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Abstract: Since multi-view learning leverages complementary information from multiple feature
sets to improve model performance, a tensor-based data fusion layer for neural networks, called
Multi-View Data Tensor Fusion (MV-DTF), is used. It fuses M feature spaces X1, · · · ,XM, referred
to as views, in a new latent tensor space, S , of order P and dimension J1 × · · · × JP, defined in the
space of affine mappings composed of a multilinear map T : X1 × · · · ×XM → S—represented as
the Einstein product between a (P + M)-order tensor A anda rank-one tensor, X = x(1) ⊗ · · · ⊗ x(M),
where x(m) ∈ Xm is the m-th view—and a translation. Unfortunately, as the number of views
increases, the number of parameters that determine the MV-DTF layer grows exponentially, and
consequently, so does its computational complexity. To address this issue, we enforce low-rank
constraints on certain subtensors of tensor A using canonical polyadic decomposition, from which M
other tensors U(1), · · · ,U(M), called here Hadamard factor tensors, are obtained. We found that the
Einstein product A⊛M X can be approximated using a sum of R Hadamard products of M Einstein
products encoded as U(m) ⊛1 x(m), where R is related to the decomposition rank of subtensors of A.
For this relationship, the lower the rank values, the more computationally efficient the approximation.
To the best of our knowledge, this relationship has not previously been reported in the literature. As
a case study, we present a multitask model of vehicle traffic surveillance for occlusion detection and
vehicle-size classification tasks, with a low-rank MV-DTF layer, achieving up to 92.81% and 95.10% in
the normalized weighted Matthews correlation coefficient metric in individual tasks, representing a
significant 6% and 7% improvement compared to the single-task single-view models.

Keywords: Einstein product; Hadamard product; Hadamard factor tensors; multi-view learning;
multitask learning; vehicle traffic surveillance

1. Introduction

Vehicle traffic surveillance (VTS) systems are key components of intelligent trans-
portation systems (ITSs), as they enable the automated video content analysis of traffic
scenes to extract valuable traffic data. It includes crucial aspects of vehicle behavior, such
as trajectories and speed, as well as traffic parameters, e.g., lane occupancy, traffic volume,
and density. These data serve as the cornerstone for a variety of high-level ITS applications,
including collision detection [1,2], route planning, and traffic control [3,4]. Currently, there
exist several mathematical models for various tasks related to vehicle traffic, each with
different conditions and traffic network topologies. For a comprehensive overview of
vehicle traffic models, see, e.g., [5].

However, due to the complex nature of vehicle traffic, VTS systems are usually broken
down into a set of smaller tasks, including vehicle detection, occlusion handling, and classi-
fication [6–14]. Each task is represented as a feature model, which should be related to the
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underlying task-specific explanatory factors, while it is either developed by human experts
(hand-crafted) or automatically learned. These features focus on specific aspects of vehicles,
such as texture, color, and shape, which individually provide complementary information
to each other. Therefore, finding a highly descriptive feature model is crucial for enhancing
the learning process on every VTS task.

Such feature diversity has made data fusion (DF) attractive for leveraging its shared
and complementary information. DF allows for the integration of data from different
sources to enhance our understanding and analysis of the underlying process [15]. In this
context, there are two common DF levels [16]: low-level, where data are combined before
analysis, and decision-level, where processed data from each source are integrated at a
higher level, such as in ensemble learning [17]. Moreover, the diverse nature of data sources
poses challenges, such as heterogeneity across sources, high-dimensional data, missing
values, and a lot of redundancy that DF algorithms should address [18,19].

As part of DF, multi-view learning (MVL) is a machine learning (ML) paradigm that
exploits the shared and complementary information contained in multiple data sources,
called views, obtained from different feature sets [20]. Here, data represented by M views
are referred to as M-view data. For instance, an image represented by texture, edges,
and color features can be regarded as three-view data. MVL methods can be grouped into
three categories: co-training, multiple kernel learning, and subspace learning (SL) [21,22].
Among these, SL-based methods focus on learning a low-dimensional latent subspace that
captures the shared information across views [23].

On the other hand, multitask learning (MTL) is another ML paradigm where multiple
related tasks are learned simultaneously to leverage their shared knowledge, with the
ultimate aim of improving generalization and performance in individual tasks [24–28].

Recently, artificial neural networks (ANNs) have shown superior performance in
vision-based VTS systems. ANNs are computational models built from a composition of
functions, called layers, which together capture the underlying relationships between the so-
called input and output spaces to solve a given task, such as regression or classification [29].
Such layers, including fully connected (FC) and convolutional (Conv), are parameterized
by weights and biases structured as tensors, matrices, or vectors, which are learned during
training. Notably, the first layers usually act as feature extractors, whereas higher layers
capture the relationships between extracted features and the output space.

Furthermore, higher-order tensors [30], or multidimensional arrays, have gained
significant attention over the last decade due to their ability to naturally represent multi-
modal data, e.g., images and videos, and their interactions. They have been successfully
applied in various domains, including signal processing [31], machine learning [32–37],
computer vision [38], and wireless communications [39,40]. For instance, tensor methods
such as decomposition models have been employed for the low-rank approximation of
tensor data, enabling more efficient and effective analysis of such data.

In this work, we propose a computationally efficient tensor-based multi-view data
fusion layer for neural networks, here expressed as the Einstein product. Our approach
leverages multiple feature spaces to address the limitations inherent to single-view models,
such as reduced data representation capacity and model overfitting. It offers improved
flexibility and scalability, as it enables the integration of additional views without sig-
nificantly increasing the computational burden. Finally, we present a case study with a
multitask, multi-view VTS model, demonstrating significant performance improvements
in vehicle-size classification and occlusion-detection tasks.

1.1. Related Work

Occlusion detection is a challenging problem in vision-based tasks, in which vehicles
or some parts of them are hidden by other elements in the traffic scene, making their
detection a difficult task. Early works have explored approaches based on empirical models,
which infer the presence of occlusion by assuming specific geometric patterns, such as
concavity in the shape of occluded vehicles [41–47]. Recently, deep learning (DL) has also
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been employed for occlusion detection [48–52], where such models are even capable of
reconstructing the occluded parts [53,54].

Several algorithms based on ML and DL have been proposed for intra- and inter-class
vehicle classification [6,8,9,55–60]. In [8], Hsieh et al. employ the optimal classifier to
categorize vehicles as cars, buses, or trucks by leveraging the linearity and size features of
vehicles, achieving accuracy of up to 97.0%. Moussa [9] introduces two levels of vehicle
classification: the multiclass level, which categorizes vehicles as small, midsize, and large,
and the intra-class level, in which midsize vehicles are classified as pickups, SUVs, and vans.
In [6], we proposed a one-class support vector machine (OC-SVM) classifier with a radial
basis kernel to classify vehicles as small, midsize, and large. By representing vehicles
in a 3D feature space (area, width, and aspect-ratio) features, a recall, precision, and f-
measure of up to 99.05% were achieved for the midsize class. Other techniques include
the gray-level co-occurrence matrix (GLCM) [61], 3D appearance models [62–64], eigenve-
hicles [65], and non-negative factorization [66–68]. Recently, CNN-based classifiers have
been employed, outperforming previous works [55,58–60,69].

Other works based on MLV and MTL have also been developed for VTS systems.
For instance, Wang et al. [70] proposed an MVL approach to foreground detection, where
three-view heterogeneous data (brightness, chromaticity, and texture variations) are em-
ployed to improve detection performance. Then, their conditional probability densities
are estimated via kernel density estimation, followed by pixel labeling through a Markov
random field. In [71], a multi-view object retrieval approach to surveillance videos inte-
grates semantic structure information from CNNs trained on ImageNet and deep color
features, using locality-sensitive hashing (LSH) to encode the features into short binary
codes for efficient retrieval. Chu et al. [72] present vehicle detection with multitask CNNs
and a region-of-interest (RoI) voting scheme. This framework addresses simultaneously
supervision with subcategory, region overlap, bounding-box regression, and category in-
formation to enhance detection performance. In [73], a multi-task CNN for traffic scene
understanding is proposed. The CNN consists of a shared encoder and specific decoders
for road segmentation and object detection, generating complementary representations effi-
ciently. Additionally, the detection stage predicts object orientation, aiding in 3D bounding
box estimation. Finally, Liu et al. [74] introduce the Multi-Task Attention Network (MTAN),
a shared network with a global feature pooling and task-specific soft-attention modules to
learn task-specific features from global features while allowing feature sharing across tasks.

Although, our work is focused on multi-view and multitask VTS systems, some works
related to other domains are also overviewed. In [36], a tensor-based, multi-view feature
selection method called DUAL-TMFS is proposed for effective disease diagnosis. This
approach integrates clinical, imaging, immunologic, serologic, and cognitive data into a
joint space using tensor products, and it employs SVM with recursive feature elimination
to select relevant features, improving classification performance in neurological disorder
datasets. Zadeh et al. [75] introduce a novel model called a tensor fusion network for
multimodal sentiment analysis. It leverages the outer product between modalities to model
both the intra-modality and inter-modality dynamics. On the other hand, Liu et al. [76]
propose an efficient multimodal fusion scheme using low-rank tensors. Experimental
validations across multimodal sentiment analysis, speaker trait analysis, and emotion
recognition tasks demonstrate competitive performance and robustness across a variety of
low-rank settings.

Table 1 offers a comprehensive overview of existing research related to our approach
and to VTS systems. It highlights the use of ML and DL approaches, fed either by hand-
crafted features or raw data with automatic feature learning, to capture the underlying
task patterns. While DL features generally achieve superior performance, they require
large, high-quality training sets and high computational complexity models to find suitable
representations. Conversely, hand-crafted features can perform competitively for specific
tasks, but determining the optimal feature representation is challenging, as no single
hand-crafted feature can fully describe the underlying task’s relationships.
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Furthermore, the emerging trend towards the adoption of ANN models on VTS
systems is evident. However, despite their high performance, these models demand sub-
stantial memory and computational resources for learning and inference, as their layers
are usually overparameterized. To address these challenges, various techniques such as
sparsification, quantization, and low-rank approximation have been proposed to compress
the parameters of pre-trained layers [77–83]. Among these techniques, low-rank approx-
imation is very often employed. In [79,80], Denil et al. compress FC layers using matrix
decomposition models. Conv layers are compressed via tensor decompositions, including
canonical polyadic decomposition (CPD) [81,82] and Tucker decomposition [83]. How-
ever, compressing pre-trained layers usually results in an accuracy loss, and a fine-tuning
procedure is often employed to recover the accuracy drop [82,84–86]. Therefore, some
authors have suggested the incorporation of low-rank constraints into the optimization
problem [87–89]. Other works have found that compressing raw images before training also
contributes to computational complexity reduction, as suggested in [32,90]. Additionally,
in [91], tensor contraction layers (TCLs) and tensor regression layers (TRLs) are introduced
in CNNs for dimensionality reduction and multilinear regression tasks, respectively. This
approach imposes low-rank constraints via Tucker decomposition on the weights of TCLs
and TRLs to speed up their computations.

Table 1. Related work summary.

Reference Input Method Contribution

[6,8–10,14] Single-view ML Hand-crafted geometric features represent vehicles for detection and
classification using ML-based algorithms

[11,12] Single-view DL CNN models are proposed to perform automatic feature learning for
vehicle detection and classification

[65] Single-view Eigenvalue decomposition Eigenvehicles are introduced as an unsupervised feature
representation method for vehicle recognition

[66–68] Single-view Nonnegative factorization A part-based model is employed for vehicle recognition via
non-negative matrix/tensor factorization

[72–74] Single-view DL-based MTL
MTL models based on DL are employed to simultaneously perform
multiple tasks, including road segmentation, vehicle detection
and classification

[92] Multi-view DL This work employs a YOLO-based model that fuses camera and
LiDAR data at multiple levels

[61,93,94] Single-view ML Single-view features, such as HOG, Haar wavelets, or GLCM,
represent vehicles for classification in ML models

[95] Multi-view Tucker decomposition A tensor decomposition is employed for feature selection of HOG,
LBP, and FDF features

[70,71,96] Multi-view MVL
MVL approaches are proposed to enhance vehicle detection,
classification, and background modeling by learning richer data
representations from color features

[30,97–100] − −
These works provide theoretical foundations on tensors and its
operations, such as the Einstein and Hadamard products,
with applications across multiple domains

[32,77–83,90] − DL
Matrix and tensor decompositions are employed for speeding up
CNNs by compressing FC and Conv layers and reducing the
dimensionality of their input space

[91] − DL
Multilinear layers are introduced for dimensionality reduction and
regression purposes in CNNs, leveraging tensor decompositions for
efficient computation.
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1.2. Contributions

The main contributions of this work are the following:

1. We found a novel connection or mathematical relationship between the Einstein and
Hadamard products for tensors (for details, see Section 5.2). From this connection,
other algorithms for efficient approximations of the Einstein product can be developed.

2. Since multi-view models provide a more comprehensive input space than single-view
models, we employ a tensor-based data fusion layer, here called multi-view data
tensor fusion (MV-DTF). Unlike other works, our approach maps the multiple feature
spaces (views) into a latent tensor space, S , using a multilinear map, here expressed
as the Einstein product (see Section 5), followed by a translation.

3. A major drawback of the MV-DTF layer is its high computational complexity, which
grows exponentially with the number of views. To address this issue, a low-rank
approximation for the MV-DTF layer, here called the low-rank multi-view data tensor
fusion (LRMV-DTF) layer, is also proposed. This approach leverages the novel rela-
tionship between the Einstein and Hadamard products (see Section 5.2), where the
lower the rank values, the more computationally efficient the operation.

4. As a case study, we introduce a high-performance multitask ANN model for VTS
systems capable of simultaneously addressing various VTS tasks but which is here
limited to occlusion detection and vehicle-size classification. This model incorporates
the proposed LRMV-DTF layer as multi-view feature extractor to provide a more
comprehensive input space compared to individual spaces.

1.3. How to Read This Article

For a comprehensive understanding of this paper, the following is suggested the
following: Section 1 presents the motivation behind our research on VTS systems, as well
as a review of their related works, while Section 2 introduces tensor algebra and multilinear
maps, which will be essential for understanding the subsequent mathematical definitions;
however, if you are already familiar with their theoretical foundations, you can proceed
directly to Section 3 to delve into the problem statement and its mathematical formulation,
where the main objectives are stated. These objectives are important to understand the
major results of the paper. Section 4 provides a comprehensive overview of VTS systems
and their associated tasks as an important case study. If you are already familiar with these
concepts, proceed to Section 5 for the technical and mathematical details of the MV-DTF
layer. Particularly, Section 5 is very important because it presents the novel connection
between Einstein and Hadamard products. Section 6 presents the results and their analysis
for a deeper understanding of our findings, which are complemented by figures and tables
to facilitate data interpretation. Finally, Section 7 provides the conclusions of this work,
summarizing the key points and suggesting directions for future research.

2. Mathematical Background
2.1. Notation

In this study, we adopt the conventional notation established in [30], along with other
commonly used symbols. Table 2 provides a comprehensive overview of the symbols
utilized in this paper. An Nth-order tensor is denoted by X ∈ RI1×···×IN , where the
dimension In is usually referred to as the n-mode of X. The ith entry of a vector, x ∈ RI ,
is denoted as xi; the (i, j)th entry of a matrix X ∈ RI×J by xij; while the (i1, · · · , iN)th
entry of an Nth-order tensor X ∈ RI1×···×IN is denoted as xi1i2···iN , where in ∈ [In] is called
the n-mode index. The n-mode fiber of an Nth-order tensor is an In-dimensional vector
resulted from fixing every index but in; i.e., Xi1i2···in−1 : in+1···iN ∈ RIn , where colon mark :
denotes all possible values of the n-mode index in, i.e., [In]. The ith n-mode slice of an Nth-
order tensor is an (N − 1)th-order tensor defined by just fixing the in index, i.e., X::···in : ···:.
Finally, for any two functions, f1 and f2, f1 ◦ f2 denotes their function composition. For an
understanding on tensor algebra, we refer the interested reader to the comprehensive work
by Kolda and Bader [30].
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Table 2. Basic notation used in this work.

R,N,B The field for real, natural, and binary numbers
≃ It denotes isomorphism between two structures
[N] The subset of natural numbers {1, · · · , N} ⊂ N
X, X, x, x Tensor, matrix, column vector, and scalar
dim(V) The dimension of a vector space, V
⊙ Hadamard product
⊗ Tensor product
×n The n-mode tensor-matrix product
⊛N The Einstein product along the last N modes
X(i1,··· ,iM) The (i1, · · · , iM)th element of a sequence, {X(1,··· ,1), · · · , X(I1,··· ,IM)}

indexed by i1 ∈ [I1], · · · , iM ∈ [IM], where X can be a scalar, vector, or tensor
Xm The feature space for the m-th view
Yt The output space for the t-th task
ft The t-th classification task
g, ĝ The MV-DTF layer and its low-rank approximation
ht The t-th task-specific function
Ht Hypothesis space of the classifiers for the t-th task
S The latent tensor space
P The order of the latent tensor space S
J1 × · · · × JP The dimension of the latent tensor space S
R(j1,··· ,jP) For a tensor A ∈ RJ1×···×JP×I1×···×IM , it denotes the

tensor rank of the (j1, · · · , jP)-th subtensor Aj1···jP : ··· :

2.2. Multilinear Algebra

This section provides an overview of basic concepts of multilinear algebra, such as
tensors and their operations over a set of vector spaces.

Definition 1 (Multilinear map [101]). Let V1, · · · , VM and W be vector spaces over a field,
R. And let T : V1 × · · · × VM → W be a function that maps an ordered M-tuple of vectors,
(v(1), · · · , v(M)) ∈ V1 × · · · × VM, into an element, w ∈ W, where v(m) ∈ Vm∀m ∈ [M]. If, for
all a, b ∈ R and v(m), u(m) ∈ Vm∀m ∈ [M], Equation (1) holds, then T is said to be a multilinear
map (or an M-linear map); i.e., it is linear in each argument.

T (v(1), · · · , v(m−1), a v(m) + bu(m), v(m+1), · · · , v(M)) =

aT (v(1), · · · , v(m−1), v(m), v(m+1) · · · , v(M)) + bT (v(1), · · · , v(m−1), u(m), v(m+1) · · · , v(M))
(1)

Definition 2 (Tensor product). Let V1, · · · , VM and W be real vector spaces, where
dim(Vm) = Im∀m ∈ [M], and dim(W) = J. Then, the tensor product of the set of M
vector spaces V1, · · · , VM, denoted as V1 ⊗ · · · ⊗ VM, is another vector space of dimension
dim(V1 ⊗ · · · ⊗ VM) = ∏M

m=1 dim(Vm), called tensor space, together with a multilinear map,
π : V1 × · · · × VM → V1 ⊗ · · · ⊗ VM, that satisfies the following universal mapping prop-
erty [101,102]: for any multilinear map T : V1 × · · · × VM → W, there exists a unique linear
map, Φ : V1 ⊗ · · · ⊗ VM → W, such that T = Φ ◦ π.

Definition 3 (Tensor). Let V1, · · · , VM be vector spaces over some field, F, where dim(Vm) =
Im∀m ∈ [M]. An M-order tensor, denoted as X, is an element in the tensor product V1 ⊗ · · · ⊗VM.

Definition 4 (m-mode matricization [30]). The m-mode matricization is a mapping that rear-
ranges the m-mode fibers of a tensor, X ∈ RI1×···×IM , into the columns of a matrix, X(m) ∈ RIm×J ,
where J = ∏M

k=1,k ̸=m Ik.

Definition 5 (Rank-one tensor). LetX ∈ RI1×···×IM be an Mth-order tensor, and let x(1), · · · , x(M)

be a set of M vectors, where x(m) ∈ RIm for all m ∈ [M]. Then, if X can be written using the tensor
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product x(1) ⊗ · · · ⊗ x(M), it is said to be a rank-one tensor, and its (i1, · · · , iM)-th entry will be
determined by xi1···iM = ∏M

m=1 x(m)
im .

Definition 6 (Tensor decomposition rank). The decomposition rank, R, of a tensor, X ∈
RI1×···×IM , is the smallest number of rank-one tensors that reconstructs X exactly as their sum.
Then, X is called a rank-R tensor.

Definition 7 (Tensor multilinear rank). For any Mth-order tensor, X, its multilinear rank,
denoted as mlrank(X), is the M-tuple (r1, · · · , rM), whose mth entry, rm, corresponds to the
dimension of the column space of X(m), i.e., rm = dim(Col(X(m))), formally called m-mode rank.

Definition 8 (Tensor m-mode product). Given a tensor, X ∈ RI1×···×IM , and a matrix,
U ∈ RJ×Im , their m-mode product, denoted as X ×m U, produces another tensor,
Y ∈ RI1×···×Im−1×J×Im+1×···×IM , whose (i1, · · · , im−1, j, im+1, · · · , iM)th entry is given by Equa-
tion (2). Therefore, Y = X×m U ⇐⇒ Y(m) = UX(m).

yi1,···im−1 jim+1···iM =
Im

∑
im=1

xi1,···im ···iM · ujim (2)

2.3. Einstein and Hadamard Products

In this section, the fundamental concepts for the mathematical modeling of the MV-
DTF layer are presented, including the Hadamard and Einstein products.

Definition 9 (Inner product). For any two tensors, A, B ∈ RI1×···×IM , their inner product is
defined as the sum of the product of each entry, as Equation (3) shows:

⟨A,B⟩ =
I1

∑
i1=1

I2

∑
i2=1

· · ·
IM

∑
iM=1

ai1i2···iM bi1i2···iM (3)

Definition 10 (Hadamard product). The Hadamard product of two Nth-order tensors A,
B ∈ RI1×···×IM , denoted as A⊙B, results in an Mth-order tensor, C ∈ RI1×···×IM , such that its
(i1, · · · , iM)th-entry ci1···iM is equal to the element-wise product ai1···iM · bi1···iM .

Definition 11 (Einstein product [100,103]). Given two tensors, A ∈ RI1×···×IM×K1×···×KN

and B ∈ RK1×···×KN×J1×···×JP , of order M + N and N + P, their Einstein product or tensor
contraction, denoted as A⊛N B, produces an M + P tensor, C ∈ RI1×···×IM×J1×···×JP , whose
(i1, · · · , iM, j1, · · · , jP)th entry is given by the inner product between subtensors Ai1···iM : ··· : and
B : ··· : j1···jP , as Equation (4) shows:

ci1,··· ,iM,j1,··· ,jP =
K1

∑
k1=1

· · ·
KN

∑
kl=1

ai1···iMk1···kN bk1···kNj1···jP = ⟨Ai1···iM : ··· : ,B : ··· : j1···jP⟩ (4)

The product A⊛M B can be understood as a linear map, T : RI1×···×IM → RJ1×···×JP ;
i.e., for any two scalars α, β ∈ R, and tensors B1,B2 ∈ RK1×···×KN×J1×···×JP , the following
properties hold:

1. Distributive : A⊛N (B1 +B2) = A⊛N B1 +A⊛N B2.
2. Homogeneity: αA⊛N B1 = A⊛N αB1 = α(A⊛N B1).

2.4. Subspace Learning

Recent advances in sensing and storage technologies have resulted in the generation of
massive amounts of complex data, commonly referred to as big data [104,105]. These data
are often represented in a high-dimensional space, making their visualization and analysis
a challenging task. To address these challenges, subspace learning methods have emerged
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as a powerful approach to learning a low-dimensional representation of high-dimensional
data [106,107], such as the spatial and temporal information encoded in videos. In this
section, a brief review of linear and multilinear methods for subspace learning is presented,
highlighting their advantages and disadvantages.

2.4.1. Linear Subspace Learning (LSL)

Given a dataset, {x(1), . . . , x(N)}, of N samples, arranged in matrix form as X ∈ RI×N ,
whose n-th column vector corresponds to the n-th sample x(n) ∈ RI , LSL seeks to find a
linear subspace of RI that best explains the data. The resulting subspace can be spanned by
a set of J < I linearly independent basis vectors, u1, · · · , uJ , where uj ∈ RI . By leveraging
this subspace, high-dimensional data can be projected onto a lower-dimensional space RJ ,
as Equation (5) shows:

G = UTX = X ×1 UT (5)

where U = [u1, · · · , uJ ] ∈ RI×J is called the factor matrix, whose columns correspond to
the basis vectors, and G ∈ RJ×N is the projection of the input matrix X onto U.

A wide variety of techniques have been proposed to address the LSL problem, ranging
from unsupervised approaches such as principal component analysis [108], factor analysis
(FA) [109], independent component analysis [110], canonical correlation analysis [111],
and singular value decomposition [112], as well as supervised approaches like linear
discriminant analysis [113]. Subsequently, such techniques aim to estimate U by solving
optimization problems such as maximizing the variance or minimizing the reconstruction
error of the projected data.

Although LSL methods have shown great effectiveness in modeling vector-based
observations, they face difficulties when addressing multidimensional data. Then, to apply
LSL methods on tensor data, it is necessary to vectorize them. Unfortunately, this transfor-
mation very often leads to a computationally intractable problem due to the large number
of parameters to be estimated, and the model may suffer from overfitting. Furthermore,
vectorization also destroys the inherent multidimensional structure and correlations across
modes of tensor data [30,106].

2.4.2. Multilinear Subspace Learning (MSL)

Multilinear subspace learning is a mathematical framework for exploring, analyzing,
and modeling complex relationships over tensor data, preserving their inherent multidi-
mensional structure. According to Lu [106], the MSL problem can be formulated as follows:
Given a dataset {X(1), · · · ,X(N)} arranged in tensor form as X ∈ RI1×···×IM×N , where
subtensor X : ··· : n corresponds with the n-th data point X(n) ∈ RI1×···×IM , MLS seeks to
find a set of M subspaces that best explains data, where the mth subspace resides in RIm

and is spanned by a set of Jm < Im linearly independent basis vectors, u(m)
1 , · · · , u(m)

Jm
∈ RIm .

The MSL problem can be formally defined using Equation (6):

arg max
U(1),··· ,U(M)

Φ(U(1), · · · , U(M),X) (6)

where U(m) = [u(m)
1 , . . . , u(m)

Jm
] ∈ RIm×Jm is a matrix whose columns correspond to the basis

vectors of the m-th subspace, and Φ denotes a function to be maximized.
A classical MSL technique is the Tucker decomposition [30], which aims to approxi-

mate a given Mth-order tensor, X ∈ RI1×···×IM , into a core tensor, G ∈ RR1×···×RM , multi-
plied along the m-mode by a matrix, U(m), for all m ∈ [M], as Equation (7) shows:

X ≊ G×1 U(1) ×2 · · · ×M U(M) (7)

where U(m) ∈ RRm×Im is the m-th factor matrix associated with the m-mode fiber space of
X, G captures the level of interaction on each factor matrix, and Rm = rank(X(m)).
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Similarly, canonical polyadic decomposition [30] aims to approximate a given Mth-
order tensor X ∈ RI1×···×IM into as a sum of R rank-one tensors, as Equation (8) shows:

X ≊
R

∑
r=1

λrX
(r) =

R

∑
r=1

λr ·
(

u(r,1) ⊗ · · · ⊗ u(r,M)
)

(8)

where λr ∈ R is the r-th weighting term, and u(r,m) ∈ RIm is the m-mode factor vector for
the r-th rank-one tensor X(r), while Equation (8) is exact iff R is the decomposition rank.

While MSL effectively mitigates several drawbacks related to LSL methods, it has
some disadvantages. First, the intricate mathematical operations required for MSL meth-
ods very often involve high computational complexity, impacting both time and storage
requirements. Moreover, MSL requires a substantial amount of data to effectively capture
the intricate relationships of multilinear subspaces. Therefore, addressing these challenges
is crucial to ensuring proper learning.

3. Problem Statement and Mathematical Definition

In this section, the problem to be addressed is formulated in natural language, out-
lining specific tasks related to VTS systems. Subsequently, the inherent challenges are
mathematically formulated.

3.1. Problem Statement

Given a traffic surveillance video of τ seconds, recorded with a static camera, where
multiple moving vehicles are observed, we aim to comprehensively model vehicle traffic
using a multitask, multi-view learning approach. This model simultaneously addresses
various tasks, such as vehicle detection, classification, and occlusion detection, each of them
represented by specific views that partially describe the underlying problem. By projecting
multi-view data into a unified, low-dimensional latent tensor space, which builds a new
input space for the tasks, our approach should improve the model performance and
provide a more comprehensive representation of different study cases, e.g., the traffic scene,
compared to single-task, single-view learning models.

3.2. Mathematical Definition
3.2.1. Multitask, Multi-View Dataset: The Input and Output Spaces

Consider a collection of T supervised classification tasks related to VTS systems,
such as vehicle detection, classification, and occlusion detection, where, to the t-th task,
corresponds a dataset, D(t), composed of Kt M-view labeled instances, e.g., moving vehicles,
as Equation (9) shows:

D(t) =
{(

x(1,1,t) · · · , x(1,M,t), y(1,t)
)

, · · · ,
(

x(Kt ,1,t) · · · , x(Kt ,M,t), y(Kt ,t)
)}

(9)

where x(k,m,t) is the feature vector of the k-th instance over the m-th view and t-th task, be-
longing to the feature space Xm ⊂ RIm , i.e., x(k,m,t) ∈ Xm, the M-tuple

(
x(k,1,t), · · · , x(k,M,t)

)
is an element of the input data space X1 × · · · × XM, and y(k,t) its corresponding true label
in an output space, Yt ⊂ ROt .

3.2.2. Task Functions

For the t-th task, we aim to learn a multi-view classification function, ft : X1 × · · · ×
XM → Yt, that predicts, with high probability, the true label ŷ(k,t) of the k-th instance,
as Equation (10) shows, where ft belongs to some hypothesis space, Ht.

ŷ(k,t) = ft

(
x(k,1), · · · , x(k,M)

)
(10)



Sensors 2024, 24, 7463 10 of 42

Consequently, the dimension Ot of the output space Yt represents the number of
classes in the t-th learning task.

3.2.3. The Parametric Model

Considering the high-dimension of the input data space, it seems reasonable to
project multi-view data onto a low-dimensional latent space, S , by learning some mapping
g : X1 × · · · × XM → S , as Equation (11) shows:

Z(k) = g
(

x(k,1), · · · , x(k,M)
)

s.t. dim(Z(k)) ≤ dim(X1 × · · · × XM)
(11)

where Z(k) ∈ S is the projection of the k-th instance, and dim(Z(k)) can be either unidi-
mensional (e.g., J), or multidimensional (e.g., J1 × · · · × JP). If we need a more efficient
mapping, g, a low-rank approximation function, ĝ, is required instead of g.

Let ht : S → Yt be the t-th task-specific mapping that predicts the label ŷ(k,t) from
the k-th instance Z(k) embedded in the latent space S , as shown in Equation (12), where
ht can be represented by, e.g., ANN, SVM, or random forest (RF) algorithms. In conse-
quence, the function composition ht ◦ g : X1 × · · · × XM → Yt can determine the t-th task
function ft.

ŷ(k,t) = ht(Z
(k)) (12)

3.2.4. The Optimization Problem

For a given multitask, multi-view dataset, {D(1), · · · ,D(T)}, our problem can be re-
duced to learn simultaneously the set of functions { f1, · · · , fT} that minimizes the multi-
objective empirical risk of Equation (13) [114]:

min
h1,··· ,hT ,g

T

∑
t=1

λt

Kt

Kt

∑
k=1

Lt

((
Z(k), y(k,t)

)
, ht

)
s.t. Z(k) = g

(
x(k,1), · · · , x(k,M)

)
dim(Z(k)) ≤ dim(X1 × · · · × XM)

(13)

where ft = ht ◦ g belongs to some hypothesis space Ht, Lt : S × Yt ×Ht → R+ is the loss
function related to the t-th task that measures the discrepancy between the true label and
the predicted one, and λt ∈ R+ is a weighting parameter, determined either statically or
dynamically, which controls the relative importance of the t-th task.

3.2.5. Objectives

The main objectives are as follows:

1. For a multi-view input space of M views, to learn a mapping g : X1 × · · · × XM → S ,
where S is a low-dimensional latent tensor space with dim(S) = J1 × · · · × JM or J
(see Section 5.1, particularly Equation (20)).

2. To reduce the computational complexity of g, a low-rank approximation, ĝ, needs to
be learned.

3. For a set of T tasks, e.g., VTS tasks, the set of task-specific functions h1, · · · , hT must
be learned, where ht : S → Yt, and Yt is the output space of the t-th task.

4. To evaluate the performance of our approach, a multitask, multi-view model for the
case study of VTS systems (see Section 6.2) is employed.

4. Vehicle Traffic Surveillance System: Multitask, Multi-View Input Space Formation

In this section, we provide a general description of several tasks associated with a
typical vision-based VTS system, including background and foreground segmentation, oc-
clusion handling, and vehicle-size classification. Together, these tasks enable the estimation
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of traffic parameters, such as traffic density, vehicle count, and lane occupancy, inferred
from the video. Specifically, these parameters are essential for high-level ITS applications.

4.1. Background and Foreground Segmentation

Let V ∈ QH×W×B×N be a fourth-order tensor representing a traffic surveillance video,
recorded at a FPS frame rate with a duration of τ seconds. Here, Q = {0, · · · , 255}, W, and
H represent the image spatial dimensions, corresponding to width and height, respectively,
and B is the dimensionality of the image spectral coordinate system, i.e., the color space in
which each pixel lives, or the number of spectral bands in hyper-spectral imaging (HSI).
For example, B = 1 corresponds to grayscale, while B = 3 corresponds to RGB color space.
Finally, N = τ · FPS denotes the number of frames in the video.

From the aforementioned tensor V, it is important to note the following:
Let V ∈ QH×W×B×N be a fourth-order tensor representing a traffic surveillance video,

recorded at a FPS frame rate with a duration of τ seconds. Here, Q = {0, · · · , 255}, W, and
H represent the image spatial dimensions, corresponding to width and height, respectively,
and B is the dimensionality of the image spectral coordinate system, i.e., the color space in
which each pixel lives, or the number of spectral bands in hyper-spectral imaging (HSI).
For example, B = 1 corresponds to grayscale, while B = 3 corresponds to RGB color space.
Finally, N = τ · FPS denotes the number of frames in the video.

From the aforementioned tensor V, it is important to note the following:

1. The nth frontal slice V:::n ∈ QH×W×B represents the nth frame of the video at time
tn∀n ∈ [N] .

2. The third-mode fiber Vji:n ∈ QB denotes the (i, j)th pixel value at frame n, where
(i, j) ∈ I is the pixel location belonging to the image spatial domain I = [W]× [H].

3. Each pixel value is quantized using D bits per spectral band. For simplicity, here, we
assume the 8-bit grayscale color space Q = {0, · · · , 255}, i.e., B = 1, but it can be
extended to other color spaces. Consequently, dim(V) reduces to H × W × N.

4. Every (i, j)th pixel value can be modeled as a discrete random variable, Xij, with a
probability mass function (pmf), denoted as P(Xij = x), where x ∈ Q.

5. For any observation time, τo < τ, the pmf of any pixel can be estimated, denoted as
P̂(Xij = x).

Then, tensor V can be decomposed as Equation (14) shows and Figure 1 illustrates:

V = B⊙ M̄+F (14)

where B ∈ QH×W×N is called the background tensor, F ∈ QH×W×N is the foreground
tensor, and M ∈ BH×W×N is the binary mask of the foreground tensor, whose (j, i, n)-th
entry mjin = 1 if the (i, j)th pixel value vjin of V at frame n is part of the foreground tensor
F; otherwise mjin = 0, M̄ ∈ BH×W×N the complement of M, and F can be obtained from
the Hadamard product V⊙M.

Figure 1. Illustration of the traffic surveillance video decomposition model.
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4.2. Blob Formation

After decomposing V into the background and foreground tensors, various moving
objects, including vehicles, pedestrians, and cyclists, can be extracted by analyzing F or its
mask, M. One such technique is called connected components analysis (CCA) [115,116].
CCA recursively searches at every nth frontal slice M::n for connected pixel regions (see
Definition 12), referred to in the literature as binary large objects (blobs), which can contain
pixels associated with moving objects.

Definition 12 (Blob). A blob, denoted as S, is a set of pixel locations connected by a specified
connectivity criterion (e.g., four-connectivity or eight-connectivity [117]). Specifically, a pixel
located at (i, j) ∈ I belongs to blob S if there exists another pixel location, (i′, j′) ∈ S, such that the
connectivity criterion is met, as Equation (15) shows:

S = {(i, j) ∈ I|∃(i′, j′) ∈ S : (i′, j′) ̸= (i, j) ∧ dIP
(
(i, j), (i′, j′)

)
= δ} (15)

where dIP : I× I → R is an inter-pixel distance that establishes the connectivity criterion given
some threshold value, δ ∈ R, and S ⊆ I.

For every blob S(n) detected at frame n, a blob mask, S(n) ∈ BH×W , can be formed
whose entries are given by Equation (16). Note that the pixel values of blob S(n) can be
obtained from the product (F::n ⊙ S(n)) ∈ QH×W .

s(n)ji =

{
1, (i, j) ∈ S(n)

0, otherwise
(16)

4.3. Vehicle Feature Extraction and Selection

Feature extraction can be considered a mapping, ζ : QH×W → X , that transforms a
given blob, S, into a low-dimensional point, x ∈ X , called the feature vector, as shown in
Equation (17):

x = ζ(F::n ⊙ S) (17)

where X , called the feature space, captures specific aspects of blobs S(n), e.g., color, shape,
or texture.

The image moments (IMs) are a classical hand-crafted feature extractor that provides
information about the spatial distribution, shape, and intensity of a blob image. Typical
features extracted via the IM include centroid, area, orientation, and eccentricity. Formally,
the (p, q)-th raw IM for blob S is given by the bilinear map of Equation (18):

xpq =
W

∑
j=1

H

∑
i=1

jpiqbij = B ×1 ζ ×2 η (18)

where ζ ∈ RH , η ∈ RW are vectors whose i-th and j-th entries are ζi = ip and ηj = jq,
respectively.

4.4. Vehicle Occlusion Task

Assuming there are Vn vehicles on the road at the n-th frame, each associated with a

specific blob S(n,v), let B(n) denote the set of these blobs, and let B̃(n) =
{

S̃(n,u)
}Un

u=1
be the

set of blobs detected via CCA in the n-th frame, where Un ≤ Vn. The v-th vehicle, with blob
S(n,v) ∈ B(n), is occluded by the u-th detected blob S̃(n,v) ∈ B̃(n) if any of the conditions in
Equation (19) are met.
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S(n,v1) ∩ S̃(n,v2) ̸= ∅ S(n,v) and S̃(n,u) are occluded
S(n,v) ∩ S̃(n,u) = S̃(n,u) S(n,u) is totally occluded by S̃(n,v)

(S(n,v) ∩ S̃(n,u) ̸= ∅) ∧ (S(n,v) ∩ S̃(n,u) ̸= S(n,v)) S(n,v) is partially occluded

(19)

Given the set of detected blobs B̃(n) in the n-th frame, the vehicle occlusion detection
aims to predict, with high probability, a set of Wn ≤ Un blobs B̂(n) = {Ŝ(n,1), · · · , Ŝ(n,Wn)},
each containing more than one vehicle. To achieve this, an occlusion feature space, X1 ⊂ RI1 ,
is constructed using a feature extraction mapping ζ1 : QW×H → X1 to capture the vehicle
occlusion patterns. In this space, every detected blob, S̃(n,u), is represented by an I1-
dimensional feature vector x(n,u) ∈ X1. Assuming occlusions are only composed of partially
observed vehicles, a classification function, f1 : X1 → {0, 1}, can be built to predict whether
a detected blob, S̃(n,u), has more than one vehicle.

4.5. Vehicle Classification Task

Given a set of vehicle-size labels (e.g., small, midsize, large) represented in a vector
space, Y2 ⊂ RO2 , called the output space, the vehicle classification task aims to predict, with
high probability, the true label y(n,u) ∈ Y2 for an unseen vehicle blob instance, S̃(n,u) ∈ B̃(n),
at frame n. First, each blob, S̃(n,u), is mapped into some feature space, X2 ⊂ RI2 , using
a feature extraction mapping, ζ2 : QW×H → X2, constructed to explain the vehicle-size
patterns. From this space, a feature vector, x(n,u), associated with S̃(n,u), is derived. Then,
a classification function, f2 : X2 → Y2, can be built to predict the label of a vehicle blob
instance, S̃(n,w).

5. A Multi-View Data Tensor Fusion Layer and the Connection Between the Einstein
and Hadamard Products

In this section, the concept of a multi-view data tensor fusion (MV-DTF) layer and its
connection with Einstein and Hadamard products are introduced. Basically, MV-DTF is a
form of an FC layer for multi-view data; i.e., it is an affine function, but instead of using a
linear map, our layer employs a multilinear map to encode the interactions across views.
Additionally, a low-rank approximation for the MV-DTF layer is also proposed to reduce
its computational complexity.

5.1. Multi-View Tensor Data Fusion Layer: The Mapping g as an Einstein Product

Inspired by previous works [36,75,76], we restrict the function space of the MV-DTF
layer to the affine functions characterized by a multilinear map, T : X1 × · · · × XM → S ,
followed by a translation and, possibly, a non-linear map, σ, as Equation (20) shows:

Z(k) = g
(

x(k,1), · · · , x(k,M)
)
= σ

(
T
(

x(k,1), · · · , x(k,M)
)
+B

)
(20)

where g is the MV-DTF layer, the P-order tensor Z(k) ∈ S is the projection of the k-th
instance (x(k,1), · · · , x(k,M)) onto the latent tensor space S , called the fused tensor, with di-
mension J1 × · · · × JP, B ∈ RJ1×···×JP is the translational term, formally called bias, and the
mapping σ : S → RJ1×···×JP .

Definition 13 specifies how a multilinear map can be represented using coordinate
systems, and from this representation, a tensor can be induced for every multilinear map.

Definition 13 (Coordinate representation of a multilinear map [101]). Let V1, . . . , VM, and
W be real vector spaces, where dim(Vm) = Im for all m ∈ [M], and dim(W) = J. Let
{e(1), · · · , e(J)} be the standard basis for W. And let T : V1 × · · · × VM → W be a multi-
linear map. Given an ordered M-tuple (x(1), · · · , x(M)) ∈ V1 × · · · × VM, where x(m) ∈ Vm,
the map T (x(1), · · · , x(M)) is completely determined by a linear combination of basis vectors
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e(1), · · · , e(J) and scalars {αji1···iM ∈ R|i1 ∈ [I1], · · · , iM ∈ [IM], j ∈ [J]}, as Equation (21)
shows.

T
(

x(1), · · · , x(M)
)
=

I1

∑
i1=1

· · ·
IM

∑
iM=1

J

∑
j=1

x(1)i1
· · · x(M)

iM
αji1···iM e(j) (21)

The collection of scalars can then be arranged into an (M + 1)th-order tensor, denoted as
A ∈ RJ×I1×···×IM , which determines T , and whose (j, i1, · · · , iM)-th entry aji1···iM corresponds
with αji1···iM .

Next, Definition 14 establishes a connection between the Einstein product and multi-
linear maps via the universal property of multilinear maps (see Definition 2).

Definition 14. Let x(1), · · · , x(M) be a set of vectors, where x(m) ∈ RIm for all m ∈ [M]. And let
T : RI1 × · · · × RIM → RJ be the multilinear map induced via the tensor A ∈ RJ×I1×···×IM ,
and π : RI1 × · · · ×RIM → RI1 ⊗ · · · ⊗RIM is the multilinear map associated with the tensor
product RI1 ⊗ · · · ⊗RIM . For X = π(x(1), · · · , x(M)) ∈ RI1 ⊗ · · · ⊗RIM , the Einstein product
A⊛M X can be understood as a linear map, Φ : RI1 ⊗ · · · ⊗ RIM → RJ . Then, T and Φ are
related by the universal property of multilinear maps, as Equation (22) shows.

T (x(1), · · · , x(M)) = (Φ ◦ π)(x(1), · · · , x(M)) = Φ(X) = A⊛M X (22)

For the multilinear map T : X1 × · · ·×XM → S in Equation (20), Definition 13 ensures
the existence of a tensor, A ∈ RJ1×···×JP×I1×···×IM , that determines T , and Definition 14
provides the associated linear map Φ : RI1 ⊗ · · · ⊗ RIM → S of T . From the above
definitions, Equation (20) can be rewritten in tensor form as Equation (23) shows, where
X(k) = x(k,1) ⊗ · · · ⊗ x(k,M) ∈ RI1×···×IM is a rank-one tensor resulted from the tensor
product of the M view vectors associated with the k-th instance.

Z(k) = g(x(k,1), · · · , x(k,M)) = σ
(
A⊛M X(k) +B

)
(23)

Note that Equation (23) represents a differentiable expression with respect to tensors
A and B. Consequently, their values can be learned using optimization algorithms such
as stochastic gradient descent (SGD), where the number of parameters to learn, denoted
as L, corresponds with the number of entries of tensors A and B, as Equation (24) shows.
Note that L scales exponentially with the number of views, M, and the order P of S .
Specifically, for Im = Jp = I ∀m ∈ [M], p ∈ [P], L is reduced to L = IP(1 + IM) ≃ IM+P.
This exponential growth can lead to computational challenges while increasing the risk
of overfitting due to the induced curse of dimensionality [118–120]; i.e., the number of
samples needed to train a model grows exponentially with its dimension.

L =

(
M

∏
m=1

Im

)
·
(

P

∏
p=1

Jp

)
+

P

∏
p=1

Jp =
P

∏
p=1

Jp

(
M

∏
m=1

Im + 1

)
(24)

5.2. Hadamard Products of Einstein Products and Low-Rank Approximation Mapping ĝ

Low-rank approximation is a well-known technique that not only allows for reducing
model parameter storage requirements but also helps in alleviating the computational
burden of neural network models [81,82,85–89,121]. Based on these facts, in this work, we
explore a CPD-based low-rank structure, illustrated in Figure 2, to overcome the curse of
dimensionality induced via the MV-DTF layer. This structure helps reduce the number of
parameters required for the MV-DTF layer, and it is computationally more efficient (see
Proposition 1). But before presenting this structure, the concept of Hadamard factor tensors
is first introduced in Definition 15.
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Definition 15 (Hadamard factor tensors). Let A ∈ RJ1×···×JP×I1×···×IM be a (P + M)-order
tensor, whose (j1, · · · , jP)-th subtensor results from fixing every index but the last M modes;
i.e., Aj1···jP :···: ∈ RI1×···×IM for all jp ∈ [Jp] and p ∈ [P] can be approximated as a rank-R(j1,··· ,jP)

tensor using the CPD, as Equation (25) shows:

Aj1···jP :···: ≊
R(j1,··· ,jP)

∑
r=1

v(j1,··· ,jP ,r,1) ⊗ · · · ⊗ v(j1,··· ,jP ,r,M) (25)

where the number of subtensors inA corresponds to the dimension of the latent spaceS; i.e., J1 × · · · × JP,
each (j1, · · · , jP)-th subtensor Aj1 · · · jP : · · · : has a specific rank, R(j1,··· ,jP) ∈ N, which can
be different across subtensors, and for v(j1,··· ,jP ,r,m) ∈ RIm , known as the m-mode factor vec-
tor, the superscripts j1, · · · , jP identify the (j1, · · · , jP)-th subtensor to which it corresponds,
r ∈ [R(j1,··· ,jP)] identifies its associated r-th rank-one tensor in the CPD, and m ∈ [M] its mode.
Then, the set of factor vectors along the m-mode can be rearranged into a (P + 2)-order tensor,
U(m) ∈ RJ1×···×JP×R×Im , here called the m-mode Hadamard factor tensor, whose (P + 2)-mode
fibers U(m)

j1···jPr: ∈ RIm are given by Equation (26):

U
(m)
j1···jPr: =

{
v(j1,··· ,jP ,r,m), r ≤ R(j1,··· ,jP)

0, r > R(j1,··· ,jP)
(26)

where 0 ∈ RIm is the zero vector, and R = max R(j1,··· ,jP) is the maximum rank across subtensors,
employed to avoid inconsistencies due to different rank values between subtensors.

Figure 2 illustrates the concept of Hadamard-factor tensors for the multilinear map
T : R5 × R3 → R3 with associated tensor A ∈ R3×5×3. Here, there is a two-view data
(M = 2) with dimensions I1 = 5, and I2 = 3, respectively; the order and dimension of
the latent tensor space are P = 1 and J1 = J = 3, and hence, there are three subtensors,
A1::, A2::,A3:: ∈ R5×3, associated with the tensor A. For subtensor A1::, its rank is R(1) =
3; hence, A1:: = v(1,1,1) ⊗ v(1,1,2) + v(1,2,1) ⊗ v(1,2,2) + v(1,3,1) ⊗ v(1,3,2) for subtensor A2::,
R(2) = 1, i.e., A2:: = v(2,1,1) ⊗ v(2,1,2), while for subtensor A3::, R(3) = 2, and A3:: =
v(3,1,1) ⊗ v(3,1,2) + v(3,2,1) ⊗ v(3,2,2). From these vectors, two Hadamard factor tensors,
U(1) ∈ R3×3×5 and U(2) ∈ R3×3×3, can be constructed, corresponding to the first and
second views, respectively. The second-mode dimension of these tensors corresponds to
the greatest subtensor rank, i.e., R = max R(j) = R(1) = 3, to avoid heterogeneous rank
values across subtensors. Hence, the second and third subtensors incorporate two and one
additional zero vectors, respectively, as Figure 2 shows.

Proposition 1 presents the primary result of this work, i.e., the mathematical rela-
tionship between Einstein and Hadamard products. To the best of our knowledge, this
relationship is not known.

Proposition 1. Let X = x(1) ⊗ · · · ⊗ x(M) ∈ RI1×···×IM be a rank-one tensor, where x(m) ∈ RIm

for all m ∈ [M]. And let A ∈ RJ1×···×JP×I1×···×IM be a (P + M)-order tensor induced via
the multilinear map T : RI1 × · · · × RIM → RJ1×···×JP , which can be decomposed into a
set of M factor tensors U(1), . . . ,U(M) for a given rank, R ≤ max rank(Aj1···jP :···:), where
U(m) ∈ RJ1×···×JP×R×Im for all m ∈ [M]. Then, T (x(1), · · · , x(M)) can be approximated by
a sum of R Hadamard products of Einstein products, as Equation (27) shows:

T (x(1), · · · , x(M)) = A⊛M X ≊
R

∑
r=1

M⊙
m=1

(
U

(m)
: ··· : r : ⊛1 x(m)

)
=

[
M⊙

m=1

(
U(m) ⊛1 x(m)

)]
⊛1 1R (27)

where U(m) ∈ RJ1×···×JP×R×Im is the m-mode Hadamard factor tensor. A vector of all ones is

denoted as 1R ∈ RR. And
M⊙

m=1

(
U(m) ⊛1 x(m)

)
=
(
U(1) ⊛1 x(1)

)
⊙ · · · ⊙

(
U(M) ⊛1 x(M)

)
.
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Proof. In Appendix A,

Figure 2. Illustration of subtensors of A and the Hadamard factor tensors U(1) ∈ RJ×R×I1 , and
U(2) ∈ RJ×R×I2 for the multilinear map T : RI1 ×RI2 → RJ , where I1 = 5, I2 = 3, J = 3, and R = 3.

By leveraging Proposition 1 for tensor A in Equation (23), the MV-DTF layer g can be
approximated through a more efficient low-rank mapping ĝ : RI1 × · · · ×RIM → RJ1×···×JP ,
called the low-rank multi-view data tensor fusion (LRMV-DTF) layer, defined in
Equation (28), where the m-mode factor tensor U(m) ∈ RJ1×···×JM×Im×R, associated with
the m-th view, contributes to building every k-th fused tensor Z(k).

Z(k) ≊ ĝ
(

x(k,1), · · · , x(k,M)
)
= σ

([
M⊙

m=1

(
U(m) ⊛1 x(k,m)

)]
⊛1 1 +B

)
(28)

From this approximation, the number of parameters required for the LRMV-DTF layer,
denoted as L̂, is provided in Equation (29). Note that the product of the Im-dimensions
related to the views in L (Equation (24)) has been replaced with a summation, which
yields fewer parameters to learn compared to those in the MV-DTF layer, reducing the risk
of overfitting.

L̂ =
P

∏
p=1

Jp ·
(

R
M

∑
m=1

Im + 1

)
(29)

An illustration of our layers is shown in Figure 3a (MV-DTF), and Figure 3b (LRMV-
DTF). Here, the number of views M = 2, and their dimensions I1 = 3, and I2 = 5
respectively. The order of the latent space is P = 1, and its dimension dim(S) = J = 4. Con-
sequently, the multilinear map is T : R3 ×R5 → R4, with associated tensor A ∈ R4×3×5,
and bias b ∈ R4. However, vector b is fixed to zero 0 ∈ R4 for simplicity. For low-rank
approximation, the rank of the (j)-th subtensor is R(j) = R = 2 ∀j ∈ [4]. Hence, according
to Definition 15, tensor A can be decomposed into two factor tensors: U(1) ∈ R4×2×3,
and U(2) ∈ R4×2×5, associated with the first and second views, respectively.
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(a) (b)
Figure 3. Illustration of the MV-DTF and LRMV-DTF layers. (a) MV-DTF layer z = A⊛1 X, where
X = x(1) ⊗ x(2). (b) LRMV-DTF layer z = ((U(1) ⊛1 x(1))⊙ (U(2) ⊛1 x(2)))⊛1 1R.

This relationship between the Einstein and Hadamard product enables a rank-R CPD
for every subtensor (j1, · · · , jP) of tensor A and, consequently, a low-rank approximation.

5.3. Dimension J or J1 × · · · × JP, Order P of the Latent Space S , and the Rank R: The
Hyperparameters of the MV-DTF and LRMV-DTF Layers

The proposed layers introduce three hyperparameters to tune: the order P and the
dimension J1 × · · · × JP of S , and the rank value R:

1. Latent space dimension: It determines the expressiveness of the latent space to cap-
ture complex patterns across views. High-dimensional spaces enhance expressiveness
but also increase the risk of overfitting, while low-dimensional spaces reduce expres-
siveness but mitigate the risk of overfitting.

2. Latent space order: It is determined by the architecture of the ANN. For instance,
in multi-layer perceptron (MLP) architectures, the input space dimension is unidi-
mensional, e.g., dim(S) = J; hence, P = 1. In contrast, the input space of CNNs is
multidimensional; thereby, P ≥ 2.

3. Rank: It determines the computational complexity of the MV-DTF layer. For low
rank values on subtensors Aj1···jP :···: of A, the number of parameters to learn can be
reduced, but it may not capture complex interactions across views effectively, limiting
the model performance. Conversely, high rank values increase the capacity to learn
complex patterns in data, but they may lead to overfitting.

5.4. MV-DTF and LRMV-DTF on Neural Network Architectures: The Mapping Set {h1, · · · , hT}
According to the desired level of fusion [16], two primary configurations can be

employed where our data fusion layer can be incorporated in an ANN architecture:

1. Feature extraction: The MV-DTF layer g can be integrated into an ANN to map the
multi-view input space X1 × · · · ×XM into some latent space, S , for multi-view feature
extraction; see Figure 4a,c. Here, both the order P and dimension J1 × · · · × JP of S
must correspond with the order and dimension of the input layer in the architecture
of the ANN.

2. Multilinear regression: The MV-DTF layer performs multilinear regression to capture
the multilinear relationships between the multi-view latent space U1 × · · · × UM and
the output space Y for single-task learning (see Figure 4b). Here, Um is the m-th
single-view latent space obtained from the mapping ζm : Xm → Um, where Xm is the
m-th single-view input space. Consequently, the dimension and order of the latent
space must correspond with those of the output space.
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(a) (b)

(c)

Figure 4. Primary configurations for incorporating the MV-DTF layer in neural network architectures.
(a) MV-DTF layer for multi-view feature extraction on single-task learning, where g : RI1 × · · · ×
RIM → RJ1×···×JP , and h : RJ1×···×JP → ROt . (b) MV-DTF layer for multilinear regression on
single-task learning, where ζm : RIm → RHm , and g : RH1 × · · · × RHM → ROt . (c) MV-DTF
for multi-view feature extraction on multitask learning, where g : RI1 × · · · × RIM → RJ1×···×JP ,
and ht : RJ1×···×JP → ROt .

6. Results and Discussion
6.1. Dataset Description

To test the effectiveness of the proposed MV-DTF layer, we conduct experiments
on four real-world traffic surveillance videos, encompassing more than 50,000 frames
of footage with a resolution of 420 × 240 pixels and recorded at a frame rate of 25 FPS
(accessible via [122]). Sample images from each test video can be observed in Figure 5,
while technical details are provided in Table 3.

A collection of over 92,000 images of vehicles was then extracted from the test videos
using the background and foreground method. Each image has been manually labeled for
two tasks (T = 2): (1) occlusion detection, where vehicles are categorized as occluded or
non-occluded (labeled to as 1 and 0, respectively), and (2) vehicle-size classification, where
non-occluded vehicles are categorized as small (S), midsize (M), large (L), or very large
(XL), with labels 1 to 4. Next, one-hot encoding was used to represent the class labels of
each task. Consequently, the output spaces for the classification and occlusion detection
tasks become Y1 ⊂ B4, and Y2 ⊂ B2, respectively, i.e., O1 = 4 and O2 = 2.

In addition, three subsets of image moment-based features were extracted and normal-
ized for each vehicle image: (1) a 4D feature space, X1 ⊂ R4 (i.e., I1 = 4), consisting of the
vehicle blob solidity, orientation, eccentricity, and compactness features; (2) a 3D feature
space, X2 ⊂ R3 (i.e., I2 = 3), encompassing the vehicle’s width, area, and aspect ratio; and
(3) a 2D feature space, X3 ⊂ R2, representing the vehicle centroid coordinates. Together,
the three feature spaces form a three-view input space X1 ×X2 ×X3 of dimension 4× 3× 2;
i.e., the number of views is M = 3, and I1 = 4, I2 = 3, and I3 = 2 are the dimensions of
each feature space.

As a result, two datasets, denoted as D(1) and D(2), were created from the test videos,
where D(1) corresponds to the occlusion detection task and D(2) to the vehicle-size classifi-
cation task. Both datasets encompass vehicle instances represented in a three-view feature
space, available in [123]. Tables 4 and 5 provide a summary of our datasets, detailing the
distribution of images across the occlusion and vehicle-size classification tasks.
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(a) Video V1. (b) Video V2.

(c) Video V3. (d) Video V4.
Figure 5. Test videos employed for vehicle-size classification and occlusion detection tasks. They
were recorded at different dates and views (click on each Figure to link to the video).

Table 3. Technical details of the test videos.

Video Duration (s) Tracked Vehicles Temporal Samples of Tracked
Vehicles

V1 146 137 6132
V2 326 333 19,194
V3 216 239 14,457
V4 677 720 91,870

Table 4. Description of the vehicle instance dataset for the occlusion detection task.

Video Occluded Unoccluded

V1 4671 1461
V2 12,684 6510
V3 10,384 4073
V4 41,002 11,084

Table 5. Description of the vehicle instance dataset for the vehicle-size classification task.

Video Small (Class 1) Midsize (Class 2) Large (Class 3) Very Large (Class 4)

V1 45 4018 390 218
V2 169 11,687 676 152
V3 206 8426 1179 573
V4 777 35,843 3101 1282

6.2. The Multitask, Multi-View Model Architecture and Training
6.2.1. The Multitask, Multi-View Model Architecture

To learn the two tasks, a multitask, multi-view ANN model based on the MLP archi-
tecture was employed. The proposed model is structured in four main stages (see Figure 6):
(1) hand-crafted feature extractors (shown in red), (2) an MV-DTF/LRMV-DTF layer (in
green), (3) the neck (in yellow), and (4) the task-specific heads (in blue). Stages 1 and 2 form
the backbone of the model, serving as a feature extractor to capture both low-level and high-

https://youtu.be/ZWWX4nojMos
https://youtu.be/u2A46UCvuP4
https://youtu.be/T8lVNgX47cI
https://youtu.be/ieDFnv6js1Y
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level features from the raw data. Stage 3 refines the features extracted from the backbone.
Finally, stage 4 performs prediction or inference. In addition, dropout is applied at the end
of each stage to reduce the risk of overfitting and enhance the model’s generalization.

The MV-DTF/LRMV-DTF layer provides the mapping T : X1 ×X2 ×X3 → S , where
dim(X1) = 4, dim(X2) = 3, and dim(X3) = 2. The order P of the latent space S is fixed
to one, i.e., P = 1 without loss of generality, which simplifies its dimension J1 × · · · × JP
to J, a hyperparameter to tune. Therefore, the parameters of the MV-DTF/LRMV-DTF
layer are either the tensor A ∈ RJ×4×3×2, or the associated Hadamard factor tensors
U(1) ∈ RJ×R×4,U(2) ∈ RJ×R×3, and U(3) ∈ RJ×R×2, where the rank R is a hyperparameter
to tune, along with the bias tensor B ∈ RJ . Consequently, Equation (28) is reduced to
Equation (30) (Equation (30) holds when R(j) is the tensor decomposition rank for all
j ∈ [J]):

z(k) = σ(A⊛3 X
(k) + b) ≊ σ

(
3⊙

m=1

(
U(m) ⊛1 x(k,m)

)
⊛1 1 + b

)
(30)

where the fused tensor Z(k) and bias B are transformed to the vectors z(k) ∈ RJ and b ∈ RJ ,
respectively, and X(k) = x(k,1) ⊗ x(k,2) ⊗ x(k,3) ∈ R4×3×2.

To solve this problem (see Section 3), the multi-objective optimization defined in
Equation (13) is employed with T = 2 and M = 3, where h1 and h2 are the task-specific
occlusion detection and vehicle classification functions, g : X1 ×X2 ×X3 → S can be either
the MV-DTF or LRMV-DTF layer, L1 and L2 are the binary cross-entropy and multiclass
cross-entropy loss (see Definitions 16 and 17, respectively) for the above tasks, and the task
importance weighting hyperparameters λ1 = 0.4 and λ2 = 0.6 were selected from a finite
set of values through cross-validation, a technique often employed by other authors [69].

(see Equation (20) or (28))

Figure 6. The proposed multitask, multi-view ANN architecture.

Definition 16 (Binary cross-entropy (BCE)). Let y ∈ B be the true label of an instance, and let
ŷ ∈ [0, 1] be the predicted probability for the positive class. The BCE between y and ŷ is given by
the following:

L1(ŷ, y) = −[y log(ŷ) + (1 − y) log(1 − ŷ)] (31)

Definition 17 (Multiclass cross entropy (MCE) ). Let y ∈ BC be the true label of an instance,
related to some multi-classification problem with C classes, encoded in one-hot format. And let
ŷ ∈ RC be the predicted probability vector, where ŷc is the probability that the instance belongs to
the c-th class. The MCE between y and ŷ is given by the following:

L2(ŷ, y) = −
C

∑
c=1

yc log(ŷc) (32)
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6.2.2. Training and Validation

From the total number of tracked vehicles in Table 3, 45% of them were selected from
the four test videos via stratified random sampling for training and validation purposes.
Including all temporal instances of a particular vehicle can cause data leakage; i.e., the
model may learn specific patterns from highly correlated temporal samples, resulting in
reduced generalization to unseen vehicles. To prevent this, uncorrelated temporal instances
were only considered for each selected vehicle.

Vehicles from the 45% subset, along with their uncorrelated temporal instances, were
partitioned into two sets: (1) the training set Dtr(t), containing the 30% of vehicles and their
temporal instances; and (2) the validation set Dva(t), with 15% of the vehicles and their
instances, where superscript t indexes the task-specific dataset (i.e., t = 1 for vehicle-size
classification and t = 2 for occlusion detection). The remaining 55% of vehicles and their
instances comprise the testing set, denoted as D(t)

te .
Adaptive moment estimation [124] was employed to optimize the parameters of our

model. Training was performed for a maximum of 200 epochs, with an early stopping
scheme to avoid overfitting by halting training when performance on D(t)

va no longer
improved. The training strategy for our multitask, multi-view model is shown in Algorithm
1, where F(t,b)

tr ⊂ D(t)
tr is a mutually exclusive batch of the t-th task, i.e., F(t,b)

tr ∩ F(t,q)
tr = ∅

for b ̸= q, with b, q ∈ [K], and K is the number of batches.

Algorithm 1 Training scheme.

1: Initialize all weights and biases of the network randomly.
2: for i = 1 to K do
3: Optimize the model over batch F(1,i)

tr to minimize the loss for task 1.

4: Optimize the model over batch F(2,i)
tr to minimize the loss for task 2.

5: end for

All experiments were conducted and implemented in Python 3.10 and the PyTorch
framework on a computer equipped with an Intel Core i7 processor running at 2.2 GHz.
To accelerate the processing time, an NVIDIA GTX 1050 TI GPU was employed.

6.3. Performance Evaluation Metrics

In this work, we evaluate the performance of the proposed multitask, multi-view
model using six main metrics: accuracy (ACC), F1-measure (F1), geometric mean (GM),
normalized Matthews correlation coefficient (MCCn), and normalized Bookmaker in-
formedness (BMn), as detailed in Table 6 (see details of these metrics in [125]). For bi-
nary classification, where vehicle instances are categorized into two classes—positive and
negative—the performance metrics were directly derived from the entries of a 2 × 2 confu-
sion matrix (CM), characterized by true positives (TPs), false negatives (FNs), false positives
(FPs), and true negatives (TNs). In multiclass classification with C > 2 classes, the notions
of TP, FN, FP, and TN are less straightforward than in binary classification, as the confusion
matrix becomes a C × C matrix whose (i,j)-th entry represents the number of samples that
truly belong to the i-th class but were classified as the j-th class. In order to derive the
performance metrics, a one-vs.-rest approach is typically employed to reduce the multiclass
CM into C binary CMs, where the c-th matrix is formed by treating the c-th class as positive
and the rest as the negative class [125,126]. Figure 7 illustrates the CM notion for binary
classification (Figure 7a) and multiclass classification with C = 4 classes (Figure 7b), which
were obtained from the mean values of runs.

In Table 6, C denotes the number of classes of interest, M is the number of classified
instances, CM ∈ RC×C is a multiclass CM, metrics with subscript c refer to those computed
from the c-th binary CM, obtained by reducing the multiclass CM fixing the c-th class.
And metrics with subscript w denote weighted metrics, which consider the individual
contributions of each class by weighting the metric value of the c-th class by the number
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of samples, Mc, of class c. This approach provides a “fair” evaluation by considering the
impact of imbalanced class distributions on the overall performance.

Furthermore, in order to quantify how much compression is achieved via the LRMV-
DTF layer, a compression ratio, Γ, between the number of parameters in the MV-DTF
layer and those in the LRMV-DTF layer, i.e., L and L̂, is defined in Equation (33). Note
that Γ is independent of the latent space dimension, and it depends only on the view
dimensions. It ensures that the compression ratio is consistent, regardless of the latent
tensor space dimension.

Γ =
L
L̂
=

J ×
(

∏M
m=1 Im + 1

)
J ×

(
R ∑M

m=1 Im + 1
) =

∏M
m=1 Im + 1

R ∑M
m=1 Im + 1

(33)

Table 6. Mathematical definition of classification performance metrics used in this work (metrics
marked with * are biased by class imbalance [127]).

Metric Equation Weighted Metric

ACC * ACCc =
TPc+TNc

TPc+FNc+TNc+FPc
ACCw = 1

M ∑C
c=1 Mc ACCc

F1 * F1c = 2 · PRCc ·SNSc
PRCc+SNSc

F1w = 1
M ∑C

c=1 McF1c

MCC * MCCc =
TPc ·TNc−FPc ·FNc√

(TPc+FPc)(TPc+FNc)(TNc+FPc)(TNc+FNc)
MCCw = 1

M ∑C
c=1 Mc MCCc

GM GMc =
√

SNSc · SPCc GMw = 1
M ∑C

c=1 McGMc

BM BMc = SNSc + SPCc − 1 BMw = 1
M ∑C

c=1 McBMc

SNS SNSc =
TPc

TPc+FNc
SNSw = 1

M ∑C
c=1 McSNSc

SPC SPCc =
TNc

TNc+FPc
SPCw = 1

M ∑C
c=1 McSPCc

PRC * PRCc =
TPc

TPc+FPc
PRCw = 1

M ∑C
c=1 McPRCc

Global GM GGM =
√

SNSw · SPCw -

Global BM GBM = SNSw + SPCw − 1 -

multiclass MCC * mMCC =
M×∑C

c=1 TPc−∑C
c=1 tc pc√

M2−∑C
c=1 p2

c×
√

M2−∑C
c=1 t2

c

-

tc = ∑C
c=1 CMc:

pc = ∑C
c=1 CM:c

(a) Occlusion detection. (b) Vehicle-size classification.
Figure 7. Confusion matrices for vehicle-size classification and occlusion detection on video V3 (J = 2
and R = 2), whose entries correspond to the mean values of runs.
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6.4. Hyperparameter Tuning: The Latent Space Dimension J and the Rank R Values

To determine suitable hyperparameters for the low-rank MV-DTF layer, cross-validation
via a grid search was employed [128]. Let R,J ⊂ N be two finite sets containing candidate
values for the rank R and latent space dimensionality J, respectively. A grid search trains
the multitask, multi-view model, built with the pair (J, R) ∈ J ×R, on the training set D(t)

tr ,

and it subsequently evaluates its performance on the validation set D(t)
va using some metric,

M. The most suitable pair of values (J∗, R∗) is that which achieves the highest performance
metric M over the validation set D(t)

va .
For our case study with a tensor, A ∈ RJ×4×3×2, we fixed J = {2, 4, 8, 16, 32, 64, 128, 256}

to study the impact of the J value on the classification metrics across tasks, whereas
R = {1, 2} was selected based on the rank values that reduce the number of parameters
in the LRMV-DTF layer according to the compression ratio (see Table 7), and R = 3 and
R = 4 for performance analysis only. Since our datasets exhibit class imbalance, the MCC
as the evaluation metric was used, given its robustness on imbalanced classes, as explained
by Luque et al. in [127]. Through this empirical process, we found that J = 16 and R = 2
achieve the best trade-off between model performance and the compression ratio Γ in the
set J ×R. The sets J and R, and the most suitable pair of values, (J∗, R∗) ∈ J ×R, must
be determined for each multitask, multi-view dataset.

6.5. Performance Evaluation

In this section, the performance of our multitask, multi-view case study in occlusion de-
tection and vehicle classification tasks is evaluated. Our experiments focused on evaluating
the impact of the rank, R, and dimension, J, of the latent tensor space S on computational
complexity and model performance. To ensure the consistency of our results, each experi-
ment was repeated 30 times. We first provide the results for the space saving achieved using
different R and J values in MV-DFT and its low-rank approximation, LRMV-DTF, followed
by an analysis of their effects on the learning phases and model performance.

Table 7 provides a comparison of the Γ compression achieved across different pairs of
(J, R) values and two multi-view input space dimensions. It is noteworthy that compression
is only achieved for Γ > 1, and the larger the Γ, the higher the compression. Specifically,
for the multi-view space R4 × R3 × R2, compression is achieved only for R ≤ 2 (see
Figure 8a), while for the multi-view space R40 ×R30 ×R20, a compression can be achieved
for higher rank values (see Figure 8b). In consequence, Γ = 1 provides an upper rank bound,
denoted as Rmax, beyond which compression is no longer achieved. For tensors with greater
dimensions or a greater order, the upper rank bound would be greater (see Figure 8).

Table 7. Compression ratio Γ for different pairs of (J, R) values and two multi-view spaces.

(J, R)

Input Space Dimension dim(X1 ×X2 ×X3)

4 × 3 × 2 (Our Case Study) 40 × 30 × 20

L L̂ Γ L L̂ Γ

(2, 1) 48 20 2.4 48,000 182 263.7
(2, 2) 48 38 1.26 48,000 362 132.6
(2, 3) 48 56 0.86 48,000 542 88.56
(2, 4) 48 74 0.65 48,000 722 66.48
(8, 1) 192 80 2.4 192,000 728 263.7
(8, 2) 192 152 1.26 192,000 1448 132.6
(8, 3) 192 224 0.86 192,000 2168 88.56
(8, 4) 192 296 0.65 192,000 2888 66.48

(32, 1) 768 320 2.4 768,000 2912 263.7
(32, 2) 768 608 1.26 768,000 5792 132.6
(32, 3) 768 896 0.86 768,000 8766 88.56
(32, 4) 768 1184 0.65 768,000 11,552 66.48
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(a) (b)

(c) (d)
Figure 8. Compression ratio Γ for the set of rank R values that enable compression (Γ > 1) and multi-
view input space dimensions. (a) dim(X1 ×X2 ×X3) = 4 × 3 × 2 our case study. (b) dim(X1 ×X2 ×
X3) = 40× 30× 20. (c) dim(X1 ×X2 ×X3 ×X4) = 4× 3× 2× 5. (d) dim(X1 ×X2 ×X3 ×X4 ×X5) =

4 × 3 × 2 × 5 × 7.

Figure 8 illustrates the relationship between the compression ratio Γ and the rank R for
various multi-view spaces with different order and dimensionalities. For each space, we ob-
serve that, when the rank R increases, the compression ratio Γ decreases. Figure 8a,b show
the compression Γ for multi-view spaces with the same order but different dimensionality,
while Figure 8c,d show the compression Γ for higher-order multi-view spaces.

Figure 9 shows the training and validation loss curves over epochs for the model using
either the MV-DTF or LRMV-DTF layer. From this figure, distinct behaviors in the loss
curves can be observed on the training and validation phases:

1. For low-dimensional latent tensor space (see Figure 9a,d), although stable, a slower
convergence and higher loss values for both training and validation are observed. This
indicates that the model may be underfitting.

2. For high-dimensional latent tensor space (Figure 9c,f), a lower training loss is achieved.
However, it exhibits fluctuations in the validation loss, especially for Task 2 (Figure 9f).
This suggests that the model begins to overfit as J increases, leading to probable
instability in validation performance. The marginal gains in training loss do not justify
the increased risk of overfitting.

3. For J = 16 (Figure 9b,e), the most balanced performance across both tasks is achieved,
showing faster convergence and smoother validation loss curves compared to J = 2
and J = 64. It achieves lower training loss while maintaining minimal validation loss
variability, indicating good generalization.
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(a) (b) (c)

(d) (e) (f)

Figure 9. Loss curves obtained during the training and validation stages of the multitask, multi-view
model across different latent space dimensions (J values), with fixed rank R = 2, for occlusion detection
(first row) and vehicle-size classification (second row). (a) Loss curves for task 1 (J = 2). (b) Loss
curves for task 1 (J = 16). (c) Loss curves for task 1 (J = 64). (d) Loss curves for task 2 (J = 2).
(e) Loss curves for task 2 (J = 16). (f) Loss curves for task 1 (J = 64).

In the subsequent subsections, the performance evaluation for each task on the
tested videos is presented, highlighting the impact of the selected hyperparameters in
the model’s generalization.

6.5.1. Vehicle Occlusion Detection Results

This section presents the comparison results of the proposed multitask, multi-view
model, with either the MV-DTF or LRMV-DTF layer and different pair of (J, R) values,
on the occlusion detection task. Figure 10 shows the mean values of performance metrics
obtained from our model for 30 different training runs, evaluated across test videos. Each
row corresponds to a specific test video, while each column reflects a particular latent tensor-
space dimension J value. As illustrated in Figure 10, a performance drop for different rank
R values is very low, especially in high-dimensional spaces (e.g., J = 16 and J = 64, on the
second and third columns of Figure 10). However, in low-dimensional spaces (see the
first column of Figure 10 for J = 2), the rank choice has a slightly greater impact on the
performance, and a fine-tuning rank R value is necessary, as the dimension J decreases.

Additionally, Figure 10 is complemented by Table A1, which presents the mean and
standard deviation of performance metrics across multiple runs, with the best and worst
values highlighted in blue and red, respectively. From this table, the pair (16, 2) shows
the lowest standard deviations across most metrics, providing a good balance between
computational complexity (see Table 7) and competitive performance with the MV-DTF
layer. Although high-dimensional spaces (e.g., J = 64) yield high performance, they also
tend to exhibit large standard deviations, potentially increasing the risk of overfitting
despite their higher mean values.

Finally, Figure 11 presents a performance comparison between our multi-view multi-
task model, using the LRMV-DTF with (16, 2), and single-task learning (STL) single-view
learning (SVL) models of SVM and RF, tested across test videos. Figure 11 highlights
that the proposed model exhibits higher and more consistent performance than STL-SVL
models on all metrics and videos, particularly in V2, V3, and V4. In contrast, the SVM and
RF models show a noticeable performance drop in these videos. Overall, the proposed
model improves the performance in the MCCnw metric of up to 92.81%, which represents
a significant 6% improvement over the SVM and RF models.
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(a) V1 (J = 2). (b) V1 (J = 16). (c) V1 (J = 64).

(d) V2 (J = 2). (e) V2 (J = 16). (f) V2 (J = 64).

(g) V3 (J = 2). (h) V3 (J = 16). (i) V3 (J = 64).

(j) V4 (J = 2). (k) V4 (J = 16). (l) V4 (J = 64).
Figure 10. Mean values for 30 runs of performance metrics achieved on the occlusion detection task
in test videos with the multi-view multitask model. The value R = − denotes the results when the
MV-DTF layer is employed, whereas the other values correspond to the LRMV-DTF layer.

(a) V1 (J = 16). (b) V2 (J = 16).

(c) V3 (J = 16). (d) V4 (J = 16).
Figure 11. Comparison results between MTL and STL models on the occlusion detection task.
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6.5.2. Vehicle-Size Classification Results

This section presents the comparison results of the proposed multitask, multi-view
model, incorporating either the MV-DTF or LRMV-DTF layer with different pairs of (J, R)
values, on the vehicle-size classification task. Figure 12 shows the mean values of the
performance metrics for 30 different training runs on the test videos, where each row and
column are related to a specific test video, and latent tensor space dimension, respectively.
From this figure, we observe that the lower the J value, the worse the performance. Similarly,
high R values generally contribute to improved performance. For J = 2, there is a noticeable
drop in performance, especially on the GMw, BMnw, and MCCnw metrics, suggesting
that low-dimensional spaces fail to capture the complexity of the task. However, as long
as J increases to 16 and 64, the metrics stabilize, and the performance drops across ranks
becomes negligible, particularly for the ACCw and F1w metrics.

Additionally, Table A2 shows the mean and standard deviation of performance met-
rics across runs, with the best and worst values highlighted in blue and red, respectively.
From this table, we found that high-dimensional spaces tend to yield not only higher mean
performance but also lower standard deviation, indicating more stable and consistent out-
comes across different test videos. In contrast, low-dimensional spaces (e.g., J = 2) are more
sensitive to the rank R hyperparameter, particularly for GMw, BMnw, and MCCnw. Conse-
quently, a computationally efficient LRMV-DTF layer can be achieved in high-dimensional
spaces by selecting low rank values without a significant performance drop. In contrast,
for low-dimensional latent spaces (J = 2), the performance is more sensitive to the choice
of R, especially for GMw, BMnw, and MCCnw. Therefore, selecting an appropriate rank
becomes crucial for low J values to avoid significant drops in performance.

Finally, in Figure 13, a comparison between our multi-view, multitask model and
STL-SVL models (SVM and RF) across test videos is presented. This figure highlights the
superiority of our multitask model, particularly in videos V3 and V4, where the SVM and
RF models again exhibit a significant performance drop. Overall, the proposed model
improves the performance in the MCCnw metric by up to 95.10%, which represents a
significant 7% improvement over the SVM and RF models.

(a) V1 (J = 2). (b) V1 (J = 16). (c) V1 (J = 64).

(d) V2 (J = 2). (e) V2 (J = 16). (f) V2 (J = 64).

(g) V3 (J = 2). (h) V3 (J = 16). (i) V3 (J = 64).
Figure 12. Cont.
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(j) V4 (J = 2). (k) V4 (J = 16). (l) V4 (J = 64).
Figure 12. Mean values for 30 runs of performance metrics achieved on the vehicle-size classification
task in test videos with the multi-view multitask model. The value R = − denotes the results when
the MV-DTF layer is employed, whereas the other values correspond to the LRMV-DTF layer.

(a) V1 (J = 16). (b) V2 (J = 16).

(c) V3 (J = 16). (d) V4 (J = 16).
Figure 13. Comparison results between MTL and STL models on the vehicle-size classification task.

6.5.3. Comparison with a Multitask Single-View Model

We also provide a comparison between the proposed multitask, multi-view model
with its corresponding single-view model in Table A3. The latter model is basically the
proposed model but without incorporating the MV-DTF layer, and the input space can
only be either X1, X2, or X3. However, in this work, we fix the input space to X2. Finally,
for a fair comparison, this model incorporates a layer that maps the feature space X2 onto a
latent space of dimension J.

The results provided in Table A3 show the overall mean value of weighted metrics
across all videos, where it can be observed that incorporating the MV-DTF layer into this
single-view model an improvement of up to 1.73% and 1.1% on the BMnw and MCCnw
metrics, is achieved. These results are also consistent across all latent space dimensions.

Unlike the F1 metric, the experimental results show that the performance of single-
view models does not exhibit a negative impact when the fusion layer is incorporated.
Furthermore, even though the model parameters increase, incorporating the MV-DTF
layer offers several advantages, including that the layer approximation through Hadamard
products allows selecting ranks that, unlike the classical CPD, higher compression rates
can be achieved.

Finally, Figures A1 and A2 show the results for the occlusion detection and vehicle-size
classification tasks, respectively. In contrast to the performance shown in Figures 10 and 12,
Figures A1 and A2 show each metric independently for more detail.
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6.6. Discussion

The promising results of the MV-DTF layer and its low-rank approximation LRMV-
DTF comprise the following:

1. The performance and consistency of the multitask, multi-view model are significantly
influenced by the dimensionality of the latent tensor space (see Figures 10 and 12).
For a specific dimension, J∗, the model exhibits two distinct behaviors, given another
J value: for J ≤ J∗, the model tends to underfit, whereas for J > J∗, it is prone to
overfitting to the training data.

2. A negligible performance drop was observed in our case study as the compression
ratio Γ approaches 1, i.e., L̂ → L, when the LRMV-DTF layer is employed. This result
provides empirical evidence of the underlying low-rank structure in the subtensors
Aj : · : of tensor A in the MV-DTF layer.

3. The maximum allowable rank value Rmax (upper rank bound) that achieves parame-
ters’ compression increases as the dimensions of the multi-view space grow and/or as
the number of dimensions (tensor order) increases.

The major limitations of the MV-DTF layer are as follows:

1. Selecting suitable hyperparameters, i.e., the dimensionality J1 × · · · × JP or J of the
latent tensor space S , and the rank R for the LRMV-DTF layer, is a challenging task.

2. A high-dimensional latent space increases the risk of overfitting, while very low-
dimensional spaces may not fully capture the underlying relationships across views,
resulting in underfitting.

3. Reducing the rank of subtensors tends to decrease performance and increase the risk of
underfitting classification models for low-dimensional latent spaces. Although higher
rank values may improve model performance, they also increase the risk of overfitting.

4. The choice of rank R involves a trade-off: higher values increase computational com-
plexity but can capture more complex patterns, while lower values reduce the compu-
tational burden but may limit expressiveness of the model, resulting in performance
decreasing.

7. Conclusions

In this work, we found a novel connection between the Einstein and Hadamard
products for tensors. It is a mathematical relationship involving the Einstein product of
the tensor A ∈ RJ×I1×···×IM associated with a multilinear map T : X1 × · · · × XM → S ,
and a rank-one tensor X = x(1) ⊗ · · · ⊗ x(M), where dim(S) = J, dim(Xm) = Im for all
m ∈ [M], and x(m) ∈ Xm. By enforcing low-rank constraints on the subtensors of A, which
result by fixing every index but the last M, each j-th subtensor Aj : ··· : is approximated as
a rank-R(j) tensor through the CPD. By exploiting this structure, a set of M third-order
tensors U(1), · · · ,U(M), here called the Hadamard factor tensors, are obtained. We found
that the Einstein product A⊛M X can then be approximated by a sum of R Hadamard
products of M Einstein products U

(m)
: r : ⊛1 x(m), where R corresponds to the maximum

decomposition rank across subtensors, and U(m) ∈ RJ×R×Im for all m ∈ [M].
Since multi-view learning leverages complementary information from multiple feature

sets to enhance model performance, a tensor-based data fusion layer for neural networks,
called Multi-View Data Tensor Fusion, is here employed. This layer projects M feature
spaces X1, · · · ,XM, referred to as views, into a unified latent tensor space S through
a mapping g : X1 × · · · × XM → S , where dim(S) = J, and dim(Xm) = Im for all
m ∈ [M]. Here, we constrain g to the space of affine mappings composed of a multilinear
map, T : X1 × · · · × XM → S , followed by a translation. The multilinear map is here
represented by the Einstein product A⊛M X, where A ∈ RJ×I1×···×IM is the induced
tensor of T , and X ∈ X1 ⊗ · · · ⊗ XM. Unfortunately, as the number of views increases,
the number of parameters that determine g grow exponentially, and consequently, its
computational complexity also grows.
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To mitigate the curse of dimensionality in the MV-DTF layer, we exploit the mathe-
matical relationship between the Einstein product and Hadamard product, which is the
low-rank approximation of the Einstein product, useful when the compression ratio Γ > 1.

The use of the LRMV-DTF layer based on the Hadamard product does not imply
necessarily an improvement of the model performance compared to the MV-DTF layer
based on the Einstein product. In fact, the dimension of the latent space J and the rank of
subtensors R must be tuned via cross-validation (see Section 6.4). When the decomposition
rank of subtensors is less than the upper rank bound Rmax (Γ > 1), an efficient low-rank
approximation of the MV-DTF layer based on the Einstein product is obtained.

From our experiments, we show that the intoduction of the MV-DTF and LRMV-DTF
layers in a case study multitask VTS model for vehicle-size classification and occlusion detection
tasks improves its performance compared to single-task and single-view models. For our case
study, i.e., a particular case using the LRMV-DTF layer with J = 16 and R = 2, our model
achieved an MCCnw of up to 95.10% for vehicle-size classification and 92.81% for occlusion
detection, representing significant improvements of 7% and 6%, respectively, over single-task
single-view models while reducing the number of parameters by a factor of 1.3.

Finally, for every case study, the dimension of the latent tensor space, J, and the
decomposition rank, R, must be tuned. Additionally, the employment of an MV-DTF
layer or a LRMV-DTF layer must be determined while the tradeoff between the model
performance and computational complexity is taken into account.

Open Issues

1. A computational complexity analysis must be conducted to evaluate the LRMV-DTF
layer efficiency.

2. For VTS systems, to integrate other high-dimensional feature spaces in order to im-
prove the expressiveness of the latent tensor space and its computational efficiency.

3. To explore other tensor decomposition models, such as the tensor-train model, for more
efficient algorithms in high-dimensional data.

4. To extend our work to more complex network architectures.
5. To address other VTS tasks within the MTL framework for a more comprehensive

vehicle traffic model.
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Abbreviations

The following abbreviations are used in this manuscript:
ITS Intelligent Transportation Systems
VTS Vehicle traffic surveillance
MVL Multi-view learning
MTL Multitask learning
MV-DTF Multi-View Data Tensor Fusion
LRMV-DTF Low-Rank Multi-view Data Tensor Fusion

Appendix A. Mathematical Proofs

Appendix A.1. Proof of Proposition

Let T : RI1 ×· · ·×RIM → RJ1×···×JP be a multilinear map, and letA ∈ RJ1×···×JP×I1×···×IM

be its associated tensor. Also, let x(1), · · · , x(M) be M vectors where the m-th vector
x(m) ∈ RIm . And let Z ∈ RJ1×···×JP be the image of the tuple (x(1), · · · , x(M)) under T , i.e.,
Z = T (x(1), · · · , x(M)). According to Definition 14, for X = x(1) ⊗ · · · ⊗ x(M) ∈ RI1×···×IM ,
T (x(1), · · · , x(M)) can be expressed as A⊛M X, whose (j1, · · · , jP)-th entry is given as fol-
lows:

zj1···jP =
I1

∑
i1=1

· · ·
IM

∑
iM=1

aj1···jPi1···iM xi1···iM = Aj1···jP : ··· : ⊛M X (A1)

From the CPD (Section 2.4.2), each subtensor Aj1···jP : ··· : can be approximated as

a rank-R(j1,··· ,jP) tensor, as Equation (A2) shows, where A
(r)
j1···jP : ··· : ∈ RI1×···×IM is its r-

th rank-one tensor, while Equation (A2) holds if R(j1,··· ,jP) is the decomposition rank of
Aj1···jP : ··· : .

Aj1···jP : ··· : ≊
R(j1,··· ,jP)

∑
r=1

A
(r)
j1···jP : ··· : (A2)

Substituting Equation (A2) into Equation (A1) results in Equation (A3):

zj1···jP ≊
〈

R(j1,··· ,jP)

∑
r=1

A
(r)
j1···jP : ··· : ,X

〉
=

R(j1,··· ,jP)

∑
r=1

A
(r)
j1···jP : ··· :

⊛M X (A3)

By exploiting the distributive property of the Einstein product, tensor X can be dis-
tributed along the summation, as Equation (A4) shows.

zj1···jP ≊

R(j1,··· ,jP)

∑
r=1

A
(r)
j1···jP : ··· :

⊛M X

=
R(j1,··· ,jP)

∑
r=1

(
A

(r)
j1···jP :···: ⊛M X

)
=

R(j1,··· ,jP)

∑
r=1

(
I1

∑
i1=1

· · ·
IM

∑
iM=1

a(r)j1···jPi1···iM
xi1···iM

)
(A4)

Note that, as A(r)
j1···jP : ··· : is a rank-one tensor, it can be factorized into the tensor product

of N vectors (see Definition 7), as shown in Equation (A5), where v(j1,··· ,jP ,r,m) ∈ RIm denotes
its mth vector, also called the factor vector, which is related to the m-mode.

A
(r)
j1···jP : ··· : = v(j1,··· ,jP ,r,1) ⊗ · · · ⊗ v(j1,··· ,jP ,r,M) (A5)
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Since X is also a rank-one tensor, i.e., X = x(1) ⊗ · · · ⊗ x(M), it follows that xi1···iM =
M

∏
m=1

x(m)
im , and a(r)j1···jPi1···iM

=
M

∏
m=1

v(j1,··· ,jP ,r,m)
im , respectively. Hence, Equation (A4) can be

rewritten as follows:

zj1···jP ≊
R(j1,··· ,jP)

∑
r=1

(
I1

∑
i1=1

· · ·
IM

∑
iM=1

a(r)j1···jPi1···iM
x(1)i1

· · · x(M)
iM

)

=
R(j1,··· ,jP)

∑
r=1

(
I1

∑
i1=1

· · ·
IM

∑
iM=1

v(j1,··· ,jP ,r,1)
i1

· · · v(j1,··· ,jP ,r,M)
iM

x(1)i1
· · · x(M)

iM

)

=
R(j1,··· ,jP)

∑
r=1

(
I1

∑
i1=1

· · ·
IM

∑
iM=1

M

∏
m=1

v(j1,··· ,jP ,r,m)
im x(m)

im

)
(A6)

By leveraging the independence of the terms involved in the summations, it can be
rearranged as a sum of the products of inner products, as shown in Equation (A7).

=
R(j1,··· ,jP)

∑
r=1

I1

∑
i1=1

v(j1,··· ,jP ,r,1)
i1

x(1)i1
· · ·

IM

∑
iM=1

v(j1,··· ,jP ,r,M)
iM

x(M)
iM

=
R(j1,··· ,jP)

∑
r=1

⟨v(j1,··· ,jP ,r,1), x(1)⟩ · · · ⟨v(j1,··· ,jP ,r,M), x(M)⟩

=
R(j1,··· ,jP)

∑
r=1

M

∏
m=1

⟨v(j1,··· ,jP ,r,m), x(m)⟩

(A7)

From Equation (A7), two cases can be distinguished:

i The tensor ranks of all subtensors are equal.
ii The tensor ranks of all subtensors are different.

Appendix A.1.1. The Tensor Ranks of Subtensors Are Equal

Since the tensor rank R(j1,··· ,jP) is equal across subtensors, Equation (A6) becomes
Equation (A8), where R = R(j1,··· ,jP)∀jp ∈ [Jp], p ∈ [P].

zj1,··· ,jP ≊
R

∑
r=1

M

∏
m=1

⟨v(j1,··· ,jP ,r,m), x(m)⟩ (A8)

From the inner product ⟨v(j1,··· ,jP ,r,m), x(m)⟩ = ∑Im
im=1 v(j1,··· ,jP ,r,m)

im , it should be noted

that the term v(j1···jP ,r,m)
im is indexed by P + 2 indices j1 ∈ [J1], · · · , jP ∈ [JP], r ∈ [R], and

im ∈ [Im]. Let u(m)
j1···jPrim = v(j1,··· ,jP ,r,m)

im be the (j1, · · · , jP, r, im)th entry of a (P + 2)th-order

tensor U(m) ∈ RJ1×···×JP×R×Im∀m ∈ [M], here called the mth factor tensor, whose (P + 2)-
mode fiber U(m)

j1···jPr: = v(j1,··· ,jP ,r,m). From this tensor, the inner product of Equation (A8)

can be rewritten as the Einstein product U(m)
j1···jPr: ⊛1 x(m), as Equation (A9) shows:

zj1···jP ≊
R

∑
r=1

M

∏
m=1

U
(m)
j1···jPr: ⊛1 x(m) (A9)

To simplify this proof, we restrict the order P of S as the unidimensional case,
i.e., P = 1; however, it can be easily generalized to any arbitrary order. As a conse-
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quence, the tensor U(m) ∈ RJ1×R×Im and Z become the vector z ∈ RJ1 , which is given
by Equation (A10):

z =

 z1
...

zJ1

 ≊


∑R

r=1 ∏M
m=1 U

(m)
1r: ⊛1 x(m)

...

∑R
r=1 ∏M

m=1 U
(m)
J1r: ⊛1 x(m)

 (A10)

The summations and products on Equation (A10) can be rewritten as the product
U

(m)
j1r: ⊛1 x(m) using the Hadamard product, as Equation (A11) shows:

z ≊
R

∑
r=1

M⊙
m=1


U

(m)
1r: ⊛1 x(m)

...
U

(m)
J1r: ⊛1 x(m)

 =
R

∑
r=1

M⊙
m=1

zm,r (A11)

Note that the entries of vector z(m,r) ∈ RJ are inner products, i.e., U(m)
j1r: ⊛1 x(m) =

⟨U(m)
j1r: , x(m)⟩. It resembles the standard matrix times vector multiplication, which is carried

along the first and third mode of U(m) with vector x(m), as illustrated by Equation (A12):

z ≊
R

∑
r=1

M⊙
m=1


⟨U(m)

1r: , x(m)⟩
...

⟨U(m)
J1r: , x(m)⟩

 =
R

∑
r=1

M⊙
m=1


∑Im

im=1 u(m)
1rim x(m)

im
...

∑Im
im=1 u(m)

J1rim x(m)
im

 =
R

∑
r=1

M⊙
m=1

U
(m)
:r: ⊛1 x(m) (A12)

Finally, also note that the outer summation is carried out along the r index, and it
can be expressed by the Einstein product of the Hadamard product of Einstein products
U(m) ⊛1 x(m) with a vector 1 ∈ RJ1 , whose entries are 1, as shown in Equation (A13), which
concludes the proof.

z ≊
R

∑
r=1

M⊙
m=1

U
(m)
:r: ⊛1 x(m) =

[
M⊙

m=1

U(m) ⊛1 x(m)

]
⊛1 1 (A13)

Appendix A.1.2. The Tensor Ranks of Subtensors Are Different

Here, we also restrict the order P of S as the unidimensional case. Let R be the
maximum decomposition rank across subtensors, as Equation (A14) shows:

R = max
j1∈[J1]

R(j1) (A14)

Then, Equation (A6) can be rewritten as depicted in Equation (A15).

zj1 ≊
R

∑
r=1

{
∏M

m=1⟨v(j1,r,m), x(m)⟩, r ≤ R(j1)

0, r > R(j1)
(A15)

We also define a tensor U(m) ∈ RJ1×R×Im , whose (j1, r, im)th entry u(m)
j1rim is given as

follows:

u(m)
j1rim =

{
v(j1,r,m)

im , r ≤ R(j)

0, r > R(j)
(A16)

Note that Equation (A15) is consistent with Equation (A7). Consequently, Equation (A14)
also holds for the second case, which completes this proof.
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Appendix A.2. Low-Rank Multi-View Tensor Data Fusion Layer for Unidimensional Latent Spaces

A particular case of the MV-DTF layer is for unidimensional latent spaces, i.e., P = 1,
and dim(S) = J. In this scenario, the multilinear transformation T : RI1 × · · · ×RIM → RJ

is induced via the tensor A ∈ RJ×I1×···×IM . From the Einstein product (Definition 11),
the j-th entry of z = A⊛M X is given by Equation (A1), where z ∈ RJ , and j ∈ [J].

zj =
I1

∑
i1=1

· · ·
IM

∑
iM=1

aji1···iM xi1···iM = Aj : ··· : ⊛M X (A17)

Using the CPD, each j-th subtensor Aj : ··· : ∈ RI1×···×IM can then be decomposed into
R(j) rank-one tensors, as shown in Equation (A18), where v(j,r,m) ∈ RIm is the m-mode
factor vector for the r-th rank-one tensor v(j,r,1) ⊗ · · · ⊗ v(j,r,M), and r ∈ [R(j)].

Aj : ··· : ≊
R(j)

∑
r=1

v(j,r,1) ⊗ · · · ⊗ v(j,r,M) (A18)

Then, similar to Equation (A7), subtensor Aj : ··· : can also be expressed as a sum of
products of inner products, as Equation (A18) shows.

zj ≊
R(j)

∑
r=1

M

∏
m=1

⟨v(j,r,m), x(m)⟩ (A19)

Consequently, it yields the same tensor forms derived in Appendixes A.1.1 and A.1.2, i.e.,

z ≊
[

M⊙
m=1

U(m) ⊛1 x(m)

]
⊛1 1 (A20)

where U(m) ∈ RJ×R×Im is the m-mode factor tensor associated with the m-th view, whose
third-mode fiber U(m)

jr : = v(j,r,m).

Appendix B. Results

(a) (b) (c)

(d) (e)
Figure A1. Mean values for 30 runs of performance metrics achieved in the occlusion detection
task with test video V2 and the multi-view multitask model. The value R = − denotes the re-
sults when the MV-DTF layer was employed, whereas the other values correspond to the LRMV-
DTF layer. (a) Weighted accuracy. (b) Weighted F1. (c) Weighted GM. (d) Weighted normalized MCC.
(e) Weighted normalized BM.
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(a) (b) (c)

(d) (e)
Figure A2. Mean values for 30 runs of performance metrics achieved in the vehicle-size classifica-
tion task with test video V2 and the multi-view multitask model. The value R = − denotes the
results when the MV-DTF layer was employed, whereas the other values correspond to the LRMV-
DTF layer. (a) Weighted accuracy. (b) Weighted F1. (c) Weighted GM. (d) Weighted normalized MCC.
(e) Weighted normalized BM.

Table A1. Mean and standard deviation of metrics for different pairs of (J, R) values for 30 runs for
occlusion detection. The value R = − denotes the results when the MV-DTF layer was employed,
whereas the other values correspond to the LRMV-DTF layer.

Video (J, R) ACCw F1w GMw MCCnw BMnw

V1

(2,−) 0.9122 ± 0.0075 0.9361 ± 0.0060 0.9281 ± 0.0090 0.9007 ± 0.0084 0.9289 ± 0.0093
(2, 1) 0.9043 ± 0.0073 0.9284 ± 0.0070 0.9093 ± 0.0193 0.8885 ± 0.0110 0.9098 ± 0.0193
(2, 2) 0.9158 ± 0.0094 0.9384 ± 0.0074 0.9278 ± 0.0107 0.9028 ± 0.0105 0.9283 ± 0.0108
(2, 3) 0.9155 ± 0.0043 0.9381 ± 0.0037 0.9270 ± 0.0087 0.9024 ± 0.0059 0.9275 ± 0.0090
(2, 4) 0.9128 ± 0.0091 0.9345 ± 0.0086 0.9144 ± 0.0226 0.8973 ± 0.0131 0.9151 ± 0.0226

V1

(16,−) 0.9137 ± 0.0206 0.9304 ± 0.0178 0.8858 ± 0.0368 0.8957 ± 0.0245 0.8883 ± 0.0345
(16, 1) 0.9094 ± 0.0114 0.9279 ± 0.0096 0.8857 ± 0.0217 0.8903 ± 0.0142 0.8875 ± 0.0204
(16, 2) 0.9088 ± 0.0142 0.9268 ± 0.0128 0.8815 ± 0.0305 0.8901 ± 0.0170 0.8840 ± 0.0284
(16, 3) 0.9145 ± 0.0137 0.9320 ± 0.0122 0.8926 ± 0.0282 0.8966 ± 0.0163 0.8944 ± 0.0264
(16, 4) 0.9162 ± 0.0153 0.9332 ± 0.0130 0.8940 ± 0.0259 0.8978 ± 0.0187 0.8955 ± 0.0246

V1

(64,−) 0.9158 ± 0.0203 0.9314 ± 0.0171 0.8844 ± 0.0328 0.8984 ± 0.0243 0.8871 ± 0.0311
(64, 1) 0.9140 ± 0.0160 0.9306 ± 0.0139 0.8858 ± 0.0289 0.8957 ± 0.0191 0.8880 ± 0.0271
(64, 2) 0.9208 ± 0.0193 0.9357 ± 0.0165 0.8931 ± 0.0341 0.9050 ± 0.0225 0.8955 ± 0.0318
(64, 3) 0.9177 ± 0.0152 0.9338 ± 0.0120 0.8930 ± 0.0229 0.9007 ± 0.0186 0.8948 ± 0.0219
(64, 4) 0.9151 ± 0.0183 0.9313 ± 0.0157 0.8865 ± 0.0326 0.8976 ± 0.0219 0.8890 ± 0.0307

V2

(2,−) 0.9191 ± 0.0132 0.9339 ± 0.0117 0.9230 ± 0.0168 0.9138 ± 0.0148 0.9232 ± 0.0169
(2, 1) 0.8912 ± 0.0376 0.9094 ± 0.0326 0.8904 ± 0.0400 0.8840 ± 0.0387 0.8908 ± 0.0399
(2, 2) 0.9140 ± 0.0139 0.9293 ± 0.0124 0.9166 ± 0.0181 0.9080 ± 0.0159 0.9167 ± 0.0182
(2, 3) 0.9159 ± 0.0089 0.9309 ± 0.0076 0.9183 ± 0.0100 0.9100 ± 0.0095 0.9184 ± 0.0101
(2, 4) 0.9112 ± 0.0138 0.9264 ± 0.0126 0.9100 ± 0.0209 0.9044 ± 0.0157 0.9103 ± 0.0205

V2

(16,−) 0.9243 ± 0.0121 0.9360 ± 0.0109 0.9163 ± 0.0171 0.9175 ± 0.0131 0.9168 ± 0.0167
(16, 1) 0.9219 ± 0.0089 0.9342 ± 0.0078 0.9147 ± 0.0118 0.9150 ± 0.0097 0.9150 ± 0.0116
(16, 2) 0.9237 ± 0.0098 0.9357 ± 0.0088 0.9169 ± 0.0135 0.9169 ± 0.0108 0.9172 ± 0.0133
(16, 3) 0.9277 ± 0.0100 0.9391 ± 0.0092 0.9211 ± 0.0148 0.9213 ± 0.0108 0.9215 ± 0.0144
(16, 4) 0.9288 ± 0.0085 0.9401 ± 0.0075 0.9228 ± 0.0113 0.9224 ± 0.0093 0.9230 ± 0.0111
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Table A1. Cont.

Video (J, R) ACCw F1w GMw MCCnw BMnw

V2

(64,−) 0.9341 ± 0.0080 0.9444 ± 0.0073 0.9279 ± 0.0115 0.9281 ± 0.0086 0.9282 ± 0.0113
(64, 1) 0.9336 ± 0.0082 0.9440 ± 0.0076 0.9275 ± 0.0120 0.9276 ± 0.0089 0.9278 ± 0.0118
(64, 2) 0.9290 ± 0.0103 0.9399 ± 0.0093 0.9211 ± 0.0148 0.9229 ± 0.0111 0.9216 ± 0.0144
(64, 3) 0.9322 ± 0.0102 0.9429 ± 0.0091 0.9262 ± 0.0139 0.9263 ± 0.0111 0.9265 ± 0.0136
(64, 4) 0.9316 ± 0.0091 0.9425 ± 0.0084 0.9258 ± 0.0136 0.9256 ± 0.0097 0.9262 ± 0.0132

V3

(2,−) 0.9134 ± 0.0102 0.9329 ± 0.0077 0.9270 ± 0.0069 0.9092 ± 0.0077 0.9281 ± 0.0068
(2, 1) 0.9151 ± 0.0116 0.9342 ± 0.0097 0.9265 ± 0.0136 0.9091 ± 0.0128 0.9271 ± 0.0138
(2, 2) 0.9143 ± 0.0092 0.9343 ± 0.0075 0.9322 ± 0.0076 0.9119 ± 0.0081 0.9337 ± 0.0074
(2, 3) 0.9187 ± 0.0107 0.9376 ± 0.0087 0.9329 ± 0.0099 0.9142 ± 0.0105 0.9338 ± 0.0099
(2, 4) 0.9227 ± 0.0110 0.9407 ± 0.0083 0.9360 ± 0.0071 0.9182 ± 0.0095 0.9369 ± 0.0069

V3

(16,−) 0.9300 ± 0.0097 0.9438 ± 0.0083 0.9265 ± 0.0143 0.9210 ± 0.0110 0.9267 ± 0.0141
(16, 1) 0.9260 ± 0.0169 0.9406 ± 0.0138 0.9225 ± 0.0199 0.9168 ± 0.0191 0.9228 ± 0.0198
(16, 2) 0.9304 ± 0.0110 0.9446 ± 0.0090 0.9297 ± 0.0139 0.9222 ± 0.0115 0.9300 ± 0.0136
(16, 3) 0.9273 ± 0.0102 0.9423 ± 0.0087 0.9281 ± 0.0164 0.9196 ± 0.0109 0.9286 ± 0.0160
(16, 4) 0.9324 ± 0.0107 0.9460 ± 0.0086 0.9307 ± 0.0126 0.9241 ± 0.0115 0.9310 ± 0.0125

V3

(64,−) 0.9283 ± 0.0093 0.9419 ± 0.0085 0.9220 ± 0.0168 0.9192 ± 0.0103 0.9225 ± 0.0162
(64, 1) 0.9299 ± 0.0083 0.9437 ± 0.0073 0.9264 ± 0.0144 0.9214 ± 0.0091 0.9268 ± 0.0141
(64, 2) 0.9285 ± 0.0136 0.9416 ± 0.0111 0.9197 ± 0.0172 0.9195 ± 0.0151 0.9203 ± 0.0169
(64, 3) 0.9226 ± 0.0148 0.9372 ± 0.0120 0.9159 ± 0.0177 0.9132 ± 0.0161 0.9165 ± 0.0175
(64, 4) 0.9313 ± 0.0066 0.9449 ± 0.0054 0.9282 ± 0.0106 0.9229 ± 0.0070 0.9285 ± 0.0104

V4

(2,−) 0.9204 ± 0.0057 0.9450 ± 0.0041 0.9404 ± 0.0041 0.9056 ± 0.0055 0.9413 ± 0.0040
(2, 1) 0.9099 ± 0.0130 0.9369 ± 0.0093 0.9307 ± 0.0089 0.8951 ± 0.0115 0.9318 ± 0.0086
(2, 2) 0.9099 ± 0.0146 0.9372 ± 0.0107 0.9324 ± 0.0093 0.8960 ± 0.0123 0.9337 ± 0.0087
(2, 3) 0.9149 ± 0.0140 0.9406 ± 0.0106 0.9342 ± 0.0141 0.8996 ± 0.0143 0.9351 ± 0.0141
(2, 4) 0.9170 ± 0.0156 0.9420 ± 0.0113 0.9352 ± 0.0117 0.9015 ± 0.0149 0.9360 ± 0.0114

V4

(16,−) 0.9370 ± 0.0070 0.9556 ± 0.0047 0.9450 ± 0.0047 0.9203 ± 0.0071 0.9451 ± 0.0046
(16, 1) 0.9325 ± 0.0079 0.9524 ± 0.0052 0.9412 ± 0.0043 0.9155 ± 0.0078 0.9415 ± 0.0043
(16, 2) 0.9369 ± 0.0080 0.9556 ± 0.0053 0.9455 ± 0.0053 0.9205 ± 0.0079 0.9457 ± 0.0052
(16, 3) 0.9368 ± 0.0063 0.9556 ± 0.0040 0.9458 ± 0.0035 0.9204 ± 0.0061 0.9461 ± 0.0035
(16, 4) 0.9361 ± 0.0064 0.9550 ± 0.0043 0.9447 ± 0.0048 0.9194 ± 0.0065 0.9449 ± 0.0048

V4

(64,−) 0.9423 ± 0.0049 0.9590 ± 0.0032 0.9470 ± 0.0044 0.9259 ± 0.0052 0.9471 ± 0.0044
(64, 1) 0.9401 ± 0.0052 0.9572 ± 0.0036 0.9438 ± 0.0063 0.9231 ± 0.0057 0.9439 ± 0.0063
(64, 2) 0.9393 ± 0.0085 0.9570 ± 0.0058 0.9449 ± 0.0065 0.9228 ± 0.0090 0.9451 ± 0.0064
(64, 3) 0.9377 ± 0.0094 0.9557 ± 0.0063 0.9432 ± 0.0066 0.9209 ± 0.0098 0.9433 ± 0.0065
(64, 4) 0.9387 ± 0.0067 0.9567 ± 0.0046 0.9455 ± 0.0052 0.9220 ± 0.0072 0.9456 ± 0.0052

Values highlighted in red denote the worst values achieved on every group. Values highlighted in blue denote the
best values achieved on every group.

Table A2. Mean and standard deviation of metrics for different pairs of (J, R) values for 30 runs in
vehicle-size classification. The value R = − denotes the results when the MV-DTF layer is employed,
whereas the other values correspond to the LRMV-DTF layer.

Video (J,R) ACCw F1w GMw MCCnw BMnw

V1

(2,−) 0.9761 ± 0.0069 0.9666 ± 0.0119 0.9150 ± 0.0333 0.9441 ± 0.0160 0.9196 ± 0.0300
(2, 1) 0.9719 ± 0.0103 0.9641 ± 0.0132 0.8953 ± 0.0480 0.9345 ± 0.0251 0.9022 ± 0.0410
(2, 2) 0.9710 ± 0.0092 0.9520 ± 0.0264 0.8932 ± 0.0459 0.9299 ± 0.0257 0.9021 ± 0.0370
(2, 3) 0.9675 ± 0.0101 0.9529 ± 0.0209 0.8747 ± 0.0432 0.9224 ± 0.0262 0.8840 ± 0.0371
(2, 4) 0.9764 ± 0.0062 0.9668 ± 0.0119 0.9135 ± 0.0284 0.9444 ± 0.0157 0.9179 ± 0.0254

V1

(16,−) 0.9782 ± 0.0089 0.9699 ± 0.0139 0.9211 ± 0.0405 0.9489 ± 0.0220 0.9252 ± 0.0353
(16, 1) 0.9786 ± 0.0064 0.9719 ± 0.0084 0.9216 ± 0.0275 0.9503 ± 0.0151 0.9250 ± 0.0250
(16, 2) 0.9783 ± 0.0061 0.9690 ± 0.0120 0.9196 ± 0.0268 0.9490 ± 0.0148 0.9236 ± 0.0244
(16, 3) 0.9786 ± 0.0070 0.9716 ± 0.0087 0.9236 ± 0.0312 0.9503 ± 0.0167 0.9269 ± 0.0280
(16, 4) 0.9750 ± 0.0075 0.9673 ± 0.0116 0.9078 ± 0.0346 0.9417 ± 0.0189 0.9128 ± 0.0296
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Table A2. Cont.

Video (J,R) ACCw F1w GMw MCCnw BMnw

V1

(64,−) 0.9790 ± 0.0064 0.9706 ± 0.0118 0.9256 ± 0.0278 0.9510 ± 0.0157 0.9288 ± 0.0254
(64, 1) 0.9743 ± 0.0130 0.9634 ± 0.0211 0.9038 ± 0.0692 0.9385 ± 0.0360 0.9111 ± 0.0507
(64, 2) 0.9745 ± 0.0105 0.9649 ± 0.0157 0.9066 ± 0.0476 0.9398 ± 0.0270 0.9124 ± 0.0395
(64, 3) 0.9766 ± 0.0067 0.9682 ± 0.0084 0.9152 ± 0.0299 0.9454 ± 0.0159 0.9192 ± 0.0270
(64, 4) 0.9775 ± 0.0074 0.9696 ± 0.0085 0.9197 ± 0.0334 0.9475 ± 0.0174 0.9234 ± 0.0299

V2

(2,−) 0.9626 ± 0.0034 0.9525 ± 0.0053 0.8602 ± 0.0286 0.8815 ± 0.0131 0.8687 ± 0.0246
(2, 1) 0.9602 ± 0.0056 0.9518 ± 0.0084 0.8438 ± 0.0517 0.8730 ± 0.0233 0.8555 ± 0.0434
(2, 2) 0.9596 ± 0.0053 0.9443 ± 0.0149 0.8363 ± 0.0625 0.8694 ± 0.0249 0.8508 ± 0.0494
(2, 3) 0.9579 ± 0.0052 0.9448 ± 0.0114 0.8369 ± 0.0412 0.8648 ± 0.0217 0.8493 ± 0.0337
(2, 4) 0.9625 ± 0.0029 0.9522 ± 0.0051 0.8630 ± 0.0280 0.8818 ± 0.0112 0.8715 ± 0.0242

V2

(16,−) 0.9684 ± 0.0046 0.9612 ± 0.0063 0.8700 ± 0.0405 0.8993 ± 0.0168 0.8785 ± 0.0351
(16, 1) 0.9690 ± 0.0054 0.9621 ± 0.0076 0.8671 ± 0.0372 0.9005 ± 0.0190 0.8758 ± 0.0320
(16, 2) 0.9682 ± 0.0040 0.9600 ± 0.0062 0.8633 ± 0.0311 0.8976 ± 0.0143 0.8724 ± 0.0266
(16, 3) 0.9682 ± 0.0046 0.9615 ± 0.0057 0.8642 ± 0.0328 0.8979 ± 0.0163 0.8729 ± 0.0283
(16, 4) 0.9664 ± 0.0052 0.9586 ± 0.0078 0.8441 ± 0.0447 0.8906 ± 0.0200 0.8565 ± 0.0371

V2

(64,−) 0.9704 ± 0.0044 0.9637 ± 0.0061 0.8732 ± 0.0296 0.9054 ± 0.0151 0.8809 ± 0.0259
(64, 1) 0.9674 ± 0.0049 0.9586 ± 0.0115 0.8522 ± 0.0505 0.8942 ± 0.0207 0.8638 ± 0.0386
(64, 2) 0.9685 ± 0.0040 0.9616 ± 0.0062 0.8665 ± 0.0304 0.8992 ± 0.0140 0.8751 ± 0.0259
(64, 3) 0.9671 ± 0.0041 0.9603 ± 0.0059 0.8599 ± 0.0448 0.8951 ± 0.0160 0.8698 ± 0.0380
(64, 4) 0.9692 ± 0.0037 0.9621 ± 0.0054 0.8713 ± 0.0453 0.9019 ± 0.0151 0.8798 ± 0.0387

V3

(2,−) 0.9475 ± 0.0074 0.9175 ± 0.0185 0.8752 ± 0.0491 0.8998 ± 0.0178 0.8851 ± 0.0419
(2, 1) 0.9317 ± 0.0148 0.8884 ± 0.0281 0.7909 ± 0.0644 0.8630 ± 0.0327 0.8157 ± 0.0504
(2, 2) 0.9377 ± 0.0128 0.8953 ± 0.0306 0.8096 ± 0.0600 0.8744 ± 0.0297 0.8323 ± 0.0417
(2, 3) 0.9451 ± 0.0142 0.9163 ± 0.0253 0.8596 ± 0.0666 0.8945 ± 0.0309 0.8717 ± 0.0554
(2, 4) 0.9452 ± 0.0158 0.9130 ± 0.0283 0.8605 ± 0.0754 0.8934 ± 0.0353 0.8726 ± 0.0635

V3

(16,−) 0.9635 ± 0.0091 0.9431 ± 0.0187 0.9192 ± 0.0393 0.9308 ± 0.0199 0.9236 ± 0.0350
(16, 1) 0.9590 ± 0.0073 0.9401 ± 0.0124 0.9015 ± 0.0312 0.9226 ± 0.0145 0.9068 ± 0.0275
(16, 2) 0.9620 ± 0.0078 0.9450 ± 0.0115 0.9163 ± 0.0337 0.9292 ± 0.0155 0.9202 ± 0.0299
(16, 3) 0.9637 ± 0.0091 0.9470 ± 0.0136 0.9161 ± 0.0385 0.9320 ± 0.0180 0.9204 ± 0.0342
(16, 4) 0.9621 ± 0.0091 0.9435 ± 0.0140 0.9074 ± 0.0327 0.9282 ± 0.0179 0.9125 ± 0.0288

V3

(64,−) 0.9614 ± 0.0090 0.9418 ± 0.0177 0.9054 ± 0.0362 0.9271 ± 0.0180 0.9110 ± 0.0306
(64, 1) 0.9592 ± 0.0117 0.9362 ± 0.0243 0.8931 ± 0.0544 0.9216 ± 0.0259 0.9016 ± 0.0414
(64, 2) 0.9620 ± 0.0114 0.9421 ± 0.0187 0.8999 ± 0.0441 0.9273 ± 0.0237 0.9066 ± 0.0363
(64, 3) 0.9614 ± 0.0069 0.9398 ± 0.0116 0.8977 ± 0.0298 0.9265 ± 0.0134 0.9042 ± 0.0258
(64, 4) 0.9596 ± 0.0068 0.9397 ± 0.0099 0.9014 ± 0.0284 0.9240 ± 0.0131 0.9069 ± 0.0251

V4

(2,−) 0.9492 ± 0.0036 0.9212 ± 0.0044 0.8336 ± 0.0126 0.8661 ± 0.0071 0.8466 ± 0.0100
(2, 1) 0.9446 ± 0.0079 0.9143 ± 0.0122 0.8022 ± 0.0406 0.8506 ± 0.0246 0.8213 ± 0.0304
(2, 2) 0.9475 ± 0.0052 0.9168 ± 0.0128 0.8105 ± 0.0343 0.8585 ± 0.0164 0.8289 ± 0.0247
(2, 3) 0.9446 ± 0.0051 0.9146 ± 0.0096 0.8157 ± 0.0318 0.8531 ± 0.0151 0.8317 ± 0.0244
(2, 4) 0.9477 ± 0.0043 0.9188 ± 0.0072 0.8280 ± 0.0104 0.8615 ± 0.0107 0.8413 ± 0.0088

V4

(16,−) 0.9481 ± 0.0046 0.9236 ± 0.0071 0.8526 ± 0.0256 0.8680 ± 0.0118 0.8621 ± 0.0201
(16, 1) 0.9501 ± 0.0036 0.9252 ± 0.0061 0.8565 ± 0.0088 0.8723 ± 0.0074 0.8651 ± 0.0070
(16, 2) 0.9498 ± 0.0042 0.9257 ± 0.0063 0.8555 ± 0.0169 0.8716 ± 0.0109 0.8643 ± 0.0138
(16, 3) 0.9491 ± 0.0026 0.9254 ± 0.0030 0.8581 ± 0.0089 0.8708 ± 0.0043 0.8662 ± 0.0074
(16, 4) 0.9499 ± 0.0035 0.9257 ± 0.0051 0.8494 ± 0.0199 0.8706 ± 0.0095 0.8591 ± 0.0162

V4

(64,−) 0.9493 ± 0.0043 0.9264 ± 0.0056 0.8636 ± 0.0106 0.8727 ± 0.0067 0.8711 ± 0.0083
(64, 1) 0.9499 ± 0.0043 0.9267 ± 0.0087 0.8586 ± 0.0327 0.8728 ± 0.0134 0.8674 ± 0.0246
(64, 2) 0.9498 ± 0.0044 0.9271 ± 0.0054 0.8623 ± 0.0091 0.8735 ± 0.0075 0.8700 ± 0.0075
(64, 3) 0.9503 ± 0.0039 0.9272 ± 0.0047 0.8617 ± 0.0098 0.8742 ± 0.0059 0.8695 ± 0.0082
(64, 4) 0.9483 ± 0.0054 0.9263 ± 0.0049 0.8635 ± 0.0142 0.8713 ± 0.0089 0.8708 ± 0.0116

Values highlighted in red denote the worst values achieved on every group. Values highlighted in blue denote the
best values achieved on every group.
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Table A3. Mean values of metrics achieved over 30 runs for vehicle-size classification, using different
pairs of (J, R) values. The value R = − denotes the results when the MV-DTF layer was employed,
whereas the other values correspond to the LRMV-DTF layer. If the rank R value is not provided,
the entire row corresponds to the results of the multitask single-view model.

Method
Metric

ACCw F1w GMw MCCnw BMnw

MT-SV (J = 8) 0.9483 0.9282 0.7878 0.8388 0.8087
MT-MV (J = 8, R = −) 0.9514 0.9286 0.8075 0.8494 0.8248
MT-MV (J = 8, R = 1) 0.9501 0.9279 0.8026 0.8455 0.8205
MT-MV (J = 8, R = 2) 0.9504 0.9285 0.8098 0.8476 0.8264
MT-MV (J = 8, R = 3) 0.9516 0.9288 0.8073 0.8498 0.8245

MT-SV (J = 10) 0.9493 0.9290 0.7909 0.8420 0.8112
MT-MV (J = 10, R = −) 0.9504 0.9276 0.8091 0.8471 0.8257
MT-MV (J = 10, R = 1) 0.9499 0.9273 0.8063 0.8456 0.8235
MT-MV (J = 10, R = 2) 0.9503 0.9282 0.8006 0.8490 0.8190
MT-MV (J = 10, R = 3) 0.9508 0.9284 0.8045 0.8476 0.8222

MT-SV (J = 12) 0.9483 0.9285 0.7874 0.8389 0.8084
MT-MV (J = 12, R = −) 0.9510 0.9283 0.8089 0.8487 0.8256
MT-MV (J = 12, R = 1) 0.9512 0.9288 0.8089 0.8492 0.8257
MT-MV (J = 12, R = 2) 0.9498 0.9272 0.8065 0.8455 0.8237
MT-MV (J = 12, R = 3) 0.9511 0.9279 0.7984 0.8469 0.8176

Values highlighted in red denote the worst values achieved on every group. Values highlighted in blue denote the
best values achieved on every group.
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