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Abstract: To enhance real-time S-wave detection in the railway earthquake early warning (EEW)
system, we improved the existing short-term average/long-term average (STA/LTA) algorithm.
This enhancement focused on developing a more robust and computationally efficient method.
Specifically, we introduced noise reflecting P-wave amplitude information before the P-wave to
better distinguish between P- and S-waves. By applying this modified STA/LTA method, we
achieved a significant improvement in S-wave detection accuracy. For seismic waveforms from
stations located within 100 km of the epicenter of each earthquake, with magnitude of M5.5–6.5 and
depths ≤ 100 km, the detection accuracy within 1.5 s of the correct time (manual picking) was 81.0%,
compared to the 49.0% accuracy of the currently operational railway EEW system. Importantly,
despite the improved accuracy, the computational cost of the new method remains comparable to the
existing system, allowing for easy integration into the operational EEW system. This development is
crucial for preventing false alarms, especially moderate earthquakes (~M6) because issuing warn-
ings in unnecessary areas can have a significant social impact. Future plans involve implementing
this method into the current system to further improve early warning capabilities and minimize
false alarms.

Keywords: real-time algorithm; earthquake early warning; STA/LTA; S-wave picking; K-net

1. Introduction

The earthquake early warning (EEW) system is a highly effective method for mitigating
earthquake hazards. Typically, the EEW system provides crucial information such as
magnitude and location (hypocenter or epicenter) within seconds after detecting the initial
P-wave at the first station. In Japan, practical EEW systems have been under development
for nearly 30 years. Ref. [1] introduced the Urgent Earthquake Detection and Alarm System
(UrEDAS) to safely stop the Shinkansen (bullet train) during earthquakes. The railway EEW
systems rapidly analyze seismic waveforms acquired from stations in close proximity to the
hypocenter and estimate critical parameters, such as hypocentral distance, back azimuth,
and magnitude [2–8]. The swift and accurate determination of magnitudes is a crucial
element of the EEW system. Magnitudes are usually calculated by using the epicentral
distance estimated through the aforementioned process, as well as the maximum amplitude
recorded at each station. To facilitate the timely estimation of magnitude immediately after
an earthquake detection, the EEW process employs two types of magnitude calculation
formulas, one for the P-wave phase (P-wave magnitude) and the other after the arrival
of the S-wave (all-phase magnitude). The process dynamically switches between the
two formulas depending on the estimated arrival time of the S-wave at each observation
point. Hence, the accurate real-time determination of the S-wave arrival time is important
for precise magnitude estimation. In a railway earthquake early warning (EEW) system,
the real-time detection of S-waves involves monitoring the amplitude ratio of combined
horizontal (two components) and vertical (one component) seismic waveforms over time [9].
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When this ratio exceeds a certain threshold, it is interpreted as the arrival time of the S-
wave. This method was adopted because of its extremely low computational cost and its
fundamental similarity to the short-term average/long-term average (STA/LTA) [10,11]
method used for P-wave detection. It was designed to operate on the machine specifications
available at the time of its introduction, about 40 years ago. Although machine updates
are gradually being implemented, the algorithm remains low in computational cost. The
concept behind this method is that the amplitude of the horizontal component of the
seismometer will increase upon the arrival of the S-wave. However, due to wave scattering,
complex subsurface and fault structures, and converted waves from P-wave to S-wave, the
threshold is often exceeded prematurely relative to the actual S-wave arrival time, leading
to the underestimation of magnitude.

Real-time detection of S-waves is challenging due to their subtle features compared
to the more pronounced differences between background noise and P-waves. The current
method for detecting S-wave arrival times in railway EEW systems uses the amplitude
ratio between horizontal and vertical seismic wave components, however, it is known
that this method has a significant margin of error because it is difficult to identify these
subtle features while P-waves are being recorded. Numerous techniques exist for real-time
P-wave detection, but relatively few are available for S-waves. Traditional methods for
picking P- and S-wave arrival times include the STA/LTA. Examples of S-wave picking
methods incorporate various advanced techniques such as higher-order statistics, including
kurtosis [12], an improved STA/LTA method using the envelope function [13], autore-
gressive prediction suitable for real-time processing [14], a non-parametric method for
automatic determination of P-wave and S-wave arrival times [15], and combining singular
value decomposition with the STA/LTA method [16]. The damped predominant period
(Tpd) method, used for estimating both P- and S-wave arrival times, has demonstrated
superior accuracy compared to STA/LTA pickers [17]. Autoregressive (AR) model fitting
has also been employed for determining onset times of both P- and S-waves. Leonard and
Kennett provide a comprehensive review of various AR models and methods for picking
onset times using AR prediction. For P-wave onset time determination, the univariate
approach [18] applied to the Z-component is preferred, while for S-wave onset time esti-
mation, a multivariate AR model is recommended [19]. Deep learning techniques have
recently made significant progress, offering new solutions for the fast and accurate pickup
of P- and S-waves [20–22]. Despite these advancements, the development of optimized
automated algorithms for S-wave detection remains an ongoing research topic. Robust
automated procedures that include quality estimations can improve the consistency of auto-
mated S-phase picking by recognizing, downgrading, or rejecting uncertain and potentially
incorrect arrival times, which can significantly influence hypocenter estimation.

In this study, we developed a simple method, by modifying the STA/LTA method,
that robustly determines the arrival time of S-waves in real time, with low computational
cost, to be incorporated into the railway EEW system. The STA/LTA algorithm is highly
efficient for real-time processing owing to its low computational cost. However, in the
implementation of STA/LTA in real-time S-wave detection, the utilization of P-wave
amplitudes for calculating the LTA presents challenges, including the significant amplitude
variation of P-waves in comparison with the background noise and the limited S-P time
available for calculating LTA at stations situated near the hypocenter. Our developed
method effectively stabilizes the STA/LTA fluctuations in the P-wave prior to the arrival of
the S-wave while adhering to the basic STA/LTA algorithm, and clarifies the characteristic
difference between P- and S-waves.

2. Data and Methods

We developed a real-time method for determining the arrival times of S-waves based
on the principles of the STA/LTA method. First, the arrival time of the P-wave was
determined using a conventional STA/LTA approach. Artificial noise, quantified in terms
of the P-wave amplitude, was then introduced into the signal. Subsequently, STA/LTA
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was performed on the modified signal to determine the arrival time of the S-wave. Given
that the proposed method involves the computation of STA/LTA twice, specifically for the
P-wave and S-wave, hereafter, this method shall be referred to as the “Two-Step STA/LTA”.

The STA/LTA method has been used in many P-wave detection systems owing to
its computational efficiency. For P-wave detection, the real-time calculation of STAp and
LTAp is performed on the seismic waveform data, as follows:

STAp(k) =
1

αp

k

∑
i=k−αp

|xi|. (1)

LTAp(k) =
1

βp

k

∑
i=k−βp

|xi|. (2)

STAp

LTAp
> thp. (3)

where xi is the current sample of a data sequence, the parameters αp and βp represent the
length of time used to calculate the average value, and αp ≪ βp. The thp is the STAp/LTAp
threshold for P-wave detection. Specifically, the time k, at which Equation (3) is first
satisfied, is identified as the P-wave arrival time γ. Next, the 90th percentile of the P-wave,
denoted as q, is calculated from γ to γ + δ s as follows:

q = percentile90%
{

xγ, xγ+1, xγ+2, · · · , xγ+δ

}
. (4)

Subsequently, the random noise (white noise) N with values ranging from 0 to 1, is
multiplied by q to generate a noise waveform that incorporates the amplitude information
of the P-wave from γ to γ + δ. The noise waveform, which is the product of q and N, is
replaced with the original signal waveform xi from time γ + δ − β to time γ + δ. Therefore,
waveform yi can be generated to detect the S-wave as follows:

yi =
{

q ∗ Nγ+δ−β, q ∗ Nγ+δ−β+1, q ∗ Nγ+δ−β+2, · · · , q ∗ Nγ+δ, xγ+δ+1, · · ·
}

. (5)

Although creating yi from a time earlier than γ + δ − β presents no issue, we generated
only the essential yi required to compute the LTA to minimize the cost of the real-time
computation. Next, the STA/LTA analysis is performed on the modified waveform yi to
establish the STAs/LTAs threshold, ths for detecting the S-wave, as follows:

STAs(k) =
1
αs

k

∑
i=k−αs

|yi|. (6)

LTAs(k) =
1
βs

k

∑
i=k−βs

|yi|. (7)

STAs

LTAs
> ths. (8)

where the parameters αs and βs represent the length of time used to calculate the average
value and αs≪βs. αs and βs can have an identical value to that of αp and βp. Finally, the
time k at which Equation (8) is first satisfied is designated as the arrival time of the S-wave.

The δ, q, and yi values are updated if the STAs/LTAs value does not surpass the
threshold (ths). The amplitude of the P-wave may undergo gradual changes, leading to the
q value becoming insufficient a few seconds after the P-wave arrival. Hence, we increment
the δ value each second and update the q and yi until the STAs/LTAs exceeds the ths. First,
we generate the q and yi based on the data between γ and γ + 2 s, and conduct STAs/LTAs.
If the STAs/LTAs values do not exceed the ths by γ + 3 s, we update the q and yi again
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based on the data between γ and γ + 3 s, followed by performing the STAs/LTAs until
γ + 4 s, using updated yi. This iterative process continues until γ + 6 s, beyond which the q
and yi are not updated.

The objective of this method is to stabilize the temporal fluctuations of the STA/LTA
until the arrival of the S-waves. Directly following the onset of the P-wave, the computed
LTA encompasses both the pre-P-wave noise and the P-wave itself. Consequently, the LTA
value gradually escalates. In such instances, the STA/LTA requires time to stabilize, and
the configuration of the threshold becomes intricate, leading to the risk of overlooking the
arrival of the S-wave. Hence, by incorporating noise and the parameter q, the temporal
fluctuation of the STA/LTA, commencing promptly after the arrival of the P-wave (more
precisely, after δ has passed), can be assessed based on the interplay between P-waves and
S-waves. This augments the reliable detection of S-waves.

In this study, we selected earthquakes of magnitude ≥ M5.5 and depths ≤ 100 km,
which occurred between 2003 and 2018, and manually picked S-wave arrival times on the
seismic waveforms recorded by K-NET (Kyoshin net: nationwide strong motion networks
in Japan [23]) for the selected earthquakes (Figure 1). The waveform data used in this study
were obtained from K-NET stations, located within 200 km from the epicenter of each
earthquake. Only seismic events with 20 or more K-NET stations where the arrival time of
the S-wave could be interpreted manually were considered. The 65 earthquakes considered
in this analysis are listed in Table 1, totaling 3030 waveforms. In this study, we computed
STAp/LTAp using the vertical component of the waveform recorded by each seismometer.
The parameters q and STAs/LTAs were derived from the combined waveform, obtained
through vector synthesis of the two horizontal components recorded by each seismometer.
The propagation speed of seismic waves is generally slowest near the Earth’s surface and
increases with depth. Consequently, the propagation path of seismic waves forms a convex
shape, causing the waves to approach the surface almost vertically. As a result, P-waves
exhibit predominant vertical motion, while S-waves exhibit predominant horizontal motion.
The acceleration waveforms recorded by K-NET were integrated to velocity waveforms
before being used in the analysis. This was performed to augment the amplitude variation
in the time domain and aid in the detection of S-waves. The bandwidth range of the dataset
used in this study is 0.1–20 Hz.
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Figure 1. The hypocenter locations of the 65 earthquakes analyzed in this study (colored circles), the
locations of K-NET stations (reverse red triangles), and the 200 km range from the epicenter of each
earthquake (dash circle lines) are shown.
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Table 1. Earthquake list. This earthquake catalog was obtained from the Japan Meteorological Agency
(JMA) website (https://www.data.jma.go.jp/eqev/data/daily_map/index.html, last accessed on 14
November 2024).

No. Date Origin
Time

Latitude
(deg)

Longitude
(deg)

Depth
(km)

JMA
Magnitude

(Mj)

#1 26 May 2003 18:24:33.4 38.8200 141.6500 72.0 7.1

#2 26 July 2003 07:13:31.5 38.4050 141.1700 12.0 6.4

#3 26 July 2003 16:56:44.5 38.5000 141.1883 12.0 5.5

#4 20 September 2003 12:54:52.2 35.2180 140.3000 70.0 5.8

#5 26 September 2003 06:08:01.8 41.7100 143.6910 21.0 7.1

#6 29 September 2003 11:36:55.0 42.3600 144.5530 43.0 6.5

#7 8 October 2003 18:06:56.7 42.5650 144.6690 51.0 6.4

#8 31 October 2003 10:06:30.6 37.8310 142.6940 33.0 6.8

#9 5 September 2004 19:07:08.0 33.0310 136.7970 38.0 6.9

#10 5 September 2004 23:57:16.8 33.1460 137.1390 44.0 7.4

#11 7 September 2004 08:29:36.2 33.3580 137.2920 41.0 6.4

#12 8 September 2004 23:58:23.1 33.1000 137.3000 36.0 6.5

#13 6 October 2004 23:40:40.1 35.9883 140.0883 66.0 5.7

#14 23 October 2004 17:56:00.3 37.2917 138.8667 13.0 6.8

#15 23 October 2004 18:11:56.7 37.2530 138.8290 12.0 6.0

#16 23 October 2004 18:34:05.6 37.3050 138.9300 14.0 6.5

#17 29 November 2004 03:32:14.5 42.9450 145.2750 48.0 7.1

#18 6 December 2004 23:15:12.0 42.8000 145.3000 46.0 6.9

#19 14 December 2004 14:56:10.5 44.0767 141.6983 9.0 6.1

#20 18 January 2005 23:09:06.6 42.9000 145.0000 50.0 6.4

#21 20 March 2005 10:53:40.3 33.7383 130.1750 9.0 7.0

#22 11 April 2005 07:22:15.6 35.7267 140.6200 52.0 6.1

#23 20 April 2005 06:11:26.8 33.7000 130.3000 14.0 5.8

#24 23 July 2005 16:34:56.3 35.5817 140.1383 73.0 6.0

#25 16 August 2005 11:46:25.7 38.1483 142.2767 42.0 7.2

#26 2 December 2005 22:13:07.9 38.0720 142.3530 40.0 6.6

#27 5 December 2005 07:20:23.0 37.8670 142.6550 25.0 5.5

#28 13 December 2005 06:01:37.5 43.2080 139.4130 29.0 5.5

#29 25 March 2007 09:41:57.9 37.2200 136.6850 11.0 6.9

#30 16 July 2007 10:13:22.5 37.5567 138.6083 17.0 6.8

#31 16 July 2007 15:37:40.4 37.5000 138.6000 23.0 5.8

#32 9 October 2007 02:10:35.4 43.3520 146.7250 40.0 5.8

#33 29 April 2008 14:26:05.3 41.4620 142.1080 62.0 5.7

#34 14 June 2008 08:43:45.3 39.0283 140.8800 8.0 7.2

#35 14 June 2008 09:20:11.8 38.8800 140.6770 6.0 5.7

#36 21 July 2008 20:30:26.6 37.1350 142.3400 27.0 6.1

#37 11 September 2008 09:20:51.3 41.7750 144.1500 31.0 7.1

#38 1 February 2009 06:51:51.8 36.7170 141.2780 47.0 5.8

https://www.data.jma.go.jp/eqev/data/daily_map/index.html
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Table 1. Cont.

No. Date Origin
Time

Latitude
(deg)

Longitude
(deg)

Depth
(km)

JMA
Magnitude

(Mj)

#39 5 June 2009 12:30:33.8 41.8120 143.6200 31.0 6.4

#40 11 August 2009 05:07:05.7 34.7850 138.4983 23.0 6.5

#41 13 March 2010 21:49:46.8 37.6142 141.4717 77.7 5.5

#42 14 March 2010 17:08:04.1 37.7233 141.8167 40.0 6.7

#43 10 August 2010 14:50:34.6 39.3480 143.4930 30.0 6.3

#44 9 March 2011 11:45:00.0 38.3280 143.2780 8.0 7.3

#45 10 March 2011 06:23:59.7 38.1720 143.0430 9.0 6.8

#46 11 March 2011 15:06:10.7 39.0420 142.3970 27.0 6.4

#47 11 March 2011 15:09:00.0 39.8380 142.7800 32 7.4

#48 11 March 2011 15:15:00.0 36.1080 141.2650 43 7.7

#49 12 March 2011 04:46:47.6 40.4000 139.1000 10.0 6.4

#50 13 March 2011 10:26:02.0 35.8000 141.9000 10.0 6.4

#51 14 March 2011 15:12:33.9 37.7000 142.7000 10.0 6.3

#52 15 March 2011 22:31:46.3 35.3080 138.7130 14.0 6.4

#53 22 March 2011 18:19:05.2 37.4000 141.9000 10.0 6.3

#54 28 March 2011 07:23:57.0 38.3920 142.3150 31.0 6.5

#55 7 April 2011 23:32:43.4 38.2000 142.0000 40.0 7.4

#56 11 April 2011 17:16:12.0 36.9000 140.7000 10.0 7.1

#57 12 April 2011 08:08:15.8 35.4000 141.0000 30.0 6.3

#58 12 April 2011 14:07:42.2 37.0000 140.7000 10.0 6.3

#59 13 April 2013 05:33:00.0 34.4000 134.8000 15.0 6.3

#60 22 November 2014 22:08:00.0 36.7000 137.9000 5.0 6.7

#61 14 April 2016 21:26:00.0 32.7000 130.8000 11.0 6.5

#62 16 April 2016 01:25:00.0 32.8000 130.8000 12.0 7.3

#63 21 October 2016 14:07:00.0 35.3800 133.8550 11.0 6.6

#64 9 April 2018 01:32:00.0 35.2000 132.6000 12.0 6.1

#65 18 June 2018 07:58:00.0 34.8000 135.6000 10.0 5.9

3. Results

Figure 2 shows the application of the proposed method to a specific seismic waveform
recorded at a given K-NET station. The absolute value of the vertical component recorded
by each seismometer is shown in Figure 2a, while Figure 2b presents the absolute value
of the composite waveform obtained by vector synthesis of the two horizontal velocity
components recorded by each seismometer. Figure 2c illustrates the calculated STAp/LTAp,
which determines the arrival time of the P-wave (γ) when the thp (4.5 in this case) is
exceeded. The red waveforms in Figure 2d indicate the composite waveform, which is
used to calculate the percentile parameter q. Figure 2e shows the waveform yi, in which
q × N is substituted from γ + δ − β to γ + δ. Finally, Figure 2f shows the STAs/LTAs which
determines the arrival time of the S-wave when the ths (3.5 in this case) is exceeded. A
comparison of Figure 2a,c, which are aligned on the same temporal axis, shows that the
STAp/LTAp surpasses the thp precisely at the moment of the P-wave’s arrival. Similarly, by
comparing Figure 2b,f, which are also aligned on the same temporal axis, it can be observed



Sensors 2024, 24, 7452 7 of 18

that the STAs/LTAs of the proposed method surpasses the ths precisely at the moment of
the S-wave’s arrival.
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Figure 2. The Two-Step STA/LTA method. (a) The absolute vertical component waveform. (b) Com-
bined horizontal component waveform. (c) The STAp/LTAp calculated for the vertical component
waveform (xi) depicted in (a). (d) The segment where q is calculated for the combined horizontal
two-component waveform. (e) Waveform yi replaced by q from γ + δ − β to γ + δ. (f) The STAs/LTAs

calculated for yi depicted in (e).
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The proposed method was used to determine the arrival times of S-waves for the
65 earthquakes listed in Table 1. The parameters thp = 5.0, αp = 0.5, βp = 5.0, ths = 2.2,
αs = 0.5, βs = 5.0, and δ = 2.0 (initial value) were utilized in this study. The parameter β
was set to 5 s to ensure a sufficiently large value for observing the long-term background
noise level, while avoiding an excessively high average value due to repeated earthquakes.
The parameter α was set to 0.5 s to balance early detection with reducing false positives
from pulse-like noise. Setting α to a shorter duration, such as 0.1 s, increases the risk of
false detection from noise, while a longer duration, like 1 s, delays the detection after the
P-wave arrival.

In addition, manual and automatic readings were compared for 65 earthquakes. Fur-
ther, the S-wave arrival time detected by the proposed method (Ta, automatic reading) was
compared with that determined through manual picking (Tm, manual reading). These are
the elapsed times from the earthquake occurrence. The results of the comparison between
Ta and Tm at each K-NET station for 12 earthquakes are shown in Figure 3. The results show
that the Ta values are accurate and aligned with the Tm values as they are roughly aligned
in a straight line. However, at certain stations, the S-wave arrival times were not accurately
determined using the proposed method. This can be attributed to two primary factors
that hinder the accurate automatic picking: (1) in cases where the STAs/LTAs exceed the
threshold value ths prior to the actual S-wave arrival (minus reading; Ta − Tm < −2.0),
which is mainly evident in the comparison of Ta and Tm in Figure 3 for earthquakes #14,
#30, and #40; (2) when the STAs/LTAs do not exceed the designated ths value.

Figure 4a shows the histograms of the residuals (Ta − Tm). The percentage of correct
decisions (|Ta − Tm| ≤ 1.5) for waveforms from stations located within 200 km of the
epicenter for 65 earthquakes in Table 1, totaling 3030 waveforms, was approximately
76.7% (Figure 4a and Table 2). Moreover, the percentage of correct decisions decreases
as the hypocenter distance increases (Figure 4b). As the hypocenter distance increases,
the percentage of waveforms that do not exceed ths and thus cannot determine the S-
wave arrival time also increases. The percentage of correct decisions tends to decrease
slightly as the magnitude of the earthquake increases (Figure 4c). It is anticipated that
the decrease in detection rate is not due to the magnitude of the earthquakes, but because
larger magnitude earthquakes tend to occur in subduction zones, which are farther from
the seismic observation network on land. As stated in the Introduction, when the S-
wave arrival time cannot be determined, the S-wave amplitude is utilized instead of the
P-wave amplitude to estimate the earthquake magnitude, and a larger magnitude than
the actual one is estimated, leading to an overestimation of the warning range. This
issue is particularly crucial for moderate earthquakes (~M6) because issuing warnings
in unnecessary areas can have a significant social impact. Using the proposed method,
an accuracy of 81.0% was achieved for waveforms from stations located within 100 km
of the epicenter for earthquakes with magnitudes of 5.5–6.5 (moderate earthquakes) and
depths ≤ 100 km, totaling 1137 waveforms (Figure 4a and Table 2). This result indicates
that the developed method contributes to improving the accuracy of alerts.

Table 2. The comparison results of |T a − Tm| between our method and current method [1]. Displayed
as NaN when not applicable.

Our Method Current Method [1]

No.
Num. of Data

|Ta − Tm|≤ 1.5
∆ ≤ 100 km

Num. of Data
∆ ≤ 100 km

Correct
Decision (%)
∆ ≤ 100 km

Num. of Data
|Ta − Tm| ≤ 1.5

∆ ≤ 100 km

Num. of Data
∆ ≤ 100 km

Correct Decision (%)
∆ ≤ 100 km

#1 15 18 83.33 11 18 61.11

#2 9 18 50.00 11 18 61.11

#3 20 27 74.07 10 27 37.04

#4 34 39 87.18 27 39 69.23
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Table 2. Cont.

Our Method Current Method [1]

No.
Num. of Data

|Ta − Tm|≤ 1.5
∆ ≤ 100 km

Num. of Data
∆ ≤ 100 km

Correct
Decision (%)
∆ ≤ 100 km

Num. of Data
|Ta − Tm| ≤ 1.5

∆ ≤ 100 km

Num. of Data
∆ ≤ 100 km

Correct Decision (%)
∆ ≤ 100 km

#5 0 4 0.00 0 4 0.00

#6 5 8 62.50 4 8 50.00

#7 3 4 75.00 1 4 25.00

#8 0 0 NaN 0 0 NaN

#9 0 0 NaN 0 0 NaN

#10 0 0 NaN 0 0 NaN

#11 0 0 NaN 0 0 NaN

#12 0 0 NaN 0 0 NaN

#13 54 69 78.26 46 69 66.67

#14 9 14 64.29 5 14 35.71

#15 18 20 90.00 12 20 60.00

#16 21 25 84.00 15 25 60.00

#17 3 3 100.00 0 3 0.00

#18 14 15 93.33 5 15 33.33

#19 10 13 76.92 8 13 61.54

#20 19 23 82.61 10 23 43.48

#21 14 20 70.00 6 20 30.00

#22 24 40 60.00 7 40 17.50

#23 35 42 83.33 18 42 42.86

#24 51 71 71.83 37 71 52.11

#25 0 0 NaN 0 0 NaN

#26 0 0 NaN 0 0 NaN

#27 0 0 NaN 0 0 NaN

#28 8 8 100.00 3 8 37.50

#29 7 9 77.78 4 9 44.44

#30 12 17 70.59 13 17 76.47

#31 28 36 77.78 21 36 58.33

#32 3 3 100.00 0 3 0.00

#33 11 11 100.00 3 11 27.27

#34 5 10 50.00 4 10 40.00

#35 24 37 64.86 11 37 29.73

#36 0 0 NaN 0 0 NaN

#37 1 2 50.00 0 2 0.00
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Table 2. Cont.

Our Method Current Method [1]

No.
Num. of Data

|Ta − Tm|≤ 1.5
∆ ≤ 100 km

Num. of Data
∆ ≤ 100 km

Correct
Decision (%)
∆ ≤ 100 km

Num. of Data
|Ta − Tm| ≤ 1.5

∆ ≤ 100 km

Num. of Data
∆ ≤ 100 km

Correct Decision (%)
∆ ≤ 100 km

#38 16 16 100.00 8 16 50.00

#39 1 2 50.00 0 2 0.00

#40 37 43 86.05 24 43 55.81

#41 22 22 100.00 8 22 36.36

#42 5 7 71.43 3 7 42.86

#43 0 0 NaN 0 0 NaN

#44 4 5 80.00 2 5 40.00

#45 0 0 NaN 0 0 NaN

#46 15 20 75.00 16 20 80.00

#47 4 5 80.00 2 5 40.00

#48 15 20 75.00 16 20 80.00

#49 3 5 60.00 2 5 40.00

#50 1 1 100.00 1 1 100.00

#51 0 0 NaN 0 0 NaN

#52 16 20 80.00 16 20 80.00

#53 5 5 100.00 4 5 80.00

#54 3 3 100.00 1 3 33.33

#55 5 5 100.00 5 5 100.00

#56 8 12 66.67 2 12 16.67

#57 8 10 80.00 8 10 80.00

#58 38 44 86.36 24 44 54.55

#59 42 57 73.68 20 57 35.09

#60 9 21 42.86 6 21 28.57

#61 43 58 74.14 28 58 48.28

#62 5 11 45.45 3 11 27.27

#63 18 23 78.26 6 23 26.09

#64 31 36 86.11 15 36 41.67

#65 75 80 93.75 30 80 37.50

AVG, (65 eqarthquakes) 76.65 AVG. (65 earthquakes) 44.80

AVG. (Mj5.6–6.5) 81.04 AVG. (Mj5.6–6.5) 48.97
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Table 2. The comparison results of |𝑇 − 𝑇| between our method and current method [1]. Dis-
played as NaN when not applicable. 

 Our Method Current Method [1] 

No. 
Num. of Data 
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Δ ≤ 100 km 

Num. of Data 
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Correct  
Decision (%) 
Δ ≤ 100 km 

Num. of Data 
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Δ ≤ 100km 

Correct Deci-
sion (%)  
Δ ≤ 100km 
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Figure 4. The error in automatic reading (Ta). (a) The histogram of residuals from waveform data
obtained at stations within 200 km of the epicenter for all 65 earthquakes, totaling 3030 waveforms
(black). The histogram of residuals from waveform data obtained at stations within 100 km of the
epicenter for earthquake with Mj5.5–6.5, totaling 1137 waveforms (gray). (b) The percentage of correct
decisions ( |T a − Tm|≤ 1.5 ) vs. epicentral distance of stations (black) that do not exceed ths and cannot
determine the S-wave arrival time (blue). (c) The percentage of correct decisions ( |T a − Tm|≤ 1.5 ) vs.
magnitude of the earthquake (black) that do not exceed ths and cannot determine the S-wave arrival
time (blue).
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4. Discussion

As with other phase detection methods, it is important to assess the accuracy of
this method. The increase in the number of waveforms that do not exceed the ths level
with increasing epicentral distance (Figure 4b) can be attributed to the attenuation of the
amplitude in the rising portion of the P-wave, and the reduced difference between the
amplitudes of the P- and S-waves due to the prevalence of reflected waves. Conversely,
the phases generated by the sedimentary layers, such as PS-converted and SP-converted
waves, could potentially influence the minus readings. This phenomenon is more likely
to occur when a notable discontinuity surface exists directly beneath a station, such as a
station situated in a basin.

To minimize S-wave detection errors, parameter study of the ths was conducted. The
ths was varied, from 1.0 to 4.0 (thp fixed at 5.0), for stations within epicenter distance of
less than 200 km for the 65 earthquakes. Among the picks computed using the Two-Step
STA/LTA method, N1 represents the count of picks with |Ta − Tm| ≤ 1.5, N2 represents
the count of picks where the STAs/LTAs did not surpass ths, and N3 represents the count
of picks with Ta − Tm ≤ −2.0 (minus reading), as shown in Figure 5a. N1 was the highest
when ths was 2.2, and as ths increased, N2 increased and N3 decreased. The decrease in N3
with increasing ths is due to the fact that the threshold is surpassed by the S-wave rather
than the PS- or SP-converted waves. However, an elevated threshold value may lead to a
delayed Ta in comparison to Tm because the threshold is exceeded at higher amplitudes.
As an example, the results for earthquake #40 computed with ths = 1.0 and ths = 4.0 are
presented in Figure 5b,c. The figures illustrate that reducing the ths increases the number
of minus readings, while increasing the ths reduces the number of picks and leads to a
delay in Ta. Owing to the inherent variability in the observed seismic waveforms caused
by factors such as source, propagation path, and site effects, it is theoretically essential to
establish a specific threshold value for each station to accurately determine Ta. It may be
feasible to analyze numerous earthquakes and determine thresholds empirically based on
information such as STAp/LTAp and the P-wave amplitude.

The bandwidth of the recorded seismic trace plays an important role in the perfor-
mance of a phase detector, i.e., a bandwidth that is too narrow can deteriorate the efficiency
of the employed algorithm [24]. Ref. [25] indicating that a strong bandwidth dependence of
the STA/LTA algorithm is expected for P-wave detection, and that the STA/LTA algorithm
requires a minimum bandwidth (more than 15 Hz) to reliably estimate (less than 10 samples)
the phase arrival. Here, we compared the results of the Two-Step STA/LTA analysis of the
seismic waveforms using five bandpass filters (0.01–20 Hz, 0.05–20 Hz, 0.1–20 Hz, 0.5–20 Hz,
and 1–20 Hz). The target earthquakes and parameters are consistent with those presented
in the Section 3. The percentage of correct decisions (|Ta − Tm| ≤ 1.5, ≤ M6.5, ≤ 100 km)
were 80.5%, 80.0%, 81.0%, 60.2%, and 75.3%, respectively (Figures 4a and S1a–4a). The
percentage increased with the inclusion of low-frequency components. Nonetheless, the op-
timal bandwidth configuration may vary based on factors such as the magnitude (dominant
frequency) and hypocentral distance (attenuation) of the station.

Although not a real-time process, previous studies have shown that in automated S-wave
picking, the percentage of correct decisions often exceeds 90% with |Ta − Tm| ≤ 0.1 [15].
This is in contrast to the 81.0% correct decisions with |Ta − Tm| ≤ 1.5 observed (Section 3).
In machine learning and statistical applications, ensemble methods, which incorporate
multiple methods, outperform single-model techniques when there is diversity among
them [26]. This phenomenon was also observed in phase picking [27]. Considering the
objective of real-time S-wave picking, we acknowledge the constraints on our capacity to
perform intricate computations. However, we propose the integration of our methodol-
ogy with existing event and phase detection techniques to enhance the accuracy of the
picking process.
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Figure 5. (a) The number of picks for N1 (black), N2 (blue), and N3 (red) were calculated by varying
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200 km for the 65 earthquakes. (b) Comparison between automatic reading (Ta) and manual reading
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We compare the results of our developed method with the real-time S-wave detection
method currently used in railway EEW systems, which monitors the amplitude ratio of the
combined horizontal two-component and vertical one-component seismic waveforms over
time [1]. They stated that P-waves generally exhibit predominantly vertical motion, while
S-waves exhibit predominantly horizontal motion. This difference enables the identification
of P- and S-waves in the currently operational method. However, it should be noted that
this distinction may not always apply to shallow or nearby earthquakes, where these
characteristics can vary. The vertical and horizontal squared amplitudes are smoothed
exponentially, and the amplitude ratio is calculated as follows:

V(i) = (1 − α)× Xud(i) + V(i − 1)× α (9)

H(i) = (1 − α)× Xho(i) + H(i − 1)× α (10)

HV(i) =
H(i)
V(i)

(11)
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where Xud(i) and Xho(i) are the absolute vertical and horizontal two-component composite
waveform amplitudes, respectively. i is the current time step, and α is the exponential
smoothing coefficient. An S-wave is considered to have arrived when the H/V value
exceeds a set threshold after the P-wave arrival. Table 1 compares the S-wave arrival times
detected using the H/V method with manually-read accurate values for all earthquakes.
The proportion of correct detections within 1.5 s for all data was approximately 44.8%, and
for earthquakes of magnitude 5.5–6.5 within 100 km of the epicenter, it was approximately
49.0% (Figure 6 and Table 2). It was observed that the method performs better for earth-
quakes with smaller epicentral distances. However, many instances detected the S-wave
earlier than the actual arrival time, suggesting significant influence from PS converted
waves. As mentioned earlier, the developed method shows a correct detection rate of
76.7% for 65 earthquakes within 200 km of the epicenter and over 81.0% for magnitude
5.5–6.5 earthquakes within 100 km of the epicenter (Table 2). This indicates that our pro-
posed method can dramatically improve the accuracy of S-wave detection times while
maintaining the same low computational cost as the current method.
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Figure 6. The error in automatic reading with the current method of railway EEW [1] (Ta). (a) The
histogram of residuals from waveform data obtained at stations within 200 km of the epicenter for all
65 earthquakes (black). The histogram of residuals from waveform data obtained at stations within
100 km of the epicenter for earthquake with Mj5.5–6.5 (gray). (b) The percentage of correct decisions
( |T a − Tm|≤ 1.5 ) vs. epicentral distance of stations (black). (c) The percentage of correct decisions
( |T a − Tm|≤ 1.5 ) vs. magnitude of the earthquake (black).
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The moderate earthquakes occur before the mainshock, leading to failures in the
EEW system’s P-wave detection and magnitude estimation. In this study, we tested our
developed method using files where seismic waveforms were segmented by individual
earthquakes. As a result, we did not sufficiently verify the robustness of the method against
successive earthquakes. Moving forward, it is essential to address successive earthquakes
to enhance the accuracy of early earthquake detection for warning systems.

5. Conclusions

We developed a more robust method to determine the arrival time of S-waves in real
time, with a low computational cost, while adhering to the basic algorithm of STA/LTA.
In this approach, noise is intentionally added to the waveform ahead of the P-wave to
accentuate the contrast between the P- and S-waves, followed by a renewed implementation
of the STA/LTA to detect S-waves once the P-wave is successfully identified. The method
can effectively determine the S-wave arrival time. The percentage of correct decisions
(|Ta − Tm| ≤ 1.5) for waveforms from stations located within 200 km of the epicenter for
65 earthquakes in Table 1 was approximately 76.7%. However, the percentage of correct
answers for earthquakes of magnitude 5.5–6.5 with observation points less than 100 km was
81.0%. The error in automatic readings can be minimized by optimizing the parameters for
each individual earthquake and potentially for each station. Our newly developed method
for detecting S-wave arrival times in railway EEW systems has demonstrated significant
improvements compared to the existing approach, which uses the amplitude ratio between
horizontal and vertical seismic wave components. The current method achieves a 49.0%
detection rate within 1.5 s of the true value for earthquakes of magnitude 5.5–6.5 with
epicentral distances less than 100 km. In contrast, our method significantly enhances
detection accuracy. Moreover, the computational cost of our method is comparable to the
current method, making it straightforward to integrate into railway EEW systems. We plan
to proceed with the implementation of this improved method into the system.
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