical properties of water and
suspended particles can cause light scattering and absorption, reducing contrast and color
accuracy in underwater images. Additionally, unstable conditions such as water currents
and waves can affect the stability of image acquisition, further complicating underwater
imaging. Therefore, Underwater Image Enhancement (UIE) is particularly important.

In recent years, traditional and deep learning-based methods have made significant
advancements in the field of UIE. However, these methods still exhibit certain limitations
when faced with complex underwater environments. On the one hand, physical model-
based UIE methods may struggle to obtain sufficient prior information in challenging
environments, leading to issues such as color distortion or overcompensation. On the
other hand, non-physical model-based methods often rely on fixed parameter settings
or heuristic rules, which tend to demonstrate poor generalization capabilities. Although
deep learning-based methods have partially addressed these issues, they either fall short in
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precise feature extraction, suffer from inadequate generalization performance, or typically
require a substantial amount of labeled data for training. Therefore, the development of a
UIE method that possesses strong generalization capabilities, high robustness, and efficient
real-time performance is particularly critical. To this end, this paper proposes a novel
model, LM-CycleGAN, with strong adaptability and superior enhancement. Specifically,
a Multi-scale Adaptive Fusion Attention (MAFA) mechanism is designed and integrated
into the generator, enhancing the generator’s ability to perceive detailed image features.
Additionally, the Learned Perceptual Image Patch Similarity (LPIPS) [6] is incorporated
into the loss function, effectively introducing deep structural information about the image
into the model’s training process. In summary, the main contributions of this study can be
outlined as follows:

A Multi-scale Adaptive Fusion Attention Mechanism was designed, enabling multi-
scale adaptive fusion across different heads in multi-head attention, significantly enhancing
the generator’s capability to extract detailed image features.

The computation of LPIPS was optimized and integrated into the loss function of
CycleGAN, improving the model’s ability to assess the similarity between two images and
enhancing the quality of image reconstruction results.

The proposed LM-CycleGAN model demonstrated superior performance on the
UIEB [7], EUVP [8], and RUIE [9] datasets, validating its effectiveness in the field of UIE.

2. Related Work

Depending on the realization principle, underwater image enhancement methods can
be mainly classified into two main categories: traditional methods and deep learning-based
methods. Among them, the traditional methods are further categorized into physical
model-based methods and non-physical model-based methods.

2.1. Physical Model-Based Methods

Physical model-based methods construct models by considering image degradation
factors in specific environments, thereby reversing or compensating for degradation effects
and improving image quality [10–12]. For instance, Liu et al. [11] developed a method
for nighttime foggy images using a nonlinear and variational Retinex model to estimate
illumination and reflectance, effectively removing haze and improving image quality.
He et al. [12] introduced the Dark Channel Prior (DCP) algorithm, which clears haze by
analyzing dark channel information, enhancing image clarity. Inspired by the successful
application of the DCP in removing the “fog” effect from images, several studies [13–15]
have applied similar principles to UIE. Chiang et al. [14] achieved color enhancement of
underwater images by compensating for color channels through a model that accounts
for the attenuation of light energy with depth. Similarly, the Underwater Dark Channel
Prior (UDCP) algorithm [15] enhances underwater images by ignoring the red channel
and relying on information from the blue-green channels. Although physical model-based
UIE methods have achieved some success in improving degraded image quality, they
tend to exhibit weak generalization performance when dealing with complex and variable
underwater environments.

2.2. Non-Physical Model-Based Methods

Unlike physical model-based methods, non-physical model-based methods typically
enhance underwater images by directly adjusting pixel values. For example, Garg et al. [16]
applied the Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm to
enhance underwater images. Hu et al. [17] adopted an adaptive color correction method,
the CLAHE algorithm, and multi-scale brightness fusion technology to enhance the de-
tails and contrast of images. Iqbal et al. introduced the UCM algorithm [18], which first
enhances colors in the RGB color space and then adjusts contrast in the HSV color space
to achieve image color correction and enhancement. However, methods relying on fixed
parameters or heuristic rules often introduce issues such as overcompensation, color distor-
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tion, or insufficient detail processing in image reconstruction. Therefore, more adaptive
and intelligent algorithms are needed to meet the challenges of UIE.

2.3. Deep Learning-Based Methods

With the rapid development of deep learning technologies, the field of image enhance-
ment has seen new opportunities. Deep learning models, through large-scale training
data, can learn deep features and structural information of images, making them more
adaptive and robust in handling complex and dynamic environments. Among them, image
enhancement techniques based on Convolutional Neural Networks (CNNs) and Generative
Adversarial Networks (GANs) [19] have demonstrated outstanding performance in various
image-processing tasks. Among CNN-based image enhancement applications, Li et al. [20]
proposed a CNN-based image enhancement model, named UWCNN, which utilizes a
synthetic database for training and improves the visibility of underwater images through
an end-to-end data-driven mechanism. Saleh et al. [21] introduced an unsupervised UIE
framework (UDnet), which employs a conditional variational autoencoder combined with
probability-adaptive instance normalization and a statistically guided multi-color space
stretching method to generate realistic underwater images. On the other hand, in the appli-
cation of image enhancement using GAN as well as Cycle Consistent Generative Adversar-
ial Networks [22] (CycleGAN). Li et al. [23] developed an enhancement model based on
CycleGAN (SSIMCycleGAN). This model calculates the Structural Similarity Index (SSIM)
between degraded and generated images and integrates it into the loss function, thereby
improving the contrast of the generated images. Another model, SESSCycleGAN [24]
employs the Nobuyuki Otsu method (OTSU) [25] to extract edge images from both the
degraded image and generated high-quality underwater images and constrains the model
by calculating the L1 distance between the two edge images. In addition, Bakht et al. [26]
integrate multi-level attention mechanisms within the GAN architecture (MuLAGAN),
enhancing the model’s ability to capture the details of underwater images. Cong et al. [27]
proposed a physics model-guided GAN model (PUGAN) that adopts a dual-discriminator
scheme to generate images that are both realistic and visually comfortable.

3. Materials and Methods
3.1. Architecture of LM-CycleGAN

As illustrated in Figure 1, the LM-CycleGAN model consists of two sets of genera-
tors and discriminators. Generators G and F share the same network architecture as the
discriminators DX and DY. Specifically, generator G transforms input images from the
source domain X to the target domain Y, while generator F maps images from Y back
to source domain X. In the discriminator module, DX and DY are used to distinguish
between real and generated images in domains X and Y, respectively. During the training
process, a degraded image x is processed by generator G to produce a high-quality image
ŷ. This image ŷ is then combined with a randomly sampled real image y from the domain
Y and fed into discriminator DY for real-fake discrimination, generating the GAN Loss
based on the discriminator’s output. The objective of the generator G is to maximize this
loss, while the discriminator aims to minimize it. This adversarial training encourages the
generator to produce images that closely resemble real images. Subsequently, ŷ is passed
through generator F to reconstruct the underwater degraded image x̂. This reconstructed
image is compared to the original x to compute the consistency loss. This process can be
analogized to text translation tasks: Translate a sentence from Chinese to French, then
back to Chinese. Compare the original sentence with the retranslated version to identify
any differences. Enhance the performance of the translation system by minimizing these
differences. Additionally, the literature [22] indicates that employing cycle consistency loss
effectively mitigates the “mode collapse” problem, where the generator produces the same
image no matter what the input image is.
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To enhance the model’s ability to capture and restore image details, this study inte-
grates the MAFA module into CycleGAN’s generator. Additionally, to ensure consistency
between the reconstructed and original images, the LPIPS–Cycle Loss is employed. The
LPIPS–Cycle Loss ensures that the reconstructed images x̂ = F(G(x)) and ŷ = G(F(y))
are as consistent as possible with the original input images x and y, respectively. By
incorporating the LPIPS Loss, the model captures semantic similarities between images
more effectively, compensating for the limitations of traditional L1 loss in capturing
high-level visual information, thus significantly improving the perceptual quality of the
generated images.

3.2. Generator Structure Based on MAFA

As illustrated in Figure 2, this study adopts the generator network architecture pro-
posed by Johnson et al. [28], which consists of three convolutional layers, six residual blocks,
three transposed convolutional layers, two ReflectionPad layers, and a convolutional layer
that maps features to RGB. A key distinction of our approach is the incorporation of the ef-
ficient and robust feature extraction module MAFA into the backbone of the generator. The
MAFA mechanism facilitates the adaptive fusion of multi-scale features, thereby effectively
capturing details at various levels. This capability is particularly important for enhancing
edge details in blurred underwater images.

Building upon the Multi-Scale Dilated Attention mechanism (MSDA) [29], this paper
introduces a novel Multi-scale Adaptive Fusion Attention mechanism (MAFA). Specifically,
the mechanism first utilizes depthwise separable convolutions (DepConv) to transform the
input feature maps, generating Query (Q), Key (K), and Value (V) feature maps. There-
after, these feature maps are divided into different “heads” along the channel dimension.
Each “head” employs the ‘nn.Unfold’ operation from PyTorch to perform sliding window
attention at varying dilation rates, thus capturing local information at multiple scales.
Additionally, each “head” is assigned a learnable weight vector. Following independent
attention computations for each head, the output feature maps are weighted by their respec-
tive weight vectors. Finally, all weighted feature maps are aggregated along the channel
dimension to form a comprehensive feature map. The design of the MAFA mechanism
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enables the model to dynamically adjust the importance of each head during training, effec-
tively facilitating the adaptive fusion of features across different scales. Figure 3 illustrates
the specific structure of the MAFA module.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 2. The network structure of the LM-CycleGAN generator, where the MLP is the Multi-
Layer Perceptron, “n*nConv” denotes an operation that involves processing with a single convolu-
tional kernel, and “⊕” denotes element-wise addition. 

Building upon the Multi-Scale Dilated Attention mechanism (MSDA) [29], this pa-
per introduces a novel Multi-scale Adaptive Fusion Attention mechanism (MAFA). Spe-
cifically, the mechanism first utilizes depthwise separable convolutions (DepConv) to 
transform the input feature maps, generating Query (Q), Key (K), and Value (V) feature 
maps. Thereafter, these feature maps are divided into different “heads” along the chan-
nel dimension. Each “head” employs the `nn.Unfold` operation from PyTorch to per-
form sliding window attention at varying dilation rates, thus capturing local information 
at multiple scales. Additionally, each “head” is assigned a learnable weight vector. Fol-
lowing independent attention computations for each head, the output feature maps are 
weighted by their respective weight vectors. Finally, all weighted feature maps are ag-
gregated along the channel dimension to form a comprehensive feature map. The design 
of the MAFA mechanism enables the model to dynamically adjust the importance of 
each head during training, effectively facilitating the adaptive fusion of features across 
different scales. Figure 3 illustrates the specific structure of the MAFA module. 

 
Figure 3. Network structure of Multi-scale Adaptive Fusion Attention (MAFA), where the dilation 
rates are set to [1–4], and the number of ‘heads’ is set to 8. 

3.3. Discriminator Network Structure 
The network architecture of the LM-CycleGAN discriminator adopts the PatchGAN 

[30] structure, which is a fully convolutional network. Unlike traditional GAN discrimi-
nators that map the entire input image to a single probability value to determine wheth-

Figure 2. The network structure of the LM-CycleGAN generator, where the MLP is the Multi-Layer
Perceptron, “n*nConv” denotes an operation that involves processing with a single convolutional
kernel, and “⊕” denotes element-wise addition.
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rates are set to [1–4], and the number of ‘heads’ is set to 8.

3.3. Discriminator Network Structure

The network architecture of the LM-CycleGAN discriminator adopts the Patch-
GAN [30] structure, which is a fully convolutional network. Unlike traditional GAN
discriminators that map the entire input image to a single probability value to determine
whether it is real, PatchGAN employs a more localized and detailed evaluation strategy.
It processes the input image through a fully convolutional network, ultimately produc-
ing an N × N feature map, where each element corresponds to a small patch of the input
image. The value of each element reflects the likelihood that the corresponding patch
belongs to a real image. This approach enables PatchGAN to track and quantify the
realism of specific regions in the image, influencing the overall discrimination decision.
The architecture of the LM-CycleGAN discriminator network, as shown in Figure 4,
comprises five convolutional layers.
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3.4. Loss Function

In LM-CycleGAN, the design of adversarial loss (GAN Loss) and cycle consistency
loss (Cycle Loss) is consistent with the loss functions presented in CycleGAN [22]. To
further enhance the model’s performance, structural consistency loss (LPIPS Loss) has also
been introduced in this study to improve the perceptual quality and detail preservation of
the generated images.

(1) GAN Loss

The GAN Loss consists of two parts: the forward process, which generates a high-
quality image from a low-quality underwater image, and the reverse process, which
generates a low-quality image from a real high-quality underwater image. The formula for
the GAN Loss is given in Equation (1):

GANLoss = LGAN(G, DY, X, Y) + LGAN(F, DX , Y, X) (1)

For the forward process, the GAN Loss function is expressed as

LGAN(G, DY, X, Y) == Ey∼Pdata(Y)

[(
DY(y)− 1)2

]
+ Ex∼Pdata(X)

[
DY

(
G(x))2

]
(2)

For the inverse process, the adversarial loss function is expressed as

(F, DX , Y, X) == Ex∼Pdata(X)

[(
DX(x)− 1)2

]
+ Ey∼Pdata(Y)

[
DX

(
F(y))2

]
(3)

(2) Cycle Loss

The Cycle Loss is designed to ensure that the image is successfully returned to the
original domain after being transformed through the two generators, thus ensuring the
stability and accuracy of the generated image. The loss function for this part is denoted as:

Lcyc(G, F) = Ex∼Pdata(x)
[∥F(G(x))− x∥1] + Ey∼Pdata(y)

[∥G(F(y))− y∥1] (4)

where ∥·∥1 denotes the L1 norm, which is used to calculate the pixel-by-pixel difference
between two images.

(3) LPIPS Loss

In CycleGAN, the Cycle Loss calculates the similarity between two images using the
L1 distance, which computes pixel-wise differences without accounting for the structural
information between the images. To address this limitation, SESS-CycleGAN introduces
edge constraints during the generation process from the source domain to the target domain.
This approach utilizes the OTSU algorithm to obtain the edge images of both the original
and generated images with the expectation of minimizing the L1 distance between them.
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The edge images corresponding to both the original and generated images are shown in
Figure 5.
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By adopting this strategy, structural information can be integrated into the CycleGAN
loss function, ensuring it does not negatively impact color correction. However, the OTSU
algorithm is sensitive to image noise, and its performance may be affected when there is a
significant size disparity between the target and background or when dealing with multi-
target underwater images. For instance, in Figure 5b,d, the edges of the fish blend with
those of other elements, such as coral, leading to information loss. Since the presence of fish
and vegetation is common in underwater tasks, the current method still faces limitations
when handling complex scenes. To more effectively incorporate structural information into
the training process of CycleGAN, this paper integrates LPIPS into the loss function. The
architecture of LPIPS is shown in Figure 6.
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The computation steps for the LPIPS [6] metric are as follows: First, the two images
to be compared are passed through a pre-trained feature extraction network (such as
AlexNet [31], SqueezeNet [32], or VGG [33]) to obtain feature representations. Then, the
feature maps output by each layer are normalized along the channel dimension, with the
normalized feature maps denoted as x∗i and F(G(x))∗i , respectively. Next, the feature map
is scaled using a specific weight layer. Following this, the Frobenius norm between the
scaled feature maps is computed and averaged over the spatial dimensions. Finally, the
Frobenius norms from all layers are summed to provide a similarity score, where smaller
values indicate higher similarity. This process can be expressed by the following equation:

LPIPS(x, F(G(x))) = ∑i
1

HiWi

∥∥ωi ⊙
(

x∗i − F(G(x))∗i
)∥∥

F (5)

Here, Hi and Wi represent the corresponding width and height of the i-th layer
feature map, ωi represents the corresponding specific weight layer of the i-th layer, and
⊙ multiplies each feature map by the corresponding ωi. When denoting a matrix as A ϵ

Rm×n, the formula for calculating the Frobenius norm is as follows:

∥A∥F =

√
∑m

i=1 ∑n
j=1

∣∣aij
∣∣2 (6)

In this paper, AlexNet is selected as the feature extraction network. During the forward
pass of CycleGAN, the original image x and the generated image F(G(x)) are input into the
LPIPS network for similarity computation, with the generators G and F aiming to minimize
Equation (5). This strategy introduces structural information during the model training
process, further enhancing the performance of UIE. The loss function for this component is
expressed as follows:

Llpips(G, F) = LPIPS(x, F(G(x))) + LPIPS(y, G(F(y))) (7)

(4) Total loss function of LM-CycleGAN

In summary, the total loss function of LM-CycleGAN is expressed as

L(G, F, DX , DY) = LGAN(G, DY, X, Y) + LGAN(F, DX , Y, X) + αLcyc(G, F) + βLlpips(G, F) (8)

where ‘α’ and ‘β’ represent the weight factors of Cycle Loss and LPIPS Loss, respectively.
These factors are determined through hyperparameter tuning. In this paper, ‘α’ is set to 10,
and ‘β’ is set to 5.

4. Experimental Results and Analysis

To comprehensively evaluate the proposed image enhancement model from multiple
perspectives, Sections 4.4 and 4.5 of this paper present a comparative analysis between LM-
CycleGAN and other UIE algorithms, including traditional algorithms such as UDCP [15],
CLAHE [16], and UCM [18], as well as deep learning-based methods such as UWCNN [20],
UDnet [21], CycleGAN [22], SSIM-CycleGAN [23], SESS-CycleGAN [24], MuLA-GAN [26],
and PUGAN [27]. In addition, the ablation study and real-time performance analysis are
conducted in Sections 4.6 and 4.7, respectively.

4.1. Dataset Introduction

The UIEB dataset consists of 890 paired images divided into 800 training pairs and
90 test pairs. The EUVP test set consists of 100 paired images randomly selected from the
EUVP-515 dataset. The RUIE test set consists of 90 challenging, no-reference, underwater
degraded images characterized by images with blue, green, and blue-green casts. For a fair
comparison, all models were trained on the UIEB dataset and tested on the UIEB, EUVP,
and RUIE datasets (see Figure 7).
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4.2. Experimental Settings

The experiments were conducted in a Windows 11 environment using a server manu-
factured by VirtAITech (Shanghai, China), which is equipped with an NVIDIA GeForce
RTX 4090 GPU with 24 GB of VRAM. The deep learning framework employed was PyTorch
2.1.0, along with Python 3.9, PyCharm 2023, and CUDA version 11.8. The network was
trained for 300 epochs on the UIEBD datasets, with a batch size of 1. The Adam optimizer
was utilized, with an initial learning rate of 0.0002 and an exponential decay rate that
reduced the learning rate to 0 after 150 epochs.

4.3. Evaluation Indicators

In the evaluation process, five commonly used metrics in UIE were employed to
assess the quality of underwater reconstructed images: the Underwater Color Image
Quality Evaluation (UCIQE) [34], the Underwater Image Quality Measurement (UIQM) [35],
the Structural Similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR), and
Average Gradient (AG).

UCIQE is a linear combination of chroma, contrast, and saturation values. UIQM
is a linear combination of underwater image colorfulness measure, underwater image
sharpness measure, and underwater image contrast measure. Higher scores for both
UCIQE and UIQM indicate better performance in these aspects. SSIM quantifies the
similarity between two images in terms of luminance, contrast, and structural information,
with higher SSIM values indicating greater similarity. PSNR measures the ratio between the
peak signal power and the noise power. Higher PSNR values indicate less image distortion
and better quality. AG is calculated based on the mean gradient of an image. Higher AG
values represent images with sharper edges and finer details.

Among these metrics, SSIM and PSNR are full-reference measures, requiring a com-
parison between the generated high-quality underwater image and the corresponding
ground-truth image. In contrast, UCIQE, UIQM, and AG are no-reference metrics, which
can be directly calculated from the images without the need for external reference images.

4.4. Visual Comparison with Other Methods

Different UIE algorithms were evaluated on the UIEB, EUVP, and RUIE test sets, with
the results presented in Figures 8–10, respectively.
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From Figures 8–10, the UDCP, CLAHE, and UCM algorithms enhance image contrast
to some extent. However, their performance in color correction is not particularly impres-
sive. The processed images still display significant color distortion and fail to effectively
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eliminate the “haze”. In contrast, GAN-based algorithms excel in color correction, accu-
rately matching the color distributions of the target images. Nevertheless, images enhanced
by CycleGAN exhibit localized red checkerboard artifacts and blurred edge details, which
may be attributed to the limited ability of the CycleGAN generator to extract detailed
features from images. Images processed by SSIM-CycleGAN tend to be darker, likely due
to its requirement for consistency in SSIM metrics (brightness, contrast, and structural
information) between the original and generated images while overlooking the inherent
brightness differences that exist between them, resulting in unintended negative effects.
The SESS-CycleGAN, MuLA-GAN, PUGAN, and the method proposed in this paper all
achieve satisfactory results on the UIEB and EUVP datasets, with only slight differences in
color distribution at the subjective visual level. Notably, on the challenging no-reference
RUIE dataset, the images generated by our proposed method exhibit higher contrast and
improved clarity. This indicates that our model demonstrates exceptional capability in
capturing image details and possesses stronger generalization performance.

4.5. Objective Comparison with Other Methods

Tables 1–3 present the performance metrics of various UIE methods on the UIEB,
EUVP, and RUIE datasets, respectively. Values in bold indicate the best performance, and
values underlined indicate the second-best performance.

Table 1. Performance comparison of various algorithms on the UIEB dataset (↑ indicates that higher
values are more desirable).

Model/Method UCIQE ↑ UIQM ↑ SSIM ↑ PSNR ↑ AG ↑
UDCP 0.5230 1.3371 0.6439 28.2402 9.8035

CLAHE 0.4429 1.0293 0.7190 28.2846 10.5692
UCM 0.4927 1.0138 0.7177 28.6008 10.9695

UWCNN 0.3707 0.5164 0.7066 28.0678 6.7591
UDnet 0.3554 0.4492 0.7665 28.1062 7.5259

CycleGAN 0.4504 0.7244 0.7554 28.2691 11.1365
SSIM-CycleGAN 0.4618 0.8319 0.7717 28.9576 11.3564
SESS-CycleGAN 0.4608 0.8330 0.7593 28.8892 11.3594

MuLA-GAN 0.4542 0.8325 0.7759 28.8459 10.0260
PUGAN 0.4628 0.7921 0.7714 28.9979 9.2452

ours 0.4842 0.8936 0.7933 29.2120 11.6876

Table 2. Performance comparison of various algorithms on the EUVP dataset (↑ indicates that higher
values are more desirable).

Model/Method UCIQE ↑ UIQM ↑ SSIM ↑ PSNR ↑ AG ↑
UDCP 0.5204 1.1924 0.5799 28.0624 7.3796

CLAHE 0.4597 1.0586 0.7295 28.3214 8.3591
UCM 0.4745 0.9554 0.7573 28.6456 8.6528

UWCNN 0.3958 0.5329 0.7437 28.0347 6.0778
UDnet 0.3649 0.4618 0.7535 28.1286 6.0875

CycleGAN 0.4457 0.7643 0.7635 28.2800 9.0708
SSIM-CycleGAN 0.4482 0.7989 0.7771 28.4973 9.5739
SESS-CycleGAN 0.4454 0.7775 0.7747 28.6656 9.4611

MuLA-GAN 0.4571 0.7819 0.7730 28.4388 9.9494
PUGAN 0.4495 0.8178 0.7647 28.8436 9.0193

ours 0.4669 0.8358 0.7883 29.1524 10.7343

By analyzing the experimental data shown in Tables 1–3, the proposed LM-CycleGAN
algorithm achieved the best scores in SSIM, PSNR, and AG metrics. This suggests that the
algorithm can not only accurately restore the details of target images, and reduce image
distortion and noise, but also enhance visual quality, improving clarity and contrast. In
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the UCIQE and UIQM metrics, the UDCP algorithm achieved the optimal value, while
the CLAHE algorithm and the UCM algorithm achieved the sub-optimal value. When
considering the subjective visual representations provided in Section 4.4, conclusions
similar to those found in the literature [9], ref. [36] can be drawn. Given that the UCIQE and
UIQM metrics primarily focus on linear combinations of low-level features such as contrast
and saturation, they neglect higher-level semantic information or prior knowledge related
to human visual perception. Additionally, these measures do not evaluate whether the
intensity values of the entire image fall within a reasonable range. Consequently, although
the UDCP, CLAHE, and UCM algorithms score higher in UCIQE and UIQM values, there is
still a significant gap between the image quality produced by these algorithms and human
visual perception. Notably, compared to deep learning-based methods, the proposed
LM-CycleGAN algorithm not only achieved optimal values in these two metrics but also
generated images that better align with human visual perception.

Table 3. Performance comparison of various algorithms on the RUIE dataset (↑ indicates that higher
values are more desirable).

Model/Method UCIQE ↑ UIQM ↑ AG ↑
UDCP 0.4227 0.9736 6.1208

CLAHE 0.3409 0.4619 7.8120
UCM 0.3932 0.7004 8.6002

UWCNN 0.3707 0.5164 6.7591
UDnet 0.3275 0.3614 4.5951

CycleGAN 0.3618 0.5765 7.8345
SSIM-CycleGAN 0.3638 0.6150 8.2624
SESS-CycleGAN 0.3627 0.6209 8.4896

MuLA-GAN 0.3688 0.6394 8.3231
PUGAN 0.3715 0.6288 8.7618

ours 0.3890 0.6569 8.9634

4.6. Ablation Experiment

A series of ablation experiments were conducted to evaluate the effectiveness of the
components in the proposed LM-CycleGAN model. Table 4 presents the performance
comparison between the traditional CycleGAN model and the models augmented with
different improvement modules. These improvement models include the CycleGAN
model integrating the MSDA mechanism into the generator structure (hereafter referred
to as MSDA), the CycleGAN model embedding the MAFA mechanism into the generator
structure (hereafter referred to as MAFA), the CycleGAN model incorporating LPIPS Loss
(hereafter referred to as LPIPS), the CycleGAN model with the joint MSDA mechanism and
LPIPS Loss (hereafter referred to as MSDA + LPIPS), and the CycleGAN model with the
joint MAFA mechanism and LPIPS Loss (the proposed methods).

Table 4. Performance evaluation of CycleGAN models with various improvements on UIEB (↑
indicates that higher values are more desirable and “

√
” indicates that the corresponding module has

been added to CycleGAN).

Experiments MSDA MAFA LPIPS UCIQE ↑ UIQM ↑ SSIM ↑ PSNR ↑ AG ↑
T1 — — — 0.4504 0.7244 0.7554 28.2691 11.1365
T2

√
— — 0.4534 0.7708 0.7661 28.6008 11.3141

T3 —
√

— 0.4587 0.8491 0.7765 29.0604 11.4885
T4 — —

√
0.4629 0.8501 0.7839 28.9574 11.4448

T5
√

—
√

0.4784 0.8763 0.7896 29.9013 11.5635
T6 —

√ √
0.4842 0.8936 0.7933 29.2120 11.6876

Table 4 shows that compared to the control group (T1), groups T2, T3, and T4 exhibit
significant improvements across all five key performance metrics. This indicates that intro-
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ducing the MSDA mechanism, MAFA mechanism, and LPIPS Loss effectively suppresses
noise while revealing richer and more intricate texture details. Furthermore, the compari-
son between groups T2 and T3 demonstrates the effectiveness of the multi-scale feature
adaptive fusion strategy. The results for groups T5 and T6 indicate that the combined
model of MAFA and LPIPS outperforms the combined model of MSDA and LPIPS, further
underscoring the superiority of the MAFA mechanism. Overall, the LM-CycleGAN model
that integrates MAFA and LPIPS strategies (group T6) consistently outperforms the other
models across all five evaluation metrics.

Figure 11 demonstrates the image enhancement effects of various improvement models
on the UIEB dataset. Traditional CycleGAN-reconstructed images exhibit significant red
checkerboard artifacts and blurred edge details. Images processed with MSDA have
partially eliminated the red artifact but still exhibit color bias, localized detail blur, and
slight grid effects. In contrast, images processed with MAFA have more realistic colors but
still exhibit issues with localized detail blur. Images processed with LPIPS demonstrate
clearer edge details, although they still present some color bias. The model that unites
MAFA and LPIPS has made improvements in addressing localized detail blur but still has
room for enhancement in color correction. Notably, the LM-CycleGAN model achieved the
desired effects: images processed by it not only eliminated the red checkerboard artifacts
and enhanced the clarity of texture details in the reconstructed underwater images but also
maintained color accuracy.
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4.7. Real-Time Analysis and Discussion

Given that UIE techniques are typically deployed on resource-constrained devices,
this section will examine and analyze the real-time performance of 11 UIE methods. To
better simulate the real-world effects of deploying UIE technologies on such devices, we
chose the relatively low-performance NVIDIA GeForce MX130 GPU for this experiment. In
this analysis, three key performance indicators are considered: parameters, FLOPs, and
FPS. Parameters refer to the number of trainable variables in a model, FLOPs (Floating
Point Operations Per Second) indicate the computational complexity of a model, and FPS
(Frames Per Second) measures the number of frames processed in one second, reflecting
the real-time performance of an image processing method.



Sensors 2024, 24, 7425 14 of 16

Through the analysis of Table 5, traditional UIE algorithms exhibit fast processing
speeds (FPSs) due to their direct application of fixed rules or mathematical formulas for
image processing. Among deep learning methods, although UWCNN has the smallest
network size, its real-time performance is compromised as it requires physical models to
generate additional images. MuLA-GAN achieves the highest FPS with fewer parameters
and lower computational complexity. In contrast, the method proposed in this paper
achieves an FPS of 94.3. Although this is not the optimal performance, it is sufficient to
meet the real-time requirements for underwater operations.

Table 5. Real-time performance analysis of 11 underwater image enhancement methods (↑ indicates
that higher values are more desirable, while ↓ is the opposite).

Model/Method Params (M) ↓ FLOPs (G) ↓ FPS (Hz) ↑
UDCP — — 142.3

CLAHE — — 154.2
UCM — — 128.4

UWCNN 1.1 3.08 42.3
UDnet 16.1 96.3 54.3

CycleGAN 11.4 58.2 99.2
SSIM-CycleGAN 13.6 63.3 89.4
SESS-CycleGAN 13.1 62.7 90.9

MuLA-GAN 17.3 30.2 117.8
PUGAN 95.7 72.5 62.5

ours 12.6 60.1 94.3

5. Conclusions

This paper proposes an advanced UIE method, LM-CycleGAN, which has achieved
excellent experimental results on publicly available UIEB, EUVP, and RUIE datasets. By
applying the multi-scale feature adaptive fusion strategy, LM-CycleGAN can effectively
capture important detail features in underwater images, thereby enhancing the model’s
adaptability in diverse environments. Additionally, by introducing LPIPS Loss, the
model pays more attention to structural consistency during the reconstruction process,
which further enhances the ability to recover details in complex underwater images.
However, the model performs poorly when handling high-saturation blue and green
images, which are very common in underwater environments. A possible reason for
this limitation is the insufficient number of such samples in the training dataset, which
restricts the model’s generalization ability in these scenarios, leading to issues such as
color bias and detail loss. Future research will further explore directions such as dataset
augmentation and model lightweight to provide more robust and efficient solutions for
underwater image enhancement.

Author Contributions: Conceptualization, J.W. and G.Z.; methodology, J.W.; software, J.W.; vali-
dation, J.W. and Y.F.; formal analysis, J.W.; investigation, J.W.; resources, G.Z.; data curation, J.W.;
writing—original draft preparation, J.W.; writing—review and editing, G.Z.; visualization, J.W. and
Y.F.; supervision, G.Z. and Y.F.; project administration, G.Z.; funding acquisition, G.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Yunnan Provincial Major Science and Technology Project
(Research on the blockchain-based agricultural product traceability system and demonstration of
platform construction; Project No. 202102AD080002).

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.



Sensors 2024, 24, 7425 15 of 16

References
1. Li, J.; Xu, W.; Deng, L.; Xiao, Y.; Han, Z.; Zheng, H. Deep learning for visual recognition and detection of aquatic animals: A

review. Rev. Aquac. 2023, 15, 409–433. [CrossRef]
2. Guyot, A.; Lennon, M.; Thomas, N.; Gueguen, S.; Petit, T.; Lorho, T.; Cassen, S.; Hubert-Moy, L. Airborne Hyperspectral Imaging

for Submerged Archaeological Mapping in Shallow Water Environments. Remote Sens. 2019, 11, 2237. [CrossRef]
3. Lee, D.; Kim, G.; Kim, D.; Myung, H.; Choi, H.-T. Vision-based object detection and tracking for autonomous navigation of

underwater robots. Ocean Eng. 2012, 48, 59–68. [CrossRef]
4. Bell, K.L.; Chow, J.S.; Hope, A.; Quinzin, M.C.; Cantner, K.A.; Amon, D.J.; Cramp, J.E.; Rotjan, R.D.; Kamalu, L.; de Vos, A.;

et al. Low-cost, deep-sea imaging and analysis tools for deep-sea exploration: A collaborative design study. Front. Mar. Sci.
2022, 9, 873700. [CrossRef]

5. Zhou, J.; Yang, T.; Zhang, W. Underwater vision enhancement technologies: A comprehensive review, challenges, and recent
trends. Appl. Intell. 2023, 53, 3594–3621. [CrossRef]

6. Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The unreasonable effectiveness of deep features as a perceptual metric.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 586–595.

7. Li, C.; Guo, C.; Ren, W.; Cong, R.; Hou, J.; Kwong, S.; Tao, D. An underwater image enhancement benchmark dataset and beyond.
IEEE Trans. Image Process. 2019, 29, 4376–4389. [CrossRef]

8. Islam, M.J.; Xia, Y.; Sattar, J. Fast underwater image enhancement for improved visual perception. IEEE Robot. Autom. Lett. 2020,
5, 3227–3234. [CrossRef]

9. Liu, R.; Fan, X.; Zhu, M.; Hou, M.; Luo, Z. Real-world underwater enhancement: Challenges, benchmarks, and solutions under
natural light. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 4861–4875. [CrossRef]

10. Li, C.; Hu, E.; Zhang, X.; Zhou, H.; Xiong, H.; Liu, Y. Visibility restoration for real-world hazy images via improved physical
model and Gaussian total variation. Front. Comput. Sci. 2024, 18, 181708. [CrossRef]

11. Liu, Y.; Yan, Z.; Tan, J.; Li, Y. Multi-purpose oriented single nighttime image haze removal based on unified variational retinex
model. IEEE Trans. Circuits Syst. Video Technol. 2022, 33, 1643–1657. [CrossRef]

12. He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33,
2341–2353. [PubMed]

13. Chao, L.; Wang, M. Removal of water scattering. In Proceedings of the 2010 2nd International Conference on Computer
Engineering and Technology, Chengdu, China, 16–18 April 2010; pp. V2–V35.

14. Chiang, J.Y.; Chen, Y.C. Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans. Image Process.
2011, 21, 1756–1769. [CrossRef] [PubMed]

15. Drews, P.; Nascimento, E.; Moraes, F.; Botelho, S.; Campos, M. Transmission estimation in underwater single images. In
Proceedings of the IEEE International Conference on Computer Vision Workshops, Sydney, NSW, Australia, 1–8 December 2013;
pp. 825–830.

16. Garg, D.; Garg, N.K.; Kumar, M. Underwater image enhancement using blending of CLAHE and percentile methodologies.
Multimed. Tools Appl. 2018, 77, 26545–26561. [CrossRef]

17. Hu, H.; Xu, S.; Zhao, Y.; Chen, H.; Yang, S.; Liu, H.; Zhai, J.; Li, X. Enhancing Underwater Image via Color-Cast Correction and
Luminance Fusion. IEEE J. Ocean. Eng. 2023, 49, 15–29. [CrossRef]

18. Iqbal, K.; Odetayo, M.; James, A.; Salam, R.A.; Talib, A.Z.H. Enhancing the low quality images using unsupervised colour
correction method. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Istanbul, Turkey,
10–13 October 2010; pp. 1703–1709.

19. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, USA, 8–13 December 2014;
p. 27.

20. Anwar, S.; Li, C.; Porikli, F. Deep underwater image enhancement. arXiv 2018, arXiv:1807.03528.
21. Saleh, A.; Sheaves, M.; Jerry, D.; Azghadi, M.R. Adaptive uncertainty distribution in deep learning for unsupervised underwater

image enhancement. arXiv 2022, arXiv:2212.08983.
22. Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In

Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232.
23. Li, C.; Guo, J.; Guo, C. Emerging from water: Underwater image color correction based on weakly supervised color transfer. IEEE

Signal Process. Lett. 2018, 25, 323–327. [CrossRef]
24. Li, Q.Z.; Bai, W.X.; Niu, J. Underwater image color correction and enhancement based on improved cycle-consistent generative

adversarial networks. Acta Autom. Sin. 2020, 46, 1–11.
25. Chen, B.; Zhang, X.; Wang, R.; Li, Z.; Deng, W. Detect concrete cracks based on OTSU algorithm with differential image. J. Eng.

2019, 23, 9088–9091. [CrossRef]
26. Bakht, A.B.; Jia, Z.; Din, M.U.; Akram, W.; Saoud, L.S.; Seneviratne, L.; Lin, D.; He, S.; Hussain, I. MuLA-GAN: Multi-Level

Attention GAN for Enhanced Underwater Visibility. Ecol. Inform. 2024, 81, 102631. [CrossRef]
27. Cong, R.; Yang, W.; Zhang, W.; Li, C.; Guo, C.-L.; Huang, Q.; Kwong, S. Pugan: Physical model-guided underwater image

enhancement using gan with dual-discriminators. IEEE Trans. Image Process. 2023, 32, 4472–4485. [CrossRef] [PubMed]

https://doi.org/10.1111/raq.12726
https://doi.org/10.3390/rs11192237
https://doi.org/10.1016/j.oceaneng.2012.04.006
https://doi.org/10.3389/fmars.2022.873700
https://doi.org/10.1007/s10489-022-03767-y
https://doi.org/10.1109/TIP.2019.2955241
https://doi.org/10.1109/LRA.2020.2974710
https://doi.org/10.1109/TCSVT.2019.2963772
https://doi.org/10.1007/s11704-023-3394-0
https://doi.org/10.1109/TCSVT.2022.3214430
https://www.ncbi.nlm.nih.gov/pubmed/20820075
https://doi.org/10.1109/TIP.2011.2179666
https://www.ncbi.nlm.nih.gov/pubmed/22180510
https://doi.org/10.1007/s11042-018-5878-8
https://doi.org/10.1109/JOE.2023.3306591
https://doi.org/10.1109/LSP.2018.2792050
https://doi.org/10.1049/joe.2018.9191
https://doi.org/10.1016/j.ecoinf.2024.102631
https://doi.org/10.1109/TIP.2023.3286263
https://www.ncbi.nlm.nih.gov/pubmed/37335801


Sensors 2024, 24, 7425 16 of 16

28. Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual Losses for Real-Time Style Transfer and Super-Resolution. In Proceedings of the 14th
European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 694–711.

29. Jiao, J.; Tang, Y.M.; Lin, K.Y.; Gao, Y.; Ma, A.J.; Wang, Y.; Zheng, W.-S. Dilateformer: Multi-scale dilated transformer for visual
recognition. IEEE Trans. Multimed. 2023, 25, 8906–8919. [CrossRef]

30. Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134.

31. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the
Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–8 December 2012; pp. 1097–1105.

32. Iandola, F.N. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv 2016,
arXiv:1602.07360.

33. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
34. Yang, M.; Sowmya, A. An underwater color image quality evaluation metric. IEEE Trans. Image Process. 2015, 24, 6062–6071.

[CrossRef]
35. Panetta, K.; Gao, C.; Agaian, S. Human-visual-system-inspired underwater image quality measures. IEEE J. Ocean. Eng. 2015, 41,

541–551. [CrossRef]
36. Wang, Y.; Guo, J.; He, W.; Gao, H.; Yue, H.; Zhang, Z.; Li, C. Is underwater image enhancement all object detectors need? IEEE J.

Ocean. Eng. 2024, 49, 606–621. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TMM.2023.3243616
https://doi.org/10.1109/TIP.2015.2491020
https://doi.org/10.1109/JOE.2015.2469915
https://doi.org/10.1109/JOE.2023.3302888

	Introduction 
	Related Work 
	Physical Model-Based Methods 
	Non-Physical Model-Based Methods 
	Deep Learning-Based Methods 

	Materials and Methods 
	Architecture of LM-CycleGAN 
	Generator Structure Based on MAFA 
	Discriminator Network Structure 
	Loss Function 

	Experimental Results and Analysis 
	Dataset Introduction 
	Experimental Settings 
	Evaluation Indicators 
	Visual Comparison with Other Methods 
	Objective Comparison with Other Methods 
	Ablation Experiment 
	Real-Time Analysis and Discussion 

	Conclusions 
	References

