
Citation: Richter, B.; Ulbrich, L.;

Herbers, M.; Marx, S. Advances in

Data Pre-Processing Methods for

Distributed Fiber Optic Strain Sensing.

Sensors 2024, 24, 7454. https://

doi.org/10.3390/s24237454

Academic Editor: Flavio Esposito

Received: 25 October 2024

Revised: 13 November 2024

Accepted: 19 November 2024

Published: 22 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Advances in Data Pre-Processing Methods for Distributed Fiber
Optic Strain Sensing
Bertram Richter 1 , Lisa Ulbrich 2 , Max Herbers 1 and Steffen Marx 1,*

1 Institute of Concrete Structures, TUD Dresden University of Technology, 01062 Dresden, Germany;
bertram.richter@tu-dresden.de (B.R.)

2 Hentschke Bau GmbH, Zeppelinstr. 15, 02625 Bautzen, Germany
* Correspondence: steffen.marx1@tu-dresden.de

Abstract: Because of their high spatial resolution over extended lengths, distributed fiber optic
sensors (DFOS) enable us to monitor a wide range of structural effects and offer great potential for
diverse structural health monitoring (SHM) applications. However, even under controlled conditions,
the useful signal in distributed strain sensing (DSS) data can be concealed by different types of
measurement principle-related disturbances: strain reading anomalies (SRAs), dropouts, and noise.
These disturbances can render the extraction of information for SHM difficult or even impossible.
Hence, cleaning the raw measurement data in a pre-processing stage is key for successful subsequent
data evaluation and damage detection on engineering structures. To improve the capabilities of pre-
processing procedures tailored to DSS data, characteristics and common remediation approaches
for SRAs, dropouts, and noise are discussed. Four advanced pre-processing algorithms (geometric
threshold method (GTM), outlier-specific correction procedure (OSCP), sliding modified z-score
(SMZS), and the cluster filter) are presented. An artificial but realistic benchmark data set simulating
different measurement scenarios is used to discuss the features of these algorithms. A flexible
and modular pre-processing workflow is implemented and made available with the algorithms.
Dedicated algorithms should be used to detect and remove SRAs. GTM, OSCP, and SMZS show
promising results, and the sliding average is inappropriate for this purpose. The preservation of
crack-induced strain peaks’ tips is imperative for reliable crack monitoring.

Keywords: structural health monitoring; distributed fiber optic sensing; data quality; automation;
data pre-processing; data filtering; software development; algorithm benchmarking

1. Introduction

The beneficial possibilities of distributed fiber optic sensors (DFOS) for the structural
health monitoring (SHM) of infrastructure, such as bridges [1–3], tunnels [4–6], dams [7],
pipelines [8], walls [9], or other engineering structures, are widely acknowledged [10–12].
It is anticipated that the maintenance costs are reduced by minimizing direct human inter-
action with the structure when DFOS are integrated into SHM systems with automated
evaluation capabilities [13,14]. One of the benefits of coherent optical frequency domain
reflectometry (c-OFDR)-based distributed strain sensing (DSS) is the ability to detect local
damages [15–18]. However, apart from physical influences (which should be accounted for
separately), raw DSS data are contaminated with different types of disturbances caused
by the measurement principle, which complicate the evaluation by obscuring the some-
times weak signal caused by a structural changes (e.g., damages) [19–21]. With respect
to real-world use cases, engineers will have to accept low-quality data even with the
best possible setup available due to challenging measurement conditions, such as dirt,
moisture, ambient vibrations [22], sensor degradation due to chemical or mechanical influ-
ences [23,24], transversal pressure, and further local effects [25]. A reliable evaluation of
DSS data requires the reliable elimination of those disturbances caused by the measurement
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principle [26], as well as compensation of the physical influences. This study focuses
on removing measurement principle-related disturbances from the raw data. The data
cleaning step is called pre-processing within this study as it is an upstream process of data
evaluation for the structural information extraction workflow.

While evaluating data, it was observed that the pre-processing capabilities at hand,
tailored towards DSS data, were insufficient. The process required manual intervention,
an iterative procedure (trial and error), or eyeballing. As pre-processing is an integral part
of the data evaluation workflow, the aforementioned benefits can only be achieved if pre-
processing can be carried out reliably and automatically. To tackle the challenge of DSS data
pre-processing, the following research questions are investigated. Each research question is
examined in one of the remaining sections.

• Which types of disturbances exist? What are their potential causes and characteristics? How
are they dealt with by the DFOS community? These questions are answered through a
literature review in Section 2.

• How can the pre-processing of DSS data be generalized? In Section 3, pre-processing tasks
are categorized, and a modular, flexible pre-processing workflow is presented.

• Which advanced pre-processing algorithms exist? In Section 4, selected pre-processing
algorithms are presented, their respective advantages and disadvantages are discussed,
and modifications are proposed.

• How reliable are the selected pre-processing algorithms on DSS data acquired in crack monitor-
ing scenarios? In Section 5, the benchmark prerequisites are presented. The benchmark
was carried out on artificial data, taking into account different scenarios. A simple
functional model—based on the DFOS sensitivity—is introduced to simulate crack-
induced strain peaks. Performance measures for the pre-processing are presented. In
Section 6, the benchmark results are discussed.

Limitations are highlighted in Section 6.4. Finally, concluding remarks are presented
in Section 7.

2. Measurement Disturbances in DFOS Data

This section provides an overview over three different disturbance types—strain read-
ing anomalies (SRAs), dropouts, and noise—present in DSS measurements. A schematic
of the disturbances is shown in Figure 1. For each disturbance type, causes and specific
characteristics are described, followed by an overview of coping strategies actually em-
ployed by other researchers. Although the causes and characteristics of the disturbances
are discussed specifically for the c-OFDR-based optical distributed sensor interrogator
(ODiSI) manufactured by Luna Inc. (Roanoke, VA, USA), the coping strategies should be
transferable to other DSS methods.

SRAs

Dropouts

Position x

St
ra

in
ε

Noisy Signal
Clean Signal

Local Effects

Figure 1. Schematic of the different measurement disturbances: SRAs, dropouts, and noise. The
variation in the signal marked as local effects is not caused by the measurement principle.
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2.1. Strain Reading Anomalies (SRAs)
2.1.1. Characteristics and Causes

SRAs are misreadings, characterized by outliers of implausible high or low values;
see Figure 1. SRAs are caused by a failed cross-correlation between the reference and
measurement signal in the ODiSI [27]. There are two types of SRAs. (i) Harmless strain
reading anomalies (HL-SRAs) are isolated glitches in the strain readings in space and time.
(ii) In contrast, harmful strain reading anomalies (HF-SRAs) persist (in time) after their
first occurrence.

2.1.2. Coping Strategies

It is recommended to convert SRAs to dropouts [19,27]. The conversion of a SRA
to a dropout is a form of outlier exclusion, which is common practice in data science
(replacing an “obviously wrong” value with an “unknown” value). This SRA elimination
can be divided into three steps: (i) Possible SRA candidates are identified in the first step.
Ideally, no false negatives (SRAs categorized as normal data) remain, at the cost of some
false positives (normal data categorized as SRAs). (ii) False positives are eliminated in the
second step—candidate verification. (iii) In the last step, identified SRAs are replaced with
not a number (NaN). Afterwards, the resulting dropout can be dealt with as discussed in
Section 2.2.

The ODiSI manufactured by Luna Inc. implements the conversion of SRAs to dropouts
with spectral shift quality (SSQ) as a reliability/outlier measure [21,22,28]. SSQ evaluates
the plausibility of the cross-correlation between the spectra of the reference reading and
the current measurement [29–32]. If the SSQ falls below a certain threshold, the reading
should be considered an outlier (SRA) and ignored in further processing steps (set to NaN).
Different SSQ thresholds are recommended (depending on the use case), e.g., <0.2 [29]
or <0.15 [31]. However, SSQ has been shown to be an insufficient measure in [27,31]. In
earlier series of the ODiSI, SSQ could be exported along with the raw measurements and the
threshold was configurable [28], which is no longer possible with the ODiSI 6100 series [22].
The SRAs contained in the exported data are exclusively false negative classifications
obtained using the SSQ method.

Other SRA elimination approaches for DSS data employ outlier detection algorithms,
such as (i) based on a local outlier factor [32], (ii) the geometric threshold method (GTM) [19],
(iii) the polynomial interpolation comparison method [19], (iv) based on the deviation from
sliding median filtering [33], (v) z-score-based algorithms [21], or (vi) the outlier-specific
correction procedure (OSCP) proposed for the processing of surface scans [34,35].

2.2. Dropouts
2.2.1. Characteristics and Causes

Dropouts are missing values represented by NaN in the exported DSS data; see
Figure 1. A reading becomes a dropout if it is flagged as anomalous by the ODiSI’s built-in
SRA detection method (SSQ) [21]. However, large total deviations from the reference state
or large gradients cause false positives. According to the manufacturer’s manual [22], the
limit for the absolute strain difference compared to the reference state is approximately
±12,000 µε. The permissible strain difference between two readings is specified in [28] as
517 µε for a gage pitch of 1.25 mm and 129 µε for a gage pitch of 5 mm. Exceeding these
limits results in dropouts. The influence of dropouts on c-OFDR-based crack monitoring is
discussed in [36].

2.2.2. Coping Strategies

There are two strategies to cope with the aforementioned limitations: (i) avoid the
technical conditions leading to dropouts and (ii) reconstruct missing values by interpolation
during the pre-processing stage.

The a priori approach is to avoid exceeding the technical limits of the ODiSI in the
first place. Here, the strain transfer between the host material and the optical fiber becomes
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crucial [37–39]. The DFOS type and installation method must always be selected according
to the specific measurement task. In [36], an empirical method is proposed for the design
of DFOS monitoring systems, accounting for the DFOS type, installation method, crack
pattern, and measurement settings.

The a posteriori approach is to eliminate dropouts from the raw data during the pre-
processing stage by (i) replacing them with estimated values using interpolation [20] or by
(ii) excluding the dropout readings from data (which might be equivalent to interpolation
depending on the later evaluation steps) [16].

Several approaches for interpolation can be applied. Linear interpolation between
the remaining valid readings along one axis (either space or time) is the standard ap-
proach [15,16,19,20,29]. However, linear interpolation results in a drastic underestimation
of the crack widths if the tip of the strain peaks is missing due to the technical limits of
the ODiSI. Interpolation with higher-degree polynomials are discussed in [27]. However,
polynomials can approximate complex strain profiles only locally due to their trend to-
wards positive or negative infinity when the argument increases indefinitely. Piece-wise
polynomial functions—so-called splines—can overcome this limitation of polynomials.
One specific spline type—AKIMA splines—have the advantages to not require assumptions,
are fast, and do not show overshooting behavior [40]. Hence, AKIMA splines are used to
interpolate dropouts in [41].

DSS data sets are time-series of one-dimensional spatially distributed data. Due to
the incompatible units (meter and s), there is no meaningful common metric of the space
and time. Hence, two-dimensional interpolation methods (e.g., as proposed in [34] for
two-dimensional spatial data using distance weighting) are not directly transferable to
DSS data.

2.3. Noise
2.3.1. Characteristics and Causes

Noise is a high-frequency, low-amplitude component usually present in measurement
data [34,42]; see Figure 1. Noise should not be confused with local effects, such as the
“concrete signature” caused by inhomogeneities and variations in YOUNG’s modulus within
the concrete matrix [43] or local strain variation due to bond interactions [25,33,44]. Noise
fluctuates in both dimensions (spatial and temporal), in contrast to those local effects, which
are relatively stable in time. The intensity and characteristics of noise depend on several
factors, such as the quality of fiber connectors, splices, or fibers; measurement settings
and the operational mode of the ODiSI, [22]; vibration [45]; or loss (e.g., caused by small
bending radii) [46].

2.3.2. Coping Strategies

Noise is commonly reduced by applying low-pass filters [47–49]. Examples for low-
pass filters used for smoothing DSS data are the sliding average [25,33,50,51], the sliding
median [52], locally weighted scatterplot smoothing (LOWESS) [53], BUTTERWORTH fil-
ters [20,54], BESSEL filters [20], SAVITZKY-GOLAY filters [20,49], wavelet filtering [55], and
extremal filtering [56]. However, filtering might be of questionable benefit or even detri-
mental (by distorting the signal), especially when applied excessively [33,47]. Another
approach is to apply aggregate functions to combine several readings when reducing
data size, also called “ensemble averaging” [20,39,47]; see Section 3. However, ensemble
averaging reduces the effective measurement rate or spatial resolution [55,56].

3. A Generic Workflow for Pre-Processing of DFOS Data

An appropriate pre-processing strategy depends on the data at hand and the goal of the
data evaluation. Hence, the individual pre-processing steps may change for each application.
Therefore, a generic pre-processing workflow should fulfill the following requirements.

Firstly, it should be possible to freely select and configure algorithms for each step
independently from each other. Secondly, the workflow should allow us to carry out the
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chosen algorithms in an arbitrary order. Thirdly, the workflow should respect that the data
array’s shape (number of rows and columns) might be changed by any of the algorithms.
Finally, each algorithm should be able to deal with both one-dimensional data (distributed
in time or space) and two-dimensional data (distributed in time and space). The operation
of inherently one-dimensional algorithms on two-dimensional data should be applied in a
transparent way along one axis—row-wise (along space domain) or column-wise (along
time domain).

To meet the previously stated requirements, the free open source software framework
fosanalysis implements from its version v0.4 onwards (available at https://github.com/
TUD-IMB/fosanalysis, published and accessed 18 November 2024) the concepts of task
objects and workflow objects to achieve a flexible pre-processing pipeline. The This concept
is visualized in Figure 2.

Masking

GTM
OSCP
z-score

SMZS
MZS
WHZ
SMZS

. . .

Repair
Interpolation

Linear
Spline
. . .Removal

Resizing

Aggregate
Average
Median
. . .Crop

Downsample
Resample

Filtering
Cluster
Sliding

Average
Median

. . .

(a)

Task 1

. . .

Pre-processing workflow

Input: x, y, z

Modify x, y, z
Task 2

Modify x, y, z

Return x, y, z

(b)

Masking: GTM

Example pre-processing workflow

Resizing: Aggregate: Median

Repair: Spline Interpolation

Filtering: Sliding Median

Resizing: Crop

(c)

Figure 2. The task and workflow duality implemented by the pre-processing module of fosanalysis.
(a) Class inheritance hierarchy of task objects. (b) Structure of a pre-processing workflow object.
(c) Pre-processing workflow with an exemplary sequence of task objects.

Task objects implement one specific algorithm, its methods, settings, and parameters.
Task objects are interchangeable because they expose the same interface. The group hierar-
chy of the pre-processing tasks is shown in Figure 2a. The terminology for pre-processing
tasks is as follows:

Masking algorithms identify SRAs using anomaly detection. For each element, a decision
is made of whether this element is considered anomalous (SRA) or a normal data
point. The values of elements considered anomalous are replaced with NaN. The
data array’s shape (number of rows and columns) is not changed. In this paper,
three SRA detection algorithms are presented: (i) the GTM discussed in Section 4.1,
(ii) the OSCP discussed in Section 4.2, and (iii) the sliding modified z-score (SMZS)
discussed in Section 4.3.

Repair algorithms replace dropouts with values estimated from the surrounding data,
usually by interpolation. The data array’s shape (number of rows and columns) might
be changed. Linear interpolation and spline interpolation for dropout reconstruction
are addressed in Section 6.3.

Filtering algorithms modify the values of the data to smooth the signal by reducing high-
frequency components (low-pass filters). The data array’s shape (number of rows and
columns) is not changed. In this paper, three filter algorithms are presented: (i) the
sliding average, (ii) the sliding median, and (iii) the cluster filter; see Section 4.4.

https://github.com/TUD-IMB/fosanalysis
https://github.com/TUD-IMB/fosanalysis
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Resizing algorithms change the data array’s shape. They can be divided into three groups:
(i) Downsampling is used to reduce the data volume by either taking only every
mth element or consolidating several elements into a single element using aggregate
functions (e.g., from two-dimensional to one-dimensional or even to a singleton) [47].
(ii) Resampling is used to obtain readings at different sampling points (in time
and/or space) compared to the original sampling points by means of interpolation.
(iii) Cropping is used to restrict the data to a specific area (i.e., cut away uninteresting parts).

Note that algorithms can have effects associated with multiple groups, e.g., downsam-
pling will also reduce the noise or a filtering algorithm might cancel out SRAs too.

Workflow objects are containers that implement the pre-processing pipeline and
coordinate multiple task objects; see Figure 2b. A workflow object holds the order of the
tasks and calls them sequentially. This container will pass its input to the first task object
and pipe the output of one task object to the input of the next task object. Because the tasks
are interchangeable, any sequence of pre-processing tasks can be established. An example
for such a workflow is shown in Figure 2c.

While the actual sequence of the pre-processing steps might depend on the data set
and the use case, particular sequences make sense:

• SRA removal should be followed up by dropout elimination.
• SRA removal should be carried out before smoothing.
• Downsampling with the average should be preceded by SRA removal.
• Downsampling with the median might not need to be preceded by SRA removal since

it is more stable against outliers and might stabilize the signal instead.
• Depending of the density of the target points, resampling might be preceded by a

combination of the other pre-processing steps.

4. Pre-Processing Algorithms

This section presents three masking algorithms (for SRA removal): (i) GTM in
Section 4.1, (ii) OSCP in Section 4.2, (iii) SMZS in Section 4.3. It also presents one fil-
tering algorithm (for smoothing): the cluster filter in Section 4.4. Implementations for all
four algorithms were made available with fosanalysis. Each of the following subsections
is structured into three parts: (i) a presentation of the algorithm’s original concept, (ii) a
discussion of the algorithm’s advantages and disadvantages, and (iii) a presentation of
modifications made to the algorithm to overcome the disadvantages.

Note that zero-based numbering (as is common in the Python 3 programming lan-
guage) is used for all algorithm descriptions. Assignment statements are denoted by a
left pointing arrow (e.g., a ← 0 means “the variable a is set to 0”, and a ← a + 1 means
“the value of a is incremented by one”), while equality comparison statements are denoted
by the equals sign (e.g., a = b? denotes a check, whether the variables a and b hold the
same value).

All presented algorithms operate on one-dimensional strain data. The operation of two-
dimensional strain data (time-series of spatially distributed measurements) is supported by
carrying out the one-dimensional operation for each row or column independently. The
algorithms can be applied both spatially (i.e., along the DFOS’ length for one specific time
stamp) or temporally (i.e., on a time-series of a specific position in the DFOS). However,
the relation along the DFOS’ length is governed by mechanical laws, whereas there is no
intrinsic relationship between consecutive measurements at different times. Hence, the
space-axis is recommended as the primary operational axis.

4.1. Geometric Threshold Method (GTM)
4.1.1. Original Concept

The geometric threshold method (GTM) is an algorithm intended to detect and neutral-
ize SRAs based on the comparison of local strain increments [19]. A flowchart representation
of the GTM is shown in Figure 3a; additions to the original concept are highlighted in
gray. The original (raw) strain array is denoted as εr, and the processed array is denoted εp.
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The GTM traverses the strain array with n elements and compares the candidate element
with index i to the current reference element with index k. The initial reference element
is the first element of the array. Elements that are dropouts are skipped. The candidate is
accepted as the new reference element if the absolute strain increment ∆ε = |εi − εk| from
the current candidate element to the reference element does not exceed the threshold ∆εmax.
Else, the candidate element is considered an SRA and set to NaN in the processed strain
array. The modifications of a forward neighbor comparison (FNC) and reverse sweep (RS)
are described in Section 4.1.3.

Start
εr, ∆εmax ← input

i← 0; k← 0; εp ← εr

i← i + 1

i ≥ n?
End

return εp

εr,i = NaN?

Check threshold∣∣εr,i − εr,k
∣∣ > ∆εmax?

FNC successful?

Accept candidate
εp,i ← εr,i

Candidate is SRA
εp,i ← NaN

k− i > 1 and
RS activated?

reverse sweepSet new reference
k← i

yes

no

no

yes

yes

no

yes

no

yes
no

(a) Sweep procedure

Start
mnext, t, i← input

m← 0; p← 0

mmax ← min (mnext, n− i)

m← m + 1

m > mmax?

Check threshold
|εr,i+m − εr,i| > ∆εmax?

p← p + 1

p
mmax

> t? fail

success

no

yes

no

yes

yes

no

(b) Forward neighbor comparison (FNC)

Figure 3. GTM for one-dimensional case, as presented in [19]; additions are highlighted in grey.

4.1.2. Advantages and Disadvantages

The GTM has the advantages of (i) being a simple algorithm, with a linear time
complexity class O(n) and (ii) featuring a threshold with a physical meaning. Hence, the
GTM is fast and easy to understand, and its results can be manually verified.

A disadvantage of the original GTM version is that it struggles to recover from large,
but legitimate increments in steep strain gradients (which are encountered, for example,
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in the slopes of crack-induced strain peaks). Since the reference element is updated only
when the candidate’s strain value is again within εk±∆εmax, in strain data with large signal
amplitudes, this condition might be fulfilled again only after a considerable distance or not
at all. As a result, extensive parts of the processed data might be incorrectly marked as
SRAs and replaced with NaN.

4.1.3. Modifications

To overcome the aforementioned flaw, two modifications are introduced. The first
modification—reverse sweep (RS)—is a backtracking mode, which is triggered if the
previous reference element and the new reference element are not direct neighbors after
accepting a candidate as a new reference element. In this case, the “normal” forward
sweep is paused, and the strain array is traversed in the reverse direction, starting from the
new reference element towards the old reference element. When the old reference point is
reached, the forward sweep is resumed.

The original algorithm uses backward-directed comparisons (to previously encoun-
tered elements) only. The second improvement—forward neighbor comparison (FNC)—is
an additional verification step. A flowchart representation of the FNC is shown in Figure 3b.
The FNC is triggered when a candidate is initially flagged as an SRA and compares the
strain increment to the elements ahead of the candidate element with the index i. In order
to handle multiple adjacent SRAs, a configurable number of neighbors mnext are taken into
account. Here, p is the number of neighbors exceeding the strain increment to the candi-
date: |εr,i+m − εr,i| > ∆εmax for m ∈ [1, mmax]. The FNC is successful and the candidate is
reaccepted if the ratio p

mmax
does not exceed the configurable tolerance ratio t. It should be

noted that the FNC makes RS mostly dispensable because elements to be reaccepted by RS
would already be accepted by FNC.

4.2. Outlier-Specific Correction Procedure (OSCP)
4.2.1. Concept

The outlier-specific correction procedure (OSCP) is an algorithm for outlier identifica-
tion on regular rasterized topological data [34,35] and can be used within the scope of DSS
to detect and neutralize SRAs. The algorithm is structured into two phases: (i) candidate
detection and (ii) candidate verification. A flowchart representation of the OSCP is shown
in Figure 4.

In the first stage, outlier candidates are detected based on the the elements’ relative
height εrel = |εr − smed (εr, r)|, which is defined as the absolute difference between the
original value εr and the value of the central sliding median with its window’s inradius
r. After the array of relative heights, εrel is calculated in a vectorized manner, and the
cumulative density function C(εrel) is established. For reasons of numerical stability,
C(εrel) is resampled, e.g., using equidistantly spaced quantiles of 1 %. The deduction of
the threshold tεrel is based on two assumptions: (i) Outliers have a large relative height
compared to normal data points. Hence, the threshold has to be located in the upper half
(C(εrel) > 0.5). (ii) SRAs are few in comparison to normal data points with large distances
in εrel. Hence, the threshold has to be located in the asymptotic part of C(εrel), i.e., where
the curve is “flat enough”. The second condition is represented by 1

C′(εrel)
> L, with the

flatness given as the reciprocal of the cumulative density function’s first derivative C′(εrel)
and the flatness level L configuration parameter.
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Start
εr, rmax, L← input

εp ← εr; r ← 0
εSRA,i ← False for i ∈ [0, n− 1]

r ← r + 1

r > rmax?

Calculate relative height
εrel ← |εr − smed (εr, r)|

Calculate C(εrel)

Resample C(εrel)

Get threshold
tεrel ← min

{
εrel

∣∣∣ C(εrel) > 0.5∧ 1
C′(εrel)

> L
}

Mark candidates
εSRA,i ← True if εrel,i > tεrel for i ∈ [0, n− 1]

no

Calculate strain increments
∆εi ← |εi+1 − εi| for i ∈ [0, n− 2]

Calculate C(∆ε)

Resample C(∆ε)

Get threshold
t∆ε ← min

{
∆ε

∣∣∣ C(∆ε) > 0.5∧ 1
C′(∆ε)

> L
}

Find group boundaries
B← {i | ∆εi > t∆ε for i ∈ [0, n− 2]}

Assemble groups

Verify candidates groupwise

Mask outliers
εp,i ← NaN if εSRA,i = True for i ∈ [0, n− 1]

End
return εp

yes

1. Candidate detection

2. Candidate verification

Figure 4. OSCP, adapted from [34].

An element is flagged as an outlier candidate in the array of boolean values εSRA if its
relative height exceeds the threshold: εrel,i > tεrel . The steps described above (calculation of
relative height, determination of the threshold, and candidate flagging) are carried out for
variable inradii r ∈ {1, . . . , rmax} to detect different-sized outlier clusters. The inradius of
the largest window rmax is a configuration parameter that determines the largest detectable
outlier cluster. An element enters the verification stage as a candidate if it was flagged in at
least one pass among all inradii.

The second stage—outlier verification—is based on the absolute strain increment
between neighboring elements ∆ε. The estimation of the strain increment threshold t∆ε

with the cumulated density function C(∆ε) is analogous to the first stage. Then, the
strain array is divided into groups of contiguous neighboring elements. The set of group
boundaries B contains the indices of the groups’ last elements, found where the strain
increment ∆ε is larger than the strain increment threshold ∆ε > t∆ε. While the process of
grouping is straightforward for 1D, it is more intricate for 2D and not described in [34,35].
Grouping in 2D is carried out as follows. Firstly, the steps from the strain increment
calculation through group boundary detection are carried out separately for each direction.
In 2D, indices are an ordered pair. Initial primitive groups are built by iterating over the
array (still separated for each dimension) row-wise and column-wise. Before adding the
current index to the current group, the conditions for the beginning of a new group are
evaluated: (i) the current index is contained in the set of group boundaries B or (ii) the end
of the array in this direction is reached and the iteration resumes with the first element of
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the next row or column. Then, the primitive groups are merged when they contain at least
one common index, until only groups with pairwise distinct indices are left. Note that this
results in non-rectangular shaped 2D groups.

Finally, elements belonging to groups consisting of only candidates are confirmed as
SRAs and converted into dropouts, replacing their values with NaN. Candidates in mixed
groups (consisting of normal elements and of candidates) are considered normal elements.

4.2.2. Advantages and Disadvantages

The advantageous properties of the OSCP are that it (i) can deal with clustered SRAs,
(ii) is direction agnostic, and (iii) supports 2D operation, since it does not depend on a
common metric for space and time.

Disadvantageous properties of the OSCP are (i) its complexity with relatively high
numerical cost (governed by the repeated sliding median, repeated sorting for the cumu-
lated density function, and the group merging necessary in the 2D case), (ii) the unintuitive
flatness level parameter L, and (iii) possible instabilities in the threshold estimation because
the empiric cumulated density function is not a smooth function, even with resampling.

4.2.3. Modifications

The modifications to the original description presented in [34] are as follows. (i) The
cumulative density function C is calculated without the intermediate histogram, and C
is resampled afterwards with a configurable number of quantiles. (ii) In the original
use case for surface scanning, both directions have the same unit, and the increments
in both directions can be put into the same cumulated density function C(∆ε). This is
not reasonable for time-series of spatially distributed measurements due to the different
meaning of time and space. To support direct 2D operation, the group boundaries are
determined for each dimension separately. Hence, the steps from the calculation of ∆ε
through the initial group are carried out for each dimension separately. (iii) The thresh-
old can be set directly, which enables us to skip the determination via the cumulative
density function.

4.3. Outlier Detection Based on the z-Score
4.3.1. Concept

The z-score is a statistical measure for the distance of sample values from the sample
center. There is a family of simple outlier detection algorithms based on the concept that a
value is considered an outlier if its z-score exceeds a given threshold zmax. Being an outlier
measure, the z-score can be used to identify and neutralize SRAs. A representation of the
general algorithm is shown in Figure 5. There, εr denotes the original (raw) strain array,
and εp is the processed strain array.

Four algorithms are presented, which differ in the calculation of the z-score. The basic
z-score (BZS) uses the arithmetic average ε as the sample center and the standard deviation
σ as the unit [57].

The modified z-score (MZS) uses the median ε̃ = med (εr) as the sample center and
the median absolute deviation (MAD) εMAD as the unit instead of the standard deviation
σ. To obtain results comparable to those of the BZS, the factor 0.6745 is used because
the expected value of the MAD is EMAD = 0.6745σ for large sets of normally distributed
data [57].

The WHITAKER–HAYES z-score (WHZ) is a modification of the MZS, which uses
the array of increments between values ∆ε instead of the original values [58]. This ap-
proach has the benefit that the influences of trends and low-frequency changes in the data
are eliminated.
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Calculate z: BZS

ε← 1
n

n−1

∑
i=0

εr,i

σ←

√
∑n−1

i=0 (εr,i − ε)2

n− 1

zi ←
∣∣∣∣ εr,i − ε

σ

∣∣∣∣ for i ∈ [0, n− 1]

Calculate z: WHZ
∆εi ← εr,i+1 − εr,i for i ∈ [0, n− 2]

ε̃← med (∆ε)

εMAD ← med (|∆ε− ε̃|)

zi ← 0.6745
∣∣∣∣∆εi − ε̃

εMAD

∣∣∣∣ for i ∈ [0, n− 1]

Calculate z: MZS
ε̃← med (εr)

εMAD ← med (|εr − ε̃|)

zi ← 0.6745
∣∣∣∣ εr,i − ε̃

εMAD

∣∣∣∣ for i ∈ [0, n− 1]

Calculate z: SMZS
εrel ← |εr − smed (zr, r)|

εMAD ← med (|εrel|)

εMEAN ←
1
n

n−1

∑
i=0
|εrel,i|

zi ←

0.6745
∣∣∣ εrel,i

εMAD

∣∣∣ if εMAD ̸= 0

0.7979
∣∣∣ εrel,i

εMEAN

∣∣∣ else
for i ∈ [0, n− 1]

εp ← εr

Start
εr, zmax, r ← input

Mask outliers
εp,i ← NaN if zi > zmax for i ∈ [0, n− 1]

End
return εp

or or or or

Figure 5. Algorithm of the z-score family.

The sliding modified z-score (SMZS) (a modification of the MZS) uses the relative
heights εrel as a basis [21]. The relative heights are given by the difference between the
central element εr,i and the median of elements in the surrounding window with the
inradius r. When the mean absolute deviation is used as a fallback option, the correction
factor 0.7979 is used instead of 0.6745 because the expected value for the mean absolute
deviation is EMEAN = 0.7979σ for large sets of normally distributed data [59].

4.3.2. Advantages and Disadvantages

Advantageous properties of the z-score-based methods are (i) their algorithmic sim-
plicity and low computational effort with linear time complexity O(n), (ii) that the z-score
highlights outliers by exaggerating how much an outlier stands out from the normal data,
and (iii) that outliers are recognized in relation with the natural variability of the data. Apart
from that, the strengths and weaknesses of the algorithm are governed by the strengths
and weaknesses of the calculation rule for the z-score array.

The BZS has the advantage that it is a common statistical measure. However, a
weakness is its vulnerability to the distorting effect that individual outliers have on the
z-score of all members (caused by the use of the average). Because the BZS takes all
members of a sample into account, its use is restricted to stationary data. This makes the
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BZS unsuitable for non-stationary data, such as DSS data of cracked concrete specimens,
where the signal changes over a wide range of values.

The MZS is more robust against outliers due to the use of the median. However, since
the MZS uses the complete sample, it is not suitable (like the BZS) to use with DSS data
exhibiting large signal variation.

The WHZ solves this problem by operating on the increment. This comes at the ex-
pense of false positives, since the z-score of normal data adjacent to SRAs is also anomalous.
Another weakness is that adjacent SRAs with similar values are not detectable. This might
lead to problems in the presence of anomalous areas.

The SMZS intended to solve this problem by taking only the local vicinity into account.
The disadvantage is the introduction of an additional parameter r for the sliding window,
which dependents on the data properties.

4.4. Cluster Filter
4.4.1. Concept

The cluster filter is an iterative distance-weighted filtering algorithm [42]. It is intended
to smooth data by means of outlier resistant noise reduction while preserving local features.
A flowchart representation of the cluster filter algorithm is shown in Figure 6. For each
element k for all n elements in the strain array, with its position xk and original strain
value εr,k, the smoothed value is estimated in an iterative process. Here, n denotes the total
number of elements in the one-dimensional array. The influence weight wk,i of another
element identified by the index i ∈ [0, n− 1] on the element k falls off exponentially with
the squared EUCLIDean distance ∥xi − xk∥2 multiplied with negative α. The falloff factor
α is the main configuration parameter and influences the scale of the cluster filter. The
initial estimate is calculated as the weighted average over all elements. In each iteration
step t, an intermediate parameter β(t) is calculated representing the local variance before
proceeding to calculate the next estimate ε

(t)
k . The iterative estimation is guaranteed to

converge and is stopped if the change in estimation between two consecutive iteration
steps falls below the threshold ∆εtol, the second configuration parameter. Then, the value of
the final iteration value is stored in the processed strain array εp, and the algorithm moves
on to the next element.

4.4.2. Advantages, Disadvantages, and Modifications

An advantageous property of the cluster filter is its robustness against SRAs, as their
influence is demoted with the parameter β. However, the cluster filter’s high computational
cost with a quadratic time complexity class O(n2) is a disadvantage.

The algorithm was modified to replace the weight and strain values of dropout
elements with 0. This enables the filter to yield decent interpolation for singular or very
short dropout fields.
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Start
εr, α, ∆εtol ← input

k← 0; t← 0

k = n?
End

return εp

Calculate weights
wk,i ← exp

(
−α∥xi − xk∥2) for i ∈ [0, n− 1]

Calculate initial guess

ε
(0)
k ←

∑n−1
i εr,iwk,i

∑n−1
i wk,i

t← t + 1

Calculate local variance parameter

β(t) ← ∑n−1
i wk,i

2 ∑n−1
i wk,i

(
εr,i−ε

(t−1)
k

)2

Calculate new estimate

ε
(t)
k ←

∑n−1
i εr,iwk,i exp

(
−β(t)

(
εr,i−ε

(t−1)
k

)2
)

∑n−1
i wk,i exp

(
−β(t)

(
εr,i−ε

(t−1)
k

)2
)

Check convergence∣∣∣ε(t)k − ε
(t−1)
k

∣∣∣ < ∆εtol?

εp,k ← ε
(t)
k

k← k + 1
t← 0

yes

no

no

yes

Figure 6. Cluster filter, according to [42].

5. Benchmarks and Quality Measures

The following benchmarks are used to assess the performance of the presented algo-
rithms to remove c-OFDR measurement principle-related disturbances from DSS data. This
section presents the fundamentals of those benchmarks—firstly, the data in Section 5.1, and
secondly, the accuracy measures in Section 5.2.

5.1. Benchmark Data

Because all real data contain disturbances (related to the measurement principle and
physical effects), the ground truth of real measurements cannot be known. In such a case,
pre-processing algorithms could only be compared against a reference algorithm—which
would naturally perform best in this benchmark (when compared to itself). The benchmarks
need to be carried out in a controlled and repeatable environment for a fair performance
comparison. Hence, an artificial data set is synthesized, which enables us to compare the
result of the pre-processing algorithms to the “true” signal. The “true” signal—hereafter
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called clean signal (described in Section 5.1.1)—simulates different monitoring use cases.
The simulated disturbances with realistic properties—described in Section 5.1.2—enable
the transfer of the results to real monitoring data sets.

The disturbed strain array εr—simulating the raw DSS data—is composed as the
element-wise superposition of the following components: (i) clean signal εc, (ii) noise εn,
(iii) SRAs εSRA, and (iv) dropouts εd:

εr = εc + εn + εSRA + εd. (1)

The composition of the clean signal εc is described in Section 5.1.1, and the synthesis
of the disturbances is presented in Section 5.1.2. A plot of the benchmark data is shown in
Figure 7, and the data set was made available as open data [60]. Note the different scaling
of the vertical axes.
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Figure 7. Benchmark data scenarios: (a) zero signal; (b) ramps; (c) strain profile with weak DFOS
bond; (d) strain profile with medium DFOS bond; (e) strain profile with stiff DFOS bond. The data
set is available in [60].
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5.1.1. Clean Signal

To simulate different use cases commonly encountered with DFOS-based DSS monitor-
ing, five different scenarios are generated: (a) constant zero signal, (b) ramps with abrupt
changes in the level of the signal, (c) crack pattern with weak bond between the concrete
matrix and the DFOS, (d) crack pattern with normal bond between the concrete matrix and
the DFOS, and (e) crack pattern with stiff bond between the concrete matrix and the DFOS.

The first scenario (see Figure 7a) simulates a measurement with a stationary signal,
encountered in both the space and time domains. In the space domain, such a flat strain
profile is encountered in an uncracked concrete specimen (after taring). In the time domain,
constant load results in such a stationary time-series for one gage. Hence, the clean signal
is the zero vector.

The second scenario (see Figure 7b) simulates ramps and steps encountered with,
e.g., varying cross-sectional geometries in steel construction. The spikes and jumps are
deliberately modeled to exaggerate potentially difficult cases for the algorithms. Hence,
it is expected that this scenario is difficult for the algorithms, resulting in a high number
of misidentifications.

The last three scenarios (see Figure 7c–e) simulate strain curves obtained in the use
case of the DFOS-based crack monitoring of concrete structures. The crack positions and
widths are fixed. From Figure 7c–e, the bond stiffness between the DFOS’ core and the
substrate increases, resulting in increasingly pronounced strain peaks. The bond stiffness
can be described by means of the DFOS sensitivity [61]:

γ =
εmax

wcr
(2)

with the crack width wcr and the maximum strain reading εmax. The higher the sensitivity,
the stiffer the bond between optical fiber and substrate [61]. Values for this benchmark are
chosen based on the results of preliminary studies [15,36]. A weak bond is simulated with
γ = 7 m−1, which is associated with a layered robust DFOS. A medium bond is simulated
with γ = 25 m−1, corresponding to a monolithic robust DFOS. A stiff bond is simulated
with γ = 35 m−1, corresponding to a filigree DFOS with an acrylate coating.

The clean signal εc for the strain profiles (Figure 7c–e) is the superposition of several
peak shape functions. Due to its resemblance to strain peaks in real DSS data, a GAUSSian
function is chosen as the base peak shape function

ϕ(x, µ, σ) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
(3)

with the expected value µ and standard deviation σ. Considering Equation (2), σ becomes

σ =
1

γ
√

2π
. (4)

By inserting Equation (4) into Equation (3), replacing the expected value µ with the position
of the crack xcr, and scaling with the crack width wcr, the strain function for the kth crack
εk becomes

εk(x, wcr,k, γ, xcr,k) = wcr,kγ× exp

− (x− xcr,k)
2

2
(

1
γ
√

2π

)2

. (5)

Finally, the clean signal is synthesized by superposing all strain peaks for all k cracks:

εc(x) = ∑
k

εk(x, wk, γ, xcr,k). (6)
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Equation (6) is applied in a vectorized manner for the positional array x, which is generated
in the range of 0 m to 3 m with a spatial resolution (gage pitch) of 0.65 mm. The parameters
xcr,k, wcr,k, and εmax,k for different γ values are given in Table 1.

Table 1. Crack pattern parameters for the simulated strain profiles Figure 7c–e.

Number Position Crack Width Maximum Strain εmax,k in µε

k xcr,k in m wcr,k in µm γ = 7 m−1 γ = 25 m−1 γ = 35 m−1

1 0.2 181 1267 4525 6335
2 0.37 295 2065 7375 10,325
3 0.53 354 2478 8850 12,390
4 0.716 450 3150 11,250 15,750
5 0.91 321 2247 8025 11,235
6 1.03 220 1540 5500 7700
7 1.13 308 2156 7700 10,780
8 1.24 21 147 525 735
9 1.35 273 1911 6825 9555

10 1.42 211 1477 5275 7385
11 1.54 109 763 2725 3815
12 1.64 213 1491 5325 7455
13 1.75 77 539 1925 2695
14 1.895 293 2051 7325 10,255
15 2.08 1253 8771 31,325 43,855
16 2.3 369 2583 9225 12,915
17 2.455 836 5852 20,900 29,260

5.1.2. Disturbance Parameters

The parameters for the disturbances—noise, SRAs, and dropouts—are chosen to
simulate measurement data of mediocre quality. The noise component is simulated with a
standard normal distribution with the expected value µ = 0 µε and a standard deviation
σ = 10 µε drawn as a consecutive sequence with a random number generator.

SRAs are simulated using a two-step process. Firstly, the positions of the SRAs are
randomly distributed through a BERNOULLI trial using a 5 % probability for an element to
be an SRA. Then, the SRA values are sampled randomly from a data set extracted from real
experiments [60,62] and added to the signal.

An element is a dropout if any of the following criteria is fulfilled. (i) The element is
chosen in a BERNOULLI trial with a dropout rate of 10 %. (ii) The absolute value exceeds
|εc| > 12,000 µε, simulating the ODiSI’s absolute measurement range [22]. (iii) The absolute
strain increment exceeds |∆εc| > 975 µε, simulating the ODiSI’s technical limit for the
measurable the strain gradient. This strain increment threshold is related to the ODiSI’s
maximum measurable strain gradient of 1480 µε/mm for a gage pitch of 0.65 mm [36].
Values of dropout elements are replaced with NaN in the strain signal. Note that the
dropout takes precedence if a reading is both a dropout and a SRA.

Noise, randomly distributed dropouts (due to the BERNOULLI process criterion) and
SRAs are fixed across all scenarios for comparability, i.e., the values are generated once and
added to all scenarios. However, the dropouts simulating the technical limits of the ODiSI
differ between the scenarios.

5.2. Performance Measures
5.2.1. SRA Detection Accuracy Measures

The SRA detection accuracy is estimated based on the rate of false positives (normal
data classified as SRAs) and false negatives (SRAs classified as normal data) in relation to
the correct number of SRAs. Because the confusion matrix does not take the severity of
the misidentification into account, another measure is developed: the weighted confusion
measure (WCM). The WCM is a penalty function that reflects both frequency and the
impact of misidentifications. Hence, the WCM is higher as more misidentifications occur
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and with larger identification mistakes. The WCM has two components: one for false
positives (αWCM) and one for false negatives (βWCM).

Regarding false negatives, the larger the missed SRA, the larger is severity of the
mistake. The penalty for a false negative at the index i is εSRA,i the SRA-value added to the
clean signal, which is known for the synthetic benchmark data. Then, βWCM is the sum
over all penalties:

βWCM = ∑
i

{
εSRA,i if false-negative,
0 else.

(7)

For false positives, the opposite is the case: the false positiveis the worse, the more
similar an element is to its surrounding. However, since εSRA,i = 0 false positives, an
additional penalty value pWCM is introduced. It is compared to the actual absolute average
strain increments ∆εl,i = εi − εi−1 and ∆εr,i = εi+1 − εi to the left and right neighbors of
the noisy strain signal’s element. The penalty for a false positive is the absolute difference
between pWCM and the average of those two strain increments. Then, αWCM is the sum
over all penalties:

αWCM = ∑
i

{
pWCM −

∣∣∆εl,i − ∆εr,i
∣∣ if false-positive,

0 else.
(8)

To avoid artifacts, pWCM should be set about the largest expected false positive SRAs. In
the following benchmarks, pWCM = 10,000 µε is used.

5.2.2. Filter Quality Measures

The filtering accuracy is assessed based on the deviation between the clean signal εc
and the processed signal εp with the positional index i and the total number of gages n.
Then, the mean error (ME) is

∆εME =
1
n

n

∑
i

∣∣εc,i − εp,i
∣∣. (9)

Another measure—which emphasizes larger derivations—is the root mean square
error (RMSE):

∆εRSME =

√
1
n

n

∑
i

(
εc,i − εp,i

)2. (10)

5.2.3. Crack Width Error Measure

The accuracy of dropout reconstruction is assessed with the relative crack width
estimation error

∆wcr,rel =
wcr,num − wcr,ref

wcr,ref
(11)

with wcr,num being the crack width integrated from the pre-processed (reconstructed) strain
peak and wcr,ref being the reference crack width.

6. Results and Discussion

This section presents the carried out benchmarks and is divided into four subsections.
The three first subsections are dedicated to SRA detection algorithms (Section 6.1), noise
reduction (Section 6.2), and the reconstruction of strain peaks with dropouts (Section 6.3).
In each of those subsections, the specific benchmark setup is described followed by a
presentation and discussion of the results. General limitations of the benchmark are
pointed out in Section 6.4. All benchmarks were carried out using fosanalysis.
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6.1. SRA Detection Accuracy

In this study, the SRA detection algorithms were applied on the benchmark data and
their performances were evaluated.

6.1.1. Setup

Figures 8–12 compare the algorithms GTM, OSCP, and SMZS in terms of their accuracy
for the five benchmark scenarios examined, as shown in Figures 8–12. The x-axes show
the threshold value (according to the respective definition). The threshold is varied in
the intervals (i) ∆εmax ∈ [300, 1500] for the GTM, (ii) L ∈ [0, 40,000] for the OSCP, and
(iii) zmax ∈ [1.0, 100] for the SMZS. For the GTM, FNC with a range of mnext = 1 and a
tolerance t = 0 and RS were activated. The OSCP and SMZS additionally depend on the
radius of the underlying sliding windows, which is varied r ∈ {3, 5, 10, 15}. The legend
is used for both the OSCP and SMZS. The y-axes show the WCM components for false
negative βWCM and false positive αWCM misidentifications depending on the configuration,
with lower values for αWCM and βWCM indicating a better accuracy. The logarithmic y-axes
allow for a direct comparison. To circumvent the problem that 0 cannot be displayed in a
logarithmic scale, 1 is added to all values as the base line.
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Figure 8. SRA detection accuracy for the algorithms for scenario (a) zero.
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Figure 9. SRA detection accuracy for the algorithms for scenario (b) ramps.



Sensors 2024, 24, 7454 19 of 31

500 1000 1500
∆εmax

0 20,000 40,000
L

0 50 100
zmax

GTM OSCP SMZS

101

103

β
W

C
M

102

105

α
W

C
M

r = 3
r = 5
r = 10
r = 15

r = 3
r = 5
r = 10
r = 15

Figure 10. SRA detection accuracy for the algorithms for scenario (c) weak bond.
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Figure 11. SRA detection accuracy for the algorithms for scenario (d) normal bond.
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Figure 12. SRA detection accuracy for the algorithms for scenario (e) stiff bond.



Sensors 2024, 24, 7454 20 of 31

6.1.2. Scenario Comparison

The optimal algorithm configuration is dependent on the data set [21]. Hence, the
different scenarios are used to identify the strengths and weaknesses of the algorithms.
The trade-off between the rate of false negatives to false positives is seen in the general
tendency that higher thresholds result in smaller αWCM but larger βWCM.

The results in scenarios (a) and (c) (see Figures 8 and 10) are very similar. Both
scenarios (a) and (c) have a low variance in the signal, so the SRAs stand out clearly,
making them the easiest scenarios for the SRA detection. All algorithms perform well, and
there exists a configuration range for perfect results with neither false positives nor false
negatives for the GTM and SMZS but not for the OSCP in scenario c, where the OSCP
reports more false positives.

The results for the both crack scenarios (d) and (e) (see Figures 11 and 12) are closely
related. With a higher variance in both scenarios (d) and (e), no configuration can be found
for neither false negatives nor false positives. Still, scenario (e) is more difficult due to the
dropouts and steeper gradients, resulting in a slightly tighter configuration leeway. In the
plot for the GTM, the value used to simulate the technical strain gradient limit is clearly
visible represented in the drop in αWCM.

Scenario (b) (see Figure 9) stands out as the most difficult one among the five scenarios,
and the algorithms have a considerably higher αWCM and βWCM. There is no configuration
yielding perfect or near-perfect results. The cause for these difficulties are the steep ramps
and sharp tips of the triangular ramps. Here, the random dropouts in the ramps impact the
OSCP and SMZS. The large variance in the ramps reduces the z-score of the SRAs in the
SMZS. Avoiding enormous amounts of false positives in the ramps with the GTM requires
∆εmax to be larger that any genuine strain increment. Hence, scenario (b) would require an
infeasible high threshold, preventing the GTM from identifying smaller SRAs.

6.1.3. Algorithm Comparison

With a larger radius for the OSCP and SMZS, fewer false negatives but more false
positives are generated. However, the sensitivity to the radius seems to be higher for the
number of false positives than the number of false negatives. The explanation for this is
that the benchmark data contain HL-SRAs only and no anomalous areas. Tips of peaks are
more likely flagged as SRAs the larger the radius is.

The presence of dropouts in the vicinity of SRAs generally increases the probability
of misidentifications and makes configuration more difficult. Hence, the largest influence
due to dropout is encountered in scenarios (d) and (e). The classification of the OSCP and
SMZS is unreliable for the r gages neighboring wide continuous dropout fields because the
reduced number of values makes the sliding median less robust. Hence, locally extreme
values (e.g., in the flanks) become false positives, and SRAs embedded in the dropout field
cannot be detected and become false negatives.

GTM

Compared to the other SRA detection algorithms, the GTM has the advantages (i) that
it has only one primary configuration parameter (∆εmax), which has a physical meaning
(intuitive to understand) and a comfortable configuration corridor; (ii) that it retains regular
data at the edge of compact dropout fields; (iii) that it should be able to detect even
HF-SRAs with appropriate settings; and (iv) its low computational requirements. However,
it struggles with steep inclinations (seen in scenario b). The lower limit for the threshold
is the technical limit of the ODiSI, up to which strain increments should be considered as
regular. The upper limit is given by the lowest SRAs contained in the data set. Hence, the
threshold should be set to about ∆εmax = 1000 µε, which proved reliable for all scenarios.

OSCP

For the most scenarios, the OSCP takes the middle ground between the GTM and
SMZS, but has slightly better results than the other two algorithms in scenario (b). Com-
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pared to the other two algorithms, the OSCP’s advantages are (i) the data-driven adaptive
threshold with rich configuration options, which is not as intuitive to understand; (ii) that
it can identify clustered SRAs; and (iii) it being native in 2D operation mode, which could
find more HF-SRAs but at the cost of a serious performance impact.

However, the OSCP has weaknesses in that it tends to flag normal data in the vicinity
(up to rmax) of compact dropout fields in peak flanks, cf. scenarios (d) and (e). This behavior
is due to the fact that the median is distorted and the values close to the dropout field are
the most extreme ones in the sliding window. These additional false positives contribute to
the growths of the dropout field. As rule of thumb, the larger the rmax, the longer the band
of false positives, but the larger the threshold and the fewer false positives. False negatives
are most likely when enclosed by large compact dropout fields.

Another drawback is the high computational cost of the OSCP because the sliding
median is carried out multiple times over the entire data set. This will become more
relevant the higher that rmax is.

To reduce βWCM, the radius should be larger than rmax > 2, but since βWCM increases
with the radius, r should not be excessively large. Hence, a value of rmax = 5 is appropriate
for the benchmark data. The flatness should be set at about L ∈ [15,000, 40,000]. The best-
performing setup for the benchmark data at hand would be rmax = 5 and L = 20,000.

Instead of the data-driven estimation of t, the OSCP allows the user to set t directly
as well. In this case, the OSCP yields an accuracy comparable to that of the GTM, and
t = ∆εmax = 1000 µε seems to be a good threshold, but the disadvantageous canceling of
genuine values at dropout fields remains.

SMZS

As visible in Figures 8–12, with the exception of Figure 10, the results of the SMZS
and OSCP are similar. The SMZS’s configuration range is tighter than that of the OSCP in
most scenarios. While the SMZS perform worse than the OSCP in scenario (b), the SMZS
performs better than the OSCP in crack pattern scenarios.

The z-score algorithm family comprises several variants [21]. Each variant implements
options for different data set characteristics. Advantages of the z-score algorithms are (i) that
the threshold zmax is based on the statistical distribution of the data; (ii) that a dynamic
threshold (zmax (that varies over the data set) for signals with varying characteristics is
possible [21]; (iii) that it can take the complete measurement into account, which works
best for nearly constant signals; and (iv) that it supports native 2D operation.

On the other hand, the SMZS comes with some disadvantages as well: (i) its tendency
to flag false positives at the edges of dropout fields in the peak slopes (up to r

2 ), (ii) its
configuration corridor for good results is tighter than that of GTM with more sensitive
parameters (especially the radius), and (iii) its limited capability in anomalous areas.

The numerical cost of the SMZS is between those of the GTM and OSCP. The best-
performing parameter combination for the benchmark data would be r = 5 and zmax = 40.

6.2. Noise Reduction Benchmark
6.2.1. Setup

This benchmark is used to compare (i) the sliding average, also known as sliding mean,
(ignoring NaNs); (ii) the sliding median (ignoring NaNs); and (iii) the cluster filter for
their effectiveness in reducing noise and their suitability in neutralizing SRAs. Two cases
are investigated. The first case considers noise as the only disturbance type: the “dirty”
signal is composed of the clean signal εc and the noise component εc. The second case
additionally incorporates SRAs and dropouts and uses the benchmark data as shown in
Figure 7 to test the robustness of these three methods. This benchmark will highlight the
importance of dedicated SRA detection algorithms and show that the sliding average is
particularly inappropriate for removing SRAs.

The algorithm’s filter width parameter (which configures how far one element influ-
ences the filtered signal) was varied to investigate the sensitivity. The filter width parameter
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for the sliding filters is the window radius, which was varied between r ∈ [0, 10]. The
higher the r, the higher the width. The filter width parameter for the cluster filter is the
scaling factor α, which was varied α ∈ [103, 106]. The lower the α, the higher the width.
Additionally, the cluster filter’s tolerance convergence criterion is fixed at 0.1, and the
filling of the dropouts is deactivated. Note that a radius of r = 0 or α = ∞ is equivalent to
no filtering.

6.2.2. Results

The accuracy of the filtering methods is assessed by means of the ∆εME according to
Equation (9), and the ∆εRSME, according to Equation (10). The combined interpretation
of both ∆εME and ∆εRSME enables a more detailed assessment. For reference, the noisy
signal has the error measures ∆εME = 8 µε and ∆εRSME = 10 µε. Note the logarithmic
scale for the error measures (y-axis) and the parameter α (x-axis) for the cluster filter in
Figures 13 and 14.
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Figure 13. Results of filter benchmarks for case 1: noisy signal without SRAs or dropouts.
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Figure 14. Results of filter benchmarks for case 2: noisy signal with SRAs and dropouts.
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Case 1: Noise Only

The first benchmark case’s results are shown in Figure 13. Overall, all three filters
show similar results. It is notable that both ∆εME and ∆εRSME show the same qualitative
behavior, indicating that there is no redistribution of errors. The filter width-dependent
behavior results can be distinguished into three families: (i) the quasi-stationary (i.e., no
or very little variance in the clean signal) scenario a), where the errors approach 0 with
increasing filter width; (ii) the dynamic (i.e., mild to strong variance in the clean signal)
scenarios (c), (d), and (e), where errors first decrease up to a certain filter width, but after
that increase again; and (iii) the sharp-edged (i.e., strong variance in the clean signal with
sharp edges) scenario (b), where the error is strictly increasing with an increasing filter
width. The sliding average performs slightly better than the sliding median in scenario (a),
as the sliding average is statistically optimal filter with white (i.e., normally distributed
random) noise with respect to reaction sharpness [47].

For the medium dynamic scenarios, the error measures first decrease, but increase
again with increasing range. The points of the minimum errors depend on the sharpness
of the changes in the signal. Eventually, the errors exceed the raw signals’ errors at the
point where the negative effect of signal manipulation dominates the smoothing effect.
This shows the tight limits for the beneficial use of filtering. The beneficial range of the
sliding median is larger than the sliding averages’ one.

The results in scenario (b) show that the sliding median preserves edges better than
the sliding average. The sliding average and the cluster filter round out curves, resulting in
a distorted signal; see Figure 15.
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Figure 15. Section of strain data pre-processed with the filters: sliding average (r = 5), sliding median
(r = 5), cluster filter (α = 1.3× 105). (a) Scenario (b), (b) scenario (d).

Case 2: Noise, SRAs, and Dropouts

The second benchmark case’s results are shown in Figure 14. Due to the simulated
dropouts, the different scenarios have varying values for the ∆εME of the unfiltered result
from 245.8 µε to 252.4 µε and for the ∆εRSME from 1814.8 µε to 1836.3 µε.

The results of the algorithms differ notably for the second case (with dropouts and
SRAs). Firstly, for the sliding average, it is visible that the ∆εME is on a relatively constant,
high level. The non-stationary scenarios do not have a beneficial range for the filter width.
The ∆εME increase comes from the “interpolation” effect on boundaries of large compact
dropout fields, which grows in strength with the filter width. Conversely, the sliding
average has a smooth interpolation effect on isolated dropouts. However, the ∆εRSME is
reduced with increasing filter width. This shows that the sliding average does not eliminate
the errors introduced by the SRA. Instead, the sliding average redistributes the error value
of the SRAs to the adjacent r elements. Hence, an SRA is softened and results in bumps
in the signal; see Figure 15. This has a serious implication, as those bumps might be
indistinguishable from legitimate local effects (e.g., cracks) and alter the actual signal.



Sensors 2024, 24, 7454 24 of 31

A considerable reduction in both ∆εME and ∆εRSME is achieved when employing the
sliding median. The drastic drop in errors indicates that the sliding median remediates
the errors introduced by the SRAs. The sliding median’s filtered signal is not affected
by isolated SRA. Again, the points of minimum errors depend on the variance in the
clean signal and the error measure, with the corresponding radius varying r ∈ [2, 5]. The
increasing part is again due to the distortion governed by the distortion on the edges of
dropout fields; see Figure 15.

The cluster filter takes the middle ground between the sliding average and the sliding
median. Similar to to the sliding average, the cluster filter softens SRAs to bumps in the
resulting signal. However, due to the large dissimilarity of SRAs with the surrounding
data, the cluster filter assigns a smaller weight to SRAs. Hence, the disruptive influence of
SRAs is drastically reduced. Similarly to the other algorithms, the cluster filter exhibits a
boundary effect on large dropouts fields. In comparison to the other filters, the cluster filter
requires enormous numerical effort.

Filtering Example

Figure 15 shows examples of raw and filtered data for a visual comparison. Figure 15a
shows a section from scenario (b), highlighting the different capabilities of the filters to
preserve edges. Figure 15b shows a section from scenario (d), where the distorting effect on
the edge of the dropout field is visible. It is visible in both figures how the sliding average
and the cluster filter smooth out SRAs and the sliding median cancels out SRAs.

Recommendations

As with anomaly detection, the best parameters are use case-dependent. The sliding
average is a very solid choice for noisy, but SRA free data, but are inappropriate for
eliminating SRA. While less prone to SRAs, the same judgment holds for the cluster filter.
In the case of data with SRAs, it is recommended to employ a dedicated SRA detection
algorithm (or alternatively, the sliding median) instead. The SRA detection algorithm
could be followed by an optional filter pass. However, the filtering pass is not always
necessary. Filtering might improve the signal quality but bears the risk of signal distortion
if overdone. As an aside, this investigation showed that there was no benefit to chaining a
sliding median and a sliding average.

6.3. Dropout Reconstruction
6.3.1. Setup

This section is dedicated to comparing two simple, yet common repair methods: (i) lin-
ear interpolation and (ii) spline interpolation using an AKIMA spline. For demonstration
purposes, a GAUSSian curve, normalized to xcr = 0, εmax = 1, and σ = 1, was chosen. The
influence of scaling and sensitivity is negligible for the sake of this benchmark.

In the first case of the benchmark, the steepest parts of the slope—located around
the inflections points—are erased. Dropouts in the peak flanks caused by strain gradients
that are too steep are the most common cause of dropouts [21,36]. With the factor t for
the widths of the dropout field in terms of the curve’s standard deviation σ computed
according to Equation (4), all elements εi within tσ around the curve’s inflection points
|xi ± σ| < tσ are set to NaN.

In the second case of the benchmark, the highest part of the peak is erased by setting
all elements εi to NaN, for which |xi| < (1 + t)σ holds. In other words, the part of the tip
that would remain in the first case when t < 1 is erased as well; see Figure 16. Then, the
dropouts are replaced with interpolated values, and the crack widths are calculated by
integrating the strain profile [31]. Finally, the accuracy of the reconstruction is evaluated
using Equation (11).
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Figure 16. Left column: normalized strain peak with applied dropouts; right column: reconstructed
strain peak with (i) t = 0.25, (ii) t = 0.75, and (iii) t = 1.25. The right-hand-side plot details the
highlighted part in the left-hand-side plot.

6.3.2. Results

Figure 16 shows some strain profiles for selected t ∈ {0.25, 0.75, 1.25} for the first
case. Both cases are identical for t > 1. The left-hand side shows the reference signal
and the signal with the dropouts. The right-hand-side plots show the same strain profiles
interpolated using the two approaches. While the difference is not visible or very small
for t < 1, the difference between the reference and the reconstructed signal in the third
example, where the peak tip is missing, is striking.

In Figure 17, the relative crack width error according to Equation (11) is plotted against
t. Solid lines correspond to the first case (erased slopes), and dashed lines correspond to
the second benchmark case (erased tip). As already mentioned, both benchmark cases are
the same for t > 1.0. However, for t < 1.0, they differ fundamentally.
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Figure 17. Error in crack widths ∆wcr,rel for linear and AKIMA spline interpolation, depending on the
amount of dropout t. The right-hand-side plot is the highlighted detail of the left plot.
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In the second benchmark case, the crack width is underestimated by both approaches,
and the errors increase continuously with increasing t. As expected, the AKIMA spline is
closer to the reference than the linear interpolation. Note that for the second benchmark
case, the peak tip between the inflection points is already erased for t = 0.0.

In the first benchmark case, the errors stay close to 0 until the critical point t = 1.0.
Then, the complete peak tip is lost, and both approaches lead to prone errors. For better
visibility, the error of the first benchmark case’s errors for t ∈ [0.0, 1.0]—where the peak
tip is still present—is magnified in the right-hand-side plot. It is visible that the errors
do not exceed ±5 %. These observations are consistent with those from experimental
tests [36]. While the linear interpolations tend to underestimate the crack width, the AKIMA

spline tends to overestimate it, which is on the safe side. Whether the crack width is
underestimated or overestimated depends on the general shape function of the crack. For
an exponential peak function [63], both approaches might overestimate the actual crack
width. In general, the AKIMA spline offers a smaller deviation from the reference curve
than the linear interpolation.

The conclusions from this benchmark are as follows. As long as the tip of a strain
peak is preserved, the reconstruction results are acceptable with both interpolation meth-
ods. Although the AKIMA spline has an overall better fit than the linear interpolation,
both approaches are not able to reconstruct the complete upper peak tip with reasonable
error. For reconstructing strain peaks with a severe amount of dropout, more sophis-
ticated estimation approaches are required. Those approaches—based on mechanical
models [63,64], fitting analytical functions [36], or machine learning models [65,66]—could
leverage the knowledge of DFOS sensitivity for specific combinations of sensor, adhesive,
and installation methods.

At the moment, preserving the strain peak tips is imperative for reliable crack monitor-
ing. This conclusion imposes implications for both the “hardware” and the “software” part.
Regarding the “hardware”, it is most important to choose a sensor–adhesive combination
appropriate for the measuring task, e.g., based on preliminary crack pattern simulation [36].
For the “software”, it is most important to not remove the peak tips in the pre-processing,
especially in the SRA masking stage. In particular, when only a few gages with valid values
are left, distinguishing them from SRAs is challenging.

6.4. Limitations

Some limitations of this study shall be pointed out. The benchmark contained sev-
eral scenarios to simulate different use cases. However, real data might contain further
interfering influences caused by physical effects, such as inhomogeneities in the concrete
material [43], effects of local bonds [16,33,44], or temperature changes [67]. Because ac-
counting for those physical effects (e.g., by compensation measures) is another step in
the data evaluation; these were not taken into account in the benchmark. The SRAs and
dropouts were distributed independently of each other in the benchmark data. However,
it was observed that SRAs and dropouts do have a dependence and that it is more likely
that an SRA neighbors a dropout or another SRA than a genuine value [62]. Additionally,
the simulation did not take HF-SRAs into account. Only a rather simple approach was
taken to simulate the dropouts due to technical limitations, as a more detailed investigation
can be found in [36]. The algorithms may therefore perform differently on real data. The
benchmark was carried out on only one instance of the benchmark data, only on one-
dimensional data. However, the algorithms could utilize additional information when
operating in a native 2D mode.

7. Conclusions

Even with the best monitoring setup, DSS measurement data might contain serious
signal disturbances. Depending on their severity, these disturbances make further data
processing and information extraction difficult or even impossible. Therefore, the pre-
processing of the raw data with advanced approaches is required. The three different



Sensors 2024, 24, 7454 27 of 31

disturbance types found in DSS data—SRAs, dropouts, and noise—were investigated in
this study. Their causes and commonly applied remediation approaches were discussed.
Selected pre-processing approaches were discussed in detail, implemented and bench-
marked with a synthetic data set. A generic pre-processing workflow for DSS data was
proposed and implemented into the free open source software framework fosanalysis.
The following conclusions could be drawn.

7.1. SRA Detection

In general, it is recommended to use a dedicated SRA detection algorithm. All three
investigated algorithms (GTM, OSCP, and SMZS) can detect SRAs with acceptable relia-
bility. Only a few minor and hard-to-detect SRAs were undetected. Given the benchmark
results, the GTM would be equally or slightly preferred over SMZS, with the OSCP taking
third place. The algorithms differ mostly in their tendency to false positives in the vicinity
of dropout fields and their numerical costs. For all algorithms, a trade-off between false
negatives and false positives was observed, and suitable parameter ranges were identified.
However, false positives are not problematic, unless they remove primary features (e.g.,
the peak tips) of the signal. Hence, some manual quality control is still recommended.

7.2. Filtering

Filtering has a limited beneficial range with an optimum in the trade-off between noise
removal and preserving local effects. However, some use cases might not require filtering
at all. For example, the noise of ±10 µε is unproblematic for crack width monitoring [16].
All three investigated filters (sliding average, sliding median, and the cluster filter) work
well on SRA free signals. In this case, the benchmark results of the sliding median are
comparable to those of the sliding average. In the second case, where strain curves with
SRAs and dropouts were analyzed, the sliding median was shown to be stable against
solitary anomalies with more extreme deviations from the true signal. As these outliers
are the main challenge for the subsequent processing steps, the sliding median is often the
better choice over the cluster filter or the sliding average.

7.3. Reconstruction

Dropouts most commonly occur in the flanks of strain peaks due to exceeding the
technical limitations of the ODiSI. The reconstruction of dropout sections using simple
interpolation methods (such as linear and AKIMA spline interpolation) yields good results
as long as the strain peaks tips are preserved. In this case, the relative error for crack width
calculation stays within 5 %. However, if the strain peak tip is lost, the associated crack
width is drastically underestimated. Hence, the best strategy is to avoid excessive absolute
strain values and strain gradients by selecting an appropriate DFOS–adhesive combination
according to the monitoring task [36]. Other approaches could yield more accurate peak
reconstruction results, e.g., based on machine learning [65,68], mechanical models [63,69],
or numerical simulations [70,71].

7.4. Final Remarks

Since the requirements for the pre-processing workflow are specific to the data set at
hand, there is no “one size fits all” solution for pre-processing. Hence, a flexible workflow
is proposed with these recommended steps (although the order might require changes):

• Use a dedicated SRA detection algorithm;
• Use downsampling along the time axis with the median as an aggregation function to

leverage its noise reduction feature which is robust against HL-SRAs when analyzing
static loading situations;

• Use the sliding median as a smoothing filter;
• Use an AKIMA spline for interpolation.

Pre-processing cannot replace high-quality raw data in the first place. Maintaining
the best possible quality of raw data is a critical task in the design phase of DFOS-based
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monitoring systems. For example, preserving the strain peak tips is critical for crack
monitoring. In the value chain of data processing, the trustworthiness of the final result is
limited to the lowest trustworthiness of all the links in the entire chain. Hence, no matter
what pre-processing is used, if the raw data are of poor quality, the results cannot be trusted.
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BZS basic z-score
c-OFDR coherent optical frequency domain reflectometry
DFOS distributed fiber optic sensor
DSS distributed strain sensing
FNC forward neighbor comparison
GTM geometric threshold method
HF-SRA harmful strain reading anomaly
HL-SRA harmless strain reading anomaly
MAD median absolute deviation
MZS modified z-score
OSCP outlier-specific correction procedure
NaN not a number
ODiSI optical distributed sensor interrogator
RS reverse sweep
SHM structural health monitoring
RMSE root mean square error
ME mean error
SRA strain reading anomaly
SMZS sliding modified z-score
SSQ spectral shift quality
WCM weighted confusion measure
WHZ WHITAKER–HAYES z-score
αWCM weighted confusion measure for false positives
βWCM weighted confusion measure for false negatives
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