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Abstract: During the production process of inkjet printing labels, printing defects can occur, affecting
the readability of product information. The distinctive shapes and subtlety of printing defects present
a significant challenge for achieving high accuracy and rapid detection in existing deep learning-
based defect detection systems. To overcome this problem, we propose an improved model based on
the structure of the YOLOvV5 network to enhance the detection performance of printing defects. The
main improvements include the following: First, we introduce the C3-DCN module to replace the
C3 module in the backbone network, enhancing the model’s ability to detect narrow and elongated
defects. Secondly, we incorporate the Large Selective Kernel (LSK) and RepConv modules into the
feature fusion network, while also integrating a loss function that combines Normalized Gaussian
Wasserstein Distance (NWD) with Efficient IoU (EIoU) to enhance the model’s focus on small targets.
Finally, we apply model pruning techniques to reduce the model’s size and parameter count, thereby
achieving faster detection. Experimental results demonstrate that the improved YOLOV5 achieved
a mAP@O.5 of 0.741 after training, with 323.2 FPS, which is 2.7 and 20.8% higher than that of YOLOV5,
respectively. The method meets the requirements of high precision and high efficiency for printing
defect detection.
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1. Introduction

In recent years, automatic detection of inkjet printing defects has become a crucial
aspect in ensuring the quality and reliability of the final printed product. This topic
has received significant attention in the field. During the printing production process,
numerous factors, including machine vibration, the production environment, and others,
can result in the occurrence of defects, such as white lines, stains, etc., as shown in Figure 1.
The primary objective of defect detection is not merely to ascertain the presence or absence
of defects but also to obtain data on the number, area, and types of defects, as well as
their positions relative to the critical printed content. These factors are of paramount
importance in determining the conformity of a printed product. For instance, specific minor
imperfections may be tolerable under certain circumstances, whereas more substantial
defects could potentially result in product failure. Defects occurring on crucial information
such as Quick Response (QR) codes and the product’s logo, even if they are minor, have the
potential to impact the brand image and readability of the merchandise. On the other hand,
the type of defect is frequently indicative of the underlying cause, which in turn provides
insight into the malfunction of the hardware system. For instance, mark defects may be
attributed to a number of factors, including fouling of the inkjet head, deposition of ink
dots, contamination of the printhead, which causes impurities to be ejected alongside the
ink, or quality issues with the ink itself. Consequently, precise defect detection can provide
a scientific foundation for quality control, assist the production line in making informed
decisions, minimize the financial loss associated with substandard products, and enhance
economic efficiency [1].
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Figure 1. Sample of label printing defect.

In the early stages of the printing inspection industry, inkjet printing defect detection
methods were primarily manual visual inspection and instrumentation detection. However,
the manual visual inspection method is subject to subjectivity, visual fatigue, slow detection
speed, and other shortcomings. Instrumentation detection requires the use of specialized
instruments and incurs high detection costs, and it is unable to detect multiple defects
simultaneously [2]. Currently, digital image algorithm inspection has been applied in nu-
merous industrial production settings [3]. In contrast, digital image algorithm detection is a
non-contact detection method based on image processing technology. It involves matching
the image to be detected with a template and then comparing the two images to identify
any differences [4]. However, the application of this method is prone to misjudgment in the
detection of print defects with complex print backgrounds, variable contents, and random
sizes of defect morphology, and requires the design of detection algorithms according to
different defects with poor generalization ability. Therefore, the use of a deep learning
target detection algorithm becomes a more effective solution.

In recent years, deep learning methods have been widely used in the field of target
detection, including defect detection [5], medical image analysis [6], and security moni-
toring [7]. Target detection algorithms can be divided into two-stage and one-stage. The
two-stage network divides the detection problem into two stages: firstly, generating can-
didate regions, and then classifying the candidate regions after position refinement. Its
main representative algorithms are SPP-net [8] and Faster RCNN [9]. One-stage network
detection directly generates the probability of the object category and the object position
coordinate values, which has a faster detection speed and better meets the demands of
real-time detection scenarios compared with a two-stage network. Its main representative
algorithms are SSD [10] and YOLO [11]. In recent years, there have been several studies
exploring the application of deep learning models in printing defect detection. Li, Jing
et al. [12] employed ResNet as a feature extraction network, weighting the loss function
according to the number of samples to enhance alignment accuracy and recognition effi-
ciency. Liu, Andong et al. [13] proposed a double sparse low-rank decomposition method,
which decomposes based on a print prior and defects to improve the detection of complex
irregular defects. Zhang, Erhu et al. [14] proposed an edge-guided differential attention
network to enhance the visibility of defective regions by emphasizing edge information
while incorporating top-down attention to reduce the visual clutter caused by background
regions. Li, Dongming et al. [15] proposed a patch-based multiscale pyramid registra-
tion network to enhance the alignment capability of large distortions while introducing a
distortion loss function to improve the text distortion problem.

Despite the progress made in the current method, several challenges remain to be
addressed: (1) The current deep learning-based technology faces obstacles in realizing the
accuracy of detecting printing subtle defects, including printing defects with their unique
narrow and long defects and the difficulty of detecting small defects. (2) The current models
for small target detection typically employ models with a large number of parameters,
which present two significant challenges: a prolonged inference time and a sizeable model
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file. This inherent complexity makes it difficult to achieve the desired detection accuracy
and speed simultaneously. To address the aforementioned issues, this paper proposes an
advanced and efficient detection network model to address the challenges faced by print
defect detection. The model is based on the improved YOLOV5 architecture, which can
detect various small-scale targets in complex images with greater accuracy and speed. We
made improvements to the baseline model in the following aspects:

1.  We replaced the C3 module in the backbone network with the C3-DCN module,
enabling adaptive refinement of the ROI and flexible adjustment of convolutional
kernel shapes. This modification significantly improved the network’s ability to detect
elongated defects in printed materials.

2. To improve the detection of minute defects, we integrated the LSK-RepConv mod-
ule between the neck and prediction layers. Additionally, we proposed the WEIoU
loss function, which combined NWD with EIoU to better assess anchor box sim-
ilarity, thereby enhancing feature extraction for small-scale objects and boosting
detection accuracy.

3. Toensure compatibility with low-power mobile devices and achieve a balance between
accuracy and speed, we adopted a lightweight design for the improved model. Model
pruning is employed to remove redundant weights, reducing model complexity and
inference time.

The rest of the paper is organized as follows: Section 2 presents the YOLOv5 improved
method, which describes the C3-DCN, LSK-RepConv, and WEIoU loss functions in detail.
Section 3 presents the dataset, experimental setup, evaluation metrics, and analysis of the
experimental results to quantitatively validate the effectiveness of the proposed method.
Finally, Section 4 summarizes the full paper and outlines future works.

2. Method
2.1. Improved-Y OLOv5

In recent years, the YOLO (You Only Look Once) family of models has made significant
progress in the field of target detection, attracting widespread attention for its high accuracy
and fast inference speed. In order to determine the most suitable solution for print defect
detection, we evaluated the performance of YOLO models commonly used in industrial
applications in terms of detection accuracy, inference speed, and complex scene adaptability
in the same dataset. The results are shown in Table 1.

Table 1. A comparative analysis of the YOLO algorithm series.

Model Precision (%) Recall (%) mAP@0.5 mAP@0.5:0.95 Parameter GFLOPs
YOLOvV3 0.952 0.921 0.941 0.705 2,336,818 5.9
YOLOV3-tiny 0.949 0.900 0.928 0.640 547,700 1.0
YOLOvV5s 0.938 0.922 0.936 0.726 7,023,610 15.8
YOLOvV5n 0.951 0.938 0.939 0.714 1,765,930 4.1
YOLOv7 0.948 0.939 0.936 0.719 2,346,204 6.9
YOLOV7-tiny 0.945 0.930 0.925 0.710 1,517,444 34
YOLOv8n 0.950 0.941 0.942 0.728 3,011,807 8.2

Although v7 and v8 show slightly higher detection performance compared to the rest
of the series, their increased structural complexity could pose challenges on devices with
limited processing power. For instance, YOLOVS incorporates more complex modules
into its design, including deeper convolutional layers, advanced attention mechanisms,
and enhanced feature fusion modules. While these additions improve detection accuracy,
they also substantially increase computational requirements. The GFLOPs of YOLOVS are
approximately twice as large as that of YOLOV5, and thus the inference speed is significantly
slower, especially on embedded devices with limited resources. In addition, YOLOv?7
presents challenges in portability when converting to TensorRT or ONNX formats, as the



Sensors 2024, 24, 7429

40f17

associated tools and optimizations remain relatively immature, resulting in suboptimal
compatibility and usability. Given our plans to deploy the model on embedded devices,
YOLOV5's relatively simple architecture makes it a more practical choice, as it balances
performance with computational efficiency. Moreover, YOLOV5 benefits from extensive
optimization, a mature toolchain, and strong support for model conversion and deployment,
enabling it to adapt more reliably and efficiently to a variety of hardware platforms. After
considering various factors, we finally selected YOLOVS5 as the benchmark model for
this study.

The YOLOVS5 algorithm employs the CIoU loss function for regression of prediction
frames, with the prediction results obtained through non-extremely large value suppression,
filtering, and combining multiple frames of the network output. The network structure
primarily comprises four components: input, backbone network, neck network, and predic-
tion head network. The input is the sample image to be detected. The backbone network
is the primary feature extractor of the network, comprising three components: the CBS,
C3, and Spatial Pyramid Pooling-Fast (SPPF [16]) module. The CBS module incorporates
convolution, batch normalization, and SILU activation functions. The C3 module is a
modified version of the CSPNet [17], comprising three standard convolutional layers and a
bottleneck module. The SPPF employs serial maximal pooling for feature extraction and
fusion of multi-scale feature maps, thereby enhancing the feature representation in the
sensory field. The main role of the neck network is to integrate the features extracted by the
backbone network, thereby enhancing the detection accuracy. This integration is achieved
through two distinct structures: FPN and PAN. The FPN network is a top-down structure
based on up-sampling, which facilitates the transfer of high-level semantic information.
In contrast, the PAN network is a bottom-up structure based on down-sampling, which
enables the transfer of shallow image information. Both of these networks facilitate the
fusion of feature information, thereby ensuring the optimal preservation of large- and
small-scale target information. The main role of the predictive head network is then to
predict the fused feature information generated by the neck network, generating several
prediction frames.

In this section, we propose an enhanced network architecture based on YOLOVS5, as
shown in Figure 2. Firstly, we add a DCNv3 module into the C3 module before the SPP
layer. This modification enhances the model’s capability to extract and adapt target features
of various shapes by adaptively adjusting the shape of the convolutional kernel, hence
improving the performance and accuracy of the network. Secondly, we introduce a spatial
selection mechanism called LSK-RepConv, which combines LSKBlock with the RepConv
module. This mechanism can select feature maps generated by convolutional kernels at
different scales to improve the detection of small targets. Thirdly, we propose the WEIoU as
a loss function for localization loss. This loss function takes into account both the height and
width loss of the prediction frame and the ground truth frame, as well as their similarity.
The WEIoU loss function can effectively improve the convergence accuracy of the anchor
box, solve the problem of large localization errors of traditional IoU for small targets, and
achieve more accurate prediction box localization. Finally, the structured pruning method
is applied to reduce the number of parameters while maintaining accuracy.

2.1.1. C3-DCN

A convolutional neural network extracts the input data by means of a convolution
operation and learns the features in the data by continuously adjusting the weight size of
the convolution kernel. However, the shape and size of the convolution kernel of CNN
are fixed, and its ability to adapt to narrow and long defects, such as white line offset, is
limited. In 2017, Dai, Feng et al. [18] proposed deformable convolution, which enhances
the spatial sampling locations in the module with additional offsets and learns the offsets
from the target task. The defects of narrow and long shapes, which are a distinctive
feature of the printing defect detection methodology explored in this paper, present certain
limitations when dealing with such shapes using fixed convolutional kernel shapes and
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sizes, potentially leading to leakage or misdetection. In order to address this challenge,
this paper proposes the use of deformable convolutions to adapt the convolutional kernel
shape in a manner that better aligns with the characteristics of narrow and long shapes. The
comparison of traditional convolution and deformable convolution is shown in Figure 3.
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Figure 3. Deformable Convolution Network (DCN) schematic diagram. ((a): traditional convolution
and (b): deformable convolution).

In this paper, we incorporated the DCNv3 [19] module into the C3 module of the
backbone network. The DCNv3 module dynamically adjusts the shape of the convolution
kernel according to the shape and location of the target, thereby enhancing the network’s
ability to identify challenging data, such as label printing defects. The DCNv3 module also



Sensors 2024, 24, 7429

6 of 17

Input

introduces a multi-group mechanism and weight coefficients based on the v2, which can be
expressed as follows:

G k
y(po) = Y ) wemgxg (Po +pr+ Apgk> 1)
g=1k=1

where G is the total number of spatial aggregation groups. For group g, wy is the weight
of the k' sample point, Apgy is the learnable offset of the k™ sample point, pisa 3 x 3
convolution matrix, and mg is the modulation scalar of the k™ sample point. SoftMax
normalization is used to constrain the range of values between 0 and 1. Additionally, the
sum of modulation scalars in the group is constrained to 1 to alleviate the problem of
gradient instability. DCNv3 divides the convolutional spatial aggregation process into G
groups and calculates the offsets and weights of each sampling point in multiple groups to
obtain different spatial aggregation patterns, enabling the network to better extract features.
The network structure of C3-DCN is described in Figure 4.

DCN i \F\ Offset Finetune
\Linear
"f(f‘,\ Channel Concatenation
/ 7_\\ -
Linear CBS ‘\\F ) Linear =
A € Element Addition
Linear
Group=16 SiLU
Output
CBS { C’,‘ CBS

Figure 4. C3 module integrated into DCN [19].

2.1.2. LSK-RepConv

In contrast to conventional target detection, print defects are frequently minute targets
with diverse morphologies, rendering their identification more challenging. In order to
enhance the efficacy of small target detection in YOLOV5, we have integrated the LSKBlock
and RepConv modules into the network architecture before the prediction header. In
2023, Li, Yuxuan et al. [20] proposed a spatial selection mechanism, LSKNet, which aims
to enhance the network’s capacity to focus on the most pertinent spatial information
while simultaneously enabling the detection of small targets through the spatially selective
extraction of feature maps from convolutional kernels of varying scales.

Figure 5 illustrates the network structure of LSK-RepConv, which merges feature maps
U; generated from different convolutional kernels, followed by applying average pooling
Pryg and maximum pooling P,y to extract the spatial information of the feature maps. The
resulting feature maps are then connected and transformed into spatial attention maps
using the convolutional operation F.

U; = Fi(X) (2)

el o

where F;(+) is the convolution operation for different sized convolution kernels, F(-) is the
convolution operation, X is the original input feature map for this model, and Py (-) and
Pyyg(-) are the maximum pooling and average pooling. The sigmoid activation function is
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used to obtain spatial selection masks for different convolutional kernels from each spatial
attention map SA;. The generated masks are then applied to the corresponding feature
maps, which generate spatial attention features through the convolutional layer. Finally,
these features are multiplied with the input X to obtain the final output Y.

Nagks

Y =XQF(), (6(54;)-Uy)) (4)
i=1

where §(-) is the sigmoid activation function and ) is the matrix product. Compared to
conventional spatial attention mechanisms, LSKBlock combines convolutional kernels of
different scales for spatial selection. Convolutional kernels with larger sizes have higher
accuracy in predicting the position of small targets.
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Figure 5. LSK-RepConv module [20].

Due to the significant computational overhead associated with the complex attention
calculations in the LSKBlock, we have incorporated a RepConv module following the
LSKBlock to address the inference speed requirements in practical applications. RepConv,
through its unique structural reparameterization design, efficiently processes the spatially
enhanced features extracted by the LSKBlock. It maintains feature discriminability while
significantly improving inference efficiency. By utilizing structural reparameterization,
RepConv retains the expressive capability of a multi-branch structure during training and
converts it into an efficient single-branch structure for inference. This sequential module
design achieves an ideal balance between detection accuracy and computational efficiency,
ensuring that the model’s inference time meets practical production requirements.

2.1.3. WEIoU

The commonly used loss functions, such as CloU, GloU, and DIoU, typically focus on
single aspects like the distance between the minimum enclosing boxes (GloU), the distance
between bounding box centers (DIoU), or the aspect ratio of bounding boxes (CloU). While
these functions perform well in most object detection tasks, they encounter limitations in
detecting subtle and elongated defects in printing applications. Specifically, in cases where
anchor boxes do not overlap, these functions often result in significant location bias and
cannot accurately measure similarity, which can lead to issues such as gradient explosion or
gradient vanishing. Therefore, we adopt the WEIoU loss function to ensure more accurate
anchor box predictions.

WEIOU is based on EloU [21] and incorporates NWD [22] to enhance performance on
small targets. EIoU considers three aspects when regressing anchor frames: overlap loss,
center distance loss, and height and width loss. Meanwhile, NWD measures the similarity
of two probability distributions, with its main advantage being the smoothness of positional
deviation. It can effectively measure the similarity of two anchor frame distributions even
if they do not overlap or have minimal overlap. NWD considers the entire shape and
structure of the two distributions, not just their overlapping parts. The WEIoU loss function
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combines the multi-factor regression advantages of EIoU with the smooth positional bias
measurement benefits of NWD. Even in cases where anchor boxes have minimal or no
overlap, WEIoU accurately reflects the precision of anchor box regression, enabling stable
optimization of anchor box positioning.

WEIou loss can be formulated as follows:

L = aLgjoy + (1 —a)Lywp ()
2 pz . pz .
Leigy = 1 — 10U  ECenter  ZWeight | ZHigh (6)
CCenter CWeight CHz'gh

where o) is the distance between the center, width, and height of the two anchor frames,
and C(, is the diagonal length, height, and width of the two anchor frames” smallest
enclosing box. And Lywp loss can be expressed as follows:

_ Mot I M
Lwp = 1 — exp  — Yigaer titen

A /AX2+Ay2+ AwZIAhZ > (7)

=1—exp <_ Constant

where Ax and Ay are the positioning differences between the center points of the two
anchor frames, Aw and Al are the differences between the width and height of the two
anchor frames, Constant is a constant equal to 12.8, and eps = 1 x 1077 is added to all of the
above differences to prevent the phenomenon of Loss being 0 when the prediction frames
are completely overlapped with the ground truth. Table 2 shows that WEIoU achieves the
highest scores for mAP@0.75 and mAP@0.5:0.95, indicating superior localization accuracy
compared to other loss functions. This suggests that WEIoU is particularly effective for
detecting narrow and small defects, making it well-suited for high-precision tasks in
printing defect detection.

Table 2. Comparison of results with different loss functions.

IoU Name mAP@0.5 mAP@0.75 mAP@0.5:0.95
CloU 0.939 0.838 0.714
GIloU 0.935 0.830 0.712
EloU 0.943 0.842 0.72
DIoU 0.876 0.745 0.654

WEIoU 0.941 0.846 0.725

2.1.4. Model Compression by Pruning

Some of the convolutional kernels used to extract image features during the training
process may have very low percentage weights in the detection process. The problems
of many redundant parameters and poor real-time deployment are often purely in the
improved YOLOvV5 model. In this section, we prune the improved YOLOv5 model using
a structured pruning method called GroupNorm [23]. The method first analyzes the
network to construct a dependency graph, which can reflect the dependency relationships
among the nodes in the network, and then selects the layers to be pruned and specifies
the corresponding pruning channels according to the specific pruning strategies and goals.
Finally, according to the grouping information, the specified pruning channels are removed
one by one in the order of groups, and the process is shown in Figure 6. This method
can reduce the number of parameters in the model and the inference time while having
minimal impact on the model’s accuracy. It is suitable for use in embedded devices.
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3. Experiments and Analyses

This section describes the dataset, experimental setup, experimental evaluation metrics,
and experimental results.

3.1. Dataset

We use a dataset provided by a printing company for training and validation. The
dataset consists of images of real industrial label printing defects, including five common
types of defects: white line, mark, offset, dirty, and satellite ink spot. All of them are
printing defects that often occur during the production process due to inkjet nozzle faults,
mechanical shuddering, etc. The images were captured by an industrial camera with
a resolution of 3400 x 2565; some images from the dataset are shown in Figure 7. The
pre-processing of the data includes gray-scaling and resizing to 1376 x 1024. This is
done to adapt to the down-sampling module of YOLOvV5 and to reduce the number of
model parameters, thus speeding up the inference time of the model. In order to avoid
overfitting, poor generalization, and detection problems during training, the training set
needs to be augmented with data. In order to have an even distribution of labels across
the various categories, we finally constructed the dataset: the training set consists of more
than 3000 images, the validation set consists of 360 images, and the test set consists of
360 images. The distribution of the various defects in the dataset is shown in Table 3.

Table 3. Distribution of various defects in the dataset.

Dataset ~ Number of Images  Satellite Ink Spot ~ White Line = Mark Offset Dirty

Train 3000 630 580 800 670 950
Validation 360 80 74 105 65 127
Test 360 77 80 96 70 120
Total 3720 787 734 1001 805 1197

3.2. Experimental Setup

In this experiment, we used Python 3.8.13 and torch 1.13.1 development environments
with NVIDIA RTX3090 GPUs, 24GB RAM, and CUDA11.7. Parameter details for this
experiment are shown in Table 4.
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Table 4. Experimental setting.
Parameter Value
Init_Ir 0.02
Batchsize 8
Lr decay 0.01 (0.02 x 0.01)
Epoch 500
Box loss gain 0.5
Momentum 0.937
Optimizer Adam
Learning rate schedule Linear

3.3. Experimental Evaluation Metrics

In the field of target detection, models are commonly evaluated using precision,
recall, mAP (mean average precision), parameters, FLOPs (floating point operations), and
inference as performance metrics. ‘P’ denotes precision and ‘R’ denotes recall rate, which
are calculated as shown in Equations (8) and (9).

TP
P=7prrp ®
TP
R=—"
TP+ FN ©)

where true positive (TP) means that the predicted target is correct, false positive (FP) means
that the predicted target type is wrong, and false negative (FN) means that the target was
not predicted.

The mAP is a metric used to evaluate the recognition performance of a model across
all categories. A higher mAP value indicates better model performance. mAP@Q.5 refers to
the average accuracy at a threshold value of 0.5. Similarly, mAP@0.75 refers to the average
accuracy at a threshold value of 0.75. Finally, mAP@0.5:0.95 refers to the average accuracy
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over a range of threshold values from 0.5 to 0.95, with a step of 0.05. This value is calculated
using the equation shown in Equations (10) and (11).

1N
AP = =) AP 1
map= Y- (10)

AP = /01 P(R)dR (11)

where N represents the number of categories in the training set and AP represents the
accuracy of a single category. The F1 score is a metric that evaluates the accuracy of a
classification model by considering both its precision and recall. It is calculated as shown
in Equation (12).

Precision-Recall

F =2 12
1 Precision + Recall (12)

Parameter represents the number of parameters in the model, reflecting the size of the
model; GFLOPs represent the number of floating point operations, reflecting the amount of
computation in the model; and inference represents the time required to detect the image,
reflecting the detection rate of the model.

3.4. Experimental Results

The training results for different printing defect types are shown in Table 5. Our pro-
posed model shows significant improvement in the detection performance of all types of
defects: the model is particularly effective in the detection of “White line” and “Offset”
defects, especially the map@50 of “Offset” defects is improved by 10, and white line defects
are improved by 1.6, which indicates that the model performs excellently in the detection
of narrow and long defects. Furthermore, there is an overall improvement in the detection
of subtle defects, such as “Dirty” and “Mark”, which proves the advantages of our network
in detecting small printing defects.

Table 5. The results of different types of defects.

Defect Class Precision (%) Recall (%) mAP@0.5 mAP@0.75 mAP@0.5:0.95

Satellite ink spot 0.991 0.996 0.995—0.995 0.973—0.995 0.874—0.892
White line 0.961 0.943 0.957—0.973 0.853—0.894 0.741—0.751
Mark 0.987 0.980 0.984—0.985 0.925—0.950 0.726—0.740
Offset 0.849 0.861 0.767—0.868 0.519—0.648 0.469—0.547
Dirty 0.983 0.986 0.985—0.985 0.920—0.944 0.760—0.777

3.5. Ablation Experimental

We create comparison experimental groups for each of the modifications to evaluate
their ability to detect network performance. Table 6 demonstrates that the modifications
made to the baselines significantly impact accuracy and mAP performance metrics. Com-
pared to YOLOV5, optimizing the loss function to WEIOU results in a 0.2-1.1 improvement
in mAP. Additionally, improving the network with LSK-RepConv and C3-DCN results in a
significant performance boost, with mAP increasing by 1.9-2.4 and 0.5-1.6, respectively.
When these two modules are combined, the mAP improves significantly by 2.3. Despite a
slight increase in the number of parameters, each improvement strategy has a significant
impact on performance.

Figure 8 shows training curves of total loss, precision, recall, mAP0.5, mAP0.75, and
mAPO0.5:0.95 during training, where ‘+LSK-RepConv’, ‘+C3-DCN’, ‘+WEioU’, and ‘Ours’
denote increased attention mechanism, deformable convolution, improved loss function,
and our proposed model, respectively. Throughout training, the loss curve steadily de-
creases, while the accuracy, recall, and mAP curves at varying IoU thresholds (mAP@0.5,
mAP@0.75, and mAP@0.5:0.95) continuously improve. Each improvement strategy outper-
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forms the baseline YOLOv5 model individually, and the combined improvements result
in optimal model performance, surpassing any single enhancement. (Ours and +WEiou
achieved the highest performance in 437-epoch and 369-epoch training, respectively).

Table 6. The results of the model with different improvements.

Method Precision (%) Recall (%) mAP@0.5 mAP@0.75 mAP@0.5:0.95 Params
Baseline (YOLOv5n) 0.951 0.938 0.939 0.838 0.714 1.76
+LSK-Rep 0.950 0.954 0.960 0.862 0.733 1.95
+C3-DCN 0.955 0.944 0.955 0.851 0.719 1.74
+LSK-Rep+C3-DCN 0.960 0.959 0.966 0.855 0.732 191
+WEiou 0.956 0.934 0.941 0.846 0.725 1.76
+WEiou+C3-DCN 0.947 0.937 0.941 0.851 0.724 1.72
+WEiou+LSK-Rep 0.956 0.946 0.946 0.867 0.733 1.95
Ours 0.941 0.956 0.957 0.890 0.745 191
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Figure 8. The performance changes in the model with different improvements.

3.6. Comparison of Results of Pruning Algorithms

To evaluate model impact, we compare several common pruning methods. As shown
in Table 7, the pruning operation effectively reduces the number of parameters in the
model and the inference time. However, the LAMP and random methods have faster
inference times, but they exhibit significantly poorer accuracy. Although slimming and
group sparsity have comparable metrics to our adopted method, they do not perform
as well as the Group Norm method in terms of model parameter count and occupancy.
Compared to the L1 pruning method, the Group Norm method achieves higher accuracy
and is better suited for real production environments where a low false detection rate is
crucial. Therefore, we have chosen to adopt the Group Norm method to reduce the model’s
parameter count and inference time.
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Table 7. The results of the model with different pruning methods.

Name Precision (%) Recall (%) mAP@0.5 mAP@0.75 mAP@0.5:0.95 Parameters FPS
Before pruning 0.941 0.956 0.957 0.890 0.745 1,910,892 267.5
LAMP [24] 0.934 0.901 0934 (—0.023) 0782 (—0.108)  0.676 (—0.069) 539,915 (28.25%) 339.1
Random pruning 0.918 0.939 0.950 (—0.007) 0.847 (—0.043) 0.719 (—0.026) 1,039,981 (54.42%) 332.9
L1[25] 0.939 0.958 0.966 (+0.009) 0.886 (—0.004) 0.745 (0.000) 650,468 (34.04%) 325.5
Slimming [26] 0.966 0.952 0.958 (+0.001)  0.888 (—0.002)  0.744 (—0.001) 863,491 (45.19%) 3282
Group sparsity [23] 0.953 0.956 0964 (+0.007)  0.878 (—0.012)  0.742(—0.003) 776,110 (40.62%) 3359
Group Norm [23] 0.954 0.953 0.961 (+0.004) 0.886 (—0.004) 0.741 (—0.004) 664,675 (34.78%) 323.2

Figure 9 shows the F1 score after pruning for each method. It is evident that the Group
Norm method yields a higher F1 score, achieving 0.96 at a confidence threshold of 0.861,
which is superior to the other methods.

10 F1-Confidence Curve
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Figure 9. F1 scores achieved through different pruning techniques.

Figure 10 illustrates the change in the number of channels in each layer before and
after applying the Group Norm pruning method to the model. After pruning, the model
retains only 664,675 parameters, a 65.22% reduction, with an overall pruning rate of 71.69%.
Although the recall of the pruned model slightly decreases by 0.3% and the mAP0.5:0.95
decreases by 0.4, the model demonstrates superior detection capabilities. Additionally, the
inference time has decreased from 3.74 ms to 3.0 ms, and the frame rate has increased by
55.7%. These results demonstrate the effectiveness of the pruning algorithm in significantly
reducing model complexity.

Channel contrast diagram
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Figure 10. Comparison of the number of channels before and after Group Norm pruning method.

3.7. Comparative Experiments

To demonstrate the effectiveness and superiority of our proposed detection method,
we trained and tested lightweight models, including YOLOv3, YOLOvV?7, Mobilenetv3,
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Shufflenetv2, etc., on the same dataset and compared their experimental performance with
our proposed model.

Table 8 shows that our proposed model achieves the best performance in terms of
mAP, with 95.7 and 74.1 on mAP@0.5 and mAP@0.5:0.95 metrics, respectively, compared
to other lightweight networks, even with an 8% increase in the number of parameters
compared to the baseline model, before the pruning operation. After model pruning and
fine-tuning operations, mAP@0.5:0.95 intersection over union decreased by only 0.5, while
the number of parameters is significantly reduced by 65%, resulting in a lightweight design
with a 3.0 ms inference time and a 2.1 Mb model size.

Table 8. The training results of different models.

Model mAP@0.5 Map@0.5:0.95 Parameters GFLOPs Inference/ms (bs = 16)
YOLOvV3 0.941 0.705 2,336,818 5.9 3.0 x 1073
YOLOv3-tiny 0.928 0.64 547,700 1.0 1.4 x 1073
YOLOv5s 0.936 0.726 7,023,610 15.8 6.3 x 1073
YOLOv5n 0.939 0.714 1,765,930 41 2.6 x 1073
YOLOV7 [27] 0.936 0.719 2,346,204 6.9 45 %1073
YOLOV7-tiny [27] 0.925 0.710 1,517,444 34 24 %1078
YOLOVS [28] 0.942 0.728 3,011,807 8.2 52 x 1073
Mobilenetv3 [29] 0.948 0.683 1,337,884 22 3.0 x 1078
Shufflenetv?2 [30] 0.829 0.575 813,254 1.5 1.5 x 1073
Fasternet [31] 0.836 0.628 3,191,646 7.2 3.9 x 1073
Ghostnet [32] 0.866 0.658 2,531,106 3.3 53 x 1073
EfficientLite [33] 0.948 0.715 1,005,214 22 42 %1073
Improved-YOLOvS 0.957 0.745 1,910,892 45 37 x 1073
(before pruning)
Improved-YOLOVS 0.961 0.741 664,675 22 3.0 x 1073

(pruning)

A comparison of the detection performance of different lightweight models is shown in
Figure 11. Although our proposed model is slower than YOLOv7-tiny in terms of inference
time, it has only 43.8% of the parameters and an improved mAP of 3.1 compared to it, which
demonstrates the suitability of our model for deployment on low-computing power devices.
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Figure 11. Inferencing time and mAP@0.5:0.95 for different lightweight networks.

Figure 12 compares the results of the baseline model and our proposed model for
detecting defects in variable data printing. The comparison shows that our model has a
lower false detection rate and higher accuracy than the baseline model in detecting different
background images with different defect types; this result shows that our improvement
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has advanced performance. Overall, the method proposed in this paper outperforms other
lightweight algorithms and can identify printing defects quickly and accurately, providing
better support for subsequent defect information analysis.
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Figure 12. Detection result comparison ((a—c): YOLOv5 and (al-c1): improved YOLOVS5).

4. Conclusions

This paper introduces an enhanced printing defect detection model based on YOLOVS5,
addressing the shortcomings of existing models in detecting small defects and narrow
and long-shaped defects, which are characteristic of printing defects. By combining im-
proved C3-DCN and LSK-RepConv modules and adopting the WEIoU loss function to
optimize the feature extraction performance of the model, the feature extraction perfor-
mance is optimized and the ability to detect the special shape and small-size defects is
enhanced. Finally, we adopt the Group Norm pruning method, which significantly re-
duces the inference time and parameter number of the model. The experimental results
demonstrate a 2.7 enhancement in mAP@0.5 and a 20% reduction in Inference time in
comparison to the baseline network. Compared with the commonly used lightweight target
detection model, the proposed model can achieve 0.741 mAP50:95 and 0.66 M model param-
eters, the guaranteed accuracy can reach 2.2Gflops, and the inference time is shortened to
3.0 x 1073 ms, which achieves the highest accuracy and is sufficient to meet the require-
ments of defective printing detection, detect defective products in time, and reduce the
production cost of enterprises. The defect information obtained from the model lays a
solid foundation for the subsequent defect assessment and analysis and the construction
of traceability system. The future focus is to deploy the improved model into resource-
constrained embedded devices, while exploring new defect samples and introducing new
network structures to learn and recognize samples, with the objective of further improving
the robustness of the model.
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