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Abstract: Although integrated joint torque sensors in robots dispel the need for external force/torque
sensors at the wrist to measure interactions, an inherent challenge is that they also measure the
robot’s intrinsic dynamics. This is especially problematic for delicate robot manipulation tasks,
where interaction forces may be comparable to the robot intrinsic dynamics. Therefore, the intrinsic
dynamics must first be experimentally estimated under no-load conditions, when the measurement
only consists of torques due to the transmission of the robot actuator, before external interactions
may be measured. In this work, we propose an approach for identifying and predicting the intrinsic
dynamics using linear regression with non-linear radial basis functions. Then, we validate this
regression on a wheel-bearing turning task, in which its friction is a measure of quality, and thus
must be accurately measured. The results showed that the bearing torque measured by the joint
7 torque sensor was within an RMS error of 11% of the torque measured by the external force/torque
sensor. This error is much lower than that before our proposed model in compensating the intrinsic
dynamics of the robot arm.

Keywords: intrinsic dynamics; linear regression; contact-rich; wheel-bearing inspection

1. Introduction

The use of collaborative robots (cobots) has become increasingly prevalent in indus-
trial work settings due to their ability to work closely and interact with humans [1–3]. These
robots are typically equipped with joint torque sensors, which offer advantages in address-
ing safety concerns during physical interaction with humans. However, a major drawback
with this arrangement is that the joint torque sensors measure the intrinsic dynamics of
the robot, including torques from the power transmission system (refer Section 2.1 [4]), as
well as the robot’s rigid body dynamics [5,6]. This can lead to measurement inaccuracies,
particularly when performing contact tasks, such as inspections that involve rotary motions,
where the intrinsic dynamic torques can be comparable to the torques of interaction. In
addition, calibration errors and ripple torques from gear motion can also contribute to
measurement inaccuracies. Hence, enhancing the accuracy of torque measurement in the
robot joints via eliminating the impact of the intrinsic dynamics is necessary.

Modern cobot joints commonly comprise a motor connected in series with a trans-
mission drive, joint torque sensor, encoder and other components such as bearings [7,8].
Harmonic drives have high gear-reduction ratios, which enable higher torque transmission
in robot joints within a compact geometry [9]. They consist of three main components,
namely, the wave-generator, flexspline and the outer circular spline. The elliptical wave
generator causes a periodic deformation of the flexspline when the harmonic drive is
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operational. This periodic motion results in a periodic noise that has much greater signal
amplitude than the electrical noise and is known as torque ripple. It becomes coupled
with the output of the torque sensor embedded in the robot joint thereby affecting its
measurement [10]. Similarly, inertial and frictional torques or errors in force/torque sen-
sor calibration may also affect the torque sensing performance in robot joints. Accurate
torque sensing is vital for many robotic applications, which makes it important to filter
out such disturbances in the sensed values. Several methods have been proposed so far to
compensate for the intrinsic dynamics of harmonic drives.

1.1. Related Work

Common torque ripple compensation techniques include use of Kalman filtering-
based methods [11]. Ref. [12] also proposed a redundant adaptive robust Kalman filter
(RARKF) for torque estimation that was not just tolerant of modeling error but, also enabled
a dynamic balance between optimality and robustness due to load variation on a robot
joint by designing it as a function of motor current to deal with modeling error and other
disturbances. The harmonic drive kinematic model incorporated the effects of torsional
compliance (which also captured hysteresis), non-linear friction as well as the kinematic
errors due to machining [13]. The harmonic drive compliance model was incorporated
in the torque estimation technique proposed in [14], as well as in [15] but along with
unscented Kalman filter (UKF) optimization to improve the accuracy. They found that the
estimated torques obtained using the UKF-based optimization algorithm were 54.5% more
accurate as compared to the method involving only on the harmonic drive compliance
model. Another study by [16] performed a harmonic drive characterization to control
torque ripple for vibration control of a flexible robotic system. Two types of controllers
were developed for this purpose but only the one based on feed-forward control performed
well during actual testing. This also required precise placement of the position sensor at the
output. Ref. [10] worked on the disturbance elimination of a modular joint torque sensor in
a collaborative robot by considering the two major factors affecting torque measurement:
torque ripple and temperature drift due to heating of motor. For torque ripple configuration,
they developed a strain gauge configuration based on specified phase difference while
for temperature compensation, a Wheatstone bridge was combined with a non-linear
temperature drift model.

Motivated to reduce the impact of ripple torque causing errors in sensed torque
of the robot arm with multiple joints, we propose a novel model-based method for the
compensation of the robot intrinsic dynamics. We identify the different sources of torque
measurements in a transmission drive, i.e., calibration offsets in the torque sensor, friction,
torque ripple due to gear-teeth interaction and finally the inertia of the system. In this
work, we use linear regression with a set of non-linear radial basis functions. To perform a
meaningful regression, each of the radial basis functions is chosen to represent one of the
contributing factors to the intrinsic dynamics.

1.2. Wheel-Bearing Inspection

To validate our approach on an actual industrial problem, the inspection of a rolling
wheel-bearing was performed. Typically, wheel-bearing inspections in a factory line con-
stitute a human operator identifying a faulty bearing by turning and sensing the friction.
wheel-bearings with greater friction lead to safety concerns due to heat generation and
mechanical wear and tear. This in turn leads to reduction in efficiency, increase in noise and
in the long term compromises equipment integrity. To automate the quality inspection of
such wheel-bearings, it is important to identify the friction offered by the bearing correctly,
despite the inherent robot joint intrinsic dynamics. For experimental analyses, we chose a
7DoF Kinova Gen3 ultra-lightweight robot (Kinova, Boisbriand, QC, Canada) with inbuilt
joint torque sensors, as the robotic platform. First, the intrinsic dynamics of the robot
end-effector are estimated from sensed torque measurements when the joint was driven
with no load attached to it—since it will only sense the torques due to the transmission.
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Then, the robot was commanded using impedance control to grasp the wheel-bearing
with a compliant finger-pad and turn it. The predicted intrinsic dynamic torques were
subtracted from the torque measurements to identify the torque due to wheel-bearing
friction.

This paper is organized as follows; the robot system with torque sensing and its
intrinsic dynamics of the actuators are presented in Section 2. The experimental setup is
introduced in Section 3, considering both no external load rotation and wheel-bearing rota-
tion. These results are discussed in Section 4, which evaluates the validation with external
load cell and repeatability of the proposed methodology. Finally, Section 5 concludes the
paper and outlines perspectives for future work.

2. Sources of Torque Measurements in a Transmission System

Conventionally, the rigid dynamic model of a robot [4,17,18] with rigid links and
infinitely stiff joints is defined as:

M(q)q̈ + C(q, q̇)q̇ + G(q) = τrb (1)

where M is the inertia matrix, C captures the Coriolis and centrifugal forces and G accounts
for gravity effects, all of which sum up to yield the rigid body dynamics of the robot τrb. In
the presence of external contact and intrinsic dynamical effects (such as friction, damping,
etc.), additional terms contribute to the sensed torque τs at the joints:

τs = τrb + τintr + τext (2)

where τintr is the intrinsic dynamic torques, τext = JTW ext is the torque due to external
interaction with J the robot Jacobian and W ext the wrench due to the external interaction at
the end-effector. In this work, we simplify the above to a single joint and thus eliminate the
rigid-body dynamical effects, i.e., τrb = 0, but note that the effect of τintr will still remain
even for a single joint when measuring external interaction. Thus, the goal of this section is
to model τintr for a single joint assuming no external interaction W ext is present. Once the
model is ready for use, we can compute the torque due to the external interaction simply
by τext = τs − τintr.

Regardless of the sensor placement with regard to the rotor and gearbox assembly, in
this work we assume algebraic dependency of the sensed torques on positions, velocities
and accelerations. In other words, under no-load conditions (when the robot actuator
is freely rotating with no load attached to the output shaft) the sensor reads the torque
due to the transmission. For any transmission system, a driving element with a gearbox
is connected in series with the torque sensor. The input element of a typical harmonic
transmission (see Figure 1) is the wave generator, which is constructed as a hub with
an elliptical shape fitted within a wall bearing. This input element can be a source of
friction primarily due to the bearings, which we assume to be a sum of (i) Coulomb and
(ii) viscous friction. The wave generator is inserted into the rotation-stiff and radially
compliant flexspline component, which conforms to the shape of the wave generator. The
flexspline has external gear-teeth that engage with the circular spline. The circular spline
is a rigid loop with internal gear-teeth. This gear-teeth contact produces periodic (and
predictable) torque ripples. We assume these can be modeled as harmonics of the actuator
rotational position in this work. The torque sensor itself may have calibration offsets that
need to be accounted for in our model. From here onwards, we call these torques as ‘robot
intrinsic dynamics’. Finally, the robot/actuator inertia also contributes to the sensed torque.
Therefore, in contacts tasks where the accurate determination of forces of interaction with
the environment is crucial, it is important that the effects of the rigid body dynamics as
well as the aforementioned intrinsic dynamics are compensated for.
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Figure 1. Structure of a joint in a collaborative robot with the location of torque sensor before gearbox.
For a comprehensive study, see [5].

An important and well-studied source of torque measurements is due to rigid body
motion of the robot body itself. The inverse dynamics model [17,18] accounts for this
with inertial, Coriolis and gravity terms. However, in practice, the torque due to intrinsic
dynamics and external interaction must be estimated experimentally. It is ideal to devise an
experimental protocol where measurements without any external interaction torques are
first obtained to estimate the intrinsic dynamics. Following this, any torque due to external
interactions may be estimated by compensating for these intrinsic dynamics.

2.1. Intrinsic Dynamics of Robot Actuators

In this subsection, we estimate the intrinsic dynamics via linear regression with the
help of a set of non-linear radial basis functions. Each of these basis functions repre-
sents one of the contributing factors of the intrinsic dynamics. Consider basis functions
ϕm : R → R, ∀ m ∈ [1, M] mapping kinematics states x := [θ, θ̇, θ̈]T into scalar torques
τ per each joint. Given a set of measurements {τn, xn}N

n=1 , we seek to determine a vector
of M parameters w = [w1, . . . , wM]T that best fits the target data (in this case torques)
y = [y1. . . . , yN ]

T ≡ [τ1. . . . , τN ]
T , i.e.,

y = Φ w + ϵ (3)

where ϵ is a vector of residuals and Φ is the design matrix, defined as:

Φ :=

ϕ1(x1) . . . ϕM(x1)
...

...
...

ϕ1(xN) . . . ϕM(xN)

 (4)

Assuming a full rank design matrix, i.e., rank(Φ) = M < N, the least-squares
solution w∗ to the over-determined linear problem is:

w∗ = (ΦTΦ)−1 ΦT y (5)

Once the parameters have been determined, then for a new robot state x, the intrinsic
dynamics y can be predicted as:

y =
M

∑
m=1

w∗
m ϕm(x) = [ϕ1(x) . . . ϕM(x)]w∗ (6)
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Selection of Basis Functions

To perform a meaningful regression, we choose the basis functions such that each of
them represents one of the contributing factors to the intrinsic dynamics.

(a) Friction

There are several models [19] in the literature to model various types of friction. In
this work, we choose the simplest, i.e., Coulomb’s friction to model the non-linear behavior
of static friction and viscous friction to model the velocity-dependent nature of friction.
The total torque due to friction τf is written as their sum:

τf = ϕvwv + ϕ+
c w+

c + ϕ−
c w−

c (7)

where ϕv represents the basis function for the viscous friction and ϕ+
c , ϕ−

c represent the
basis functions for the positive and negative Coulomb frictions. Here, wv, w+

c , w−
c represent

parameters that best fit these basis functions to the target torque data.
Specifically, the Coulomb friction [20] is given by:

τc =


ϕ+

c w+
c i f θ̇ > 0

0 i f θ̇ = 0
ϕ−

c w−
c i f θ̇ < 0

(8)

For the Coulomb friction model described in Equation (8), we use a sigmoid represen-
tation of the basis function as follows:ϕ+

c (x) = 1
1+exp(−αθ̇)

ϕ−
c (x) = 1

1+exp(αθ̇)

, (9)

where α > 0 is a tuning parameter to adjust the shape of the curve near the zero velocity
region and is chosen heuristically. The basis functions chosen as above yield a frictional
curve as shown in Figure 2a.
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Figure 2. Torques due to different sources in a motor. (a) Coulomb friction (positive rotation in
green, negative rotation in red). (b) Viscous friction. (c) Torque in a cobot joint produced by inertia
deployed from Equation (11). (d) Torque in a cobot joint produced by a gearbox (harmonic drive)
that is deployed from Equation (12).
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Additionally, the basis function for the viscous friction (Figure 2b) can be written as:

ϕv(x) = θ̇ (10)

Note that all the coefficients w+
c , w−

c and wv must be determined experimentally.

(b) Inertia

The inertial torque measured by the torque sensor can be expressed as:

τi = ϕiwi = θ̈ I (11)

where I represents the lumped inertia (Figure 2c) of the system. Torque due to inertia
varies proportionally to the angular acceleration of the joint. For this reason, the basis
function is chosen as ϕi(x) = θ̈ and the coefficient as wi = I. The inertia of the system may
also be experimentally estimated; however, to obtain this from the actuator data-sheet is
also possible.

(c) Ripple torques from harmonic drive

In harmonic drives when the flexspline undergoes periodic deformation, a ripple
torque τr is generated, which is measured by the torque sensor at the joint. These ripples
are periodic in nature with respect to the angle of rotation. Therefore, we consider n
harmonics of sine and cosine signals as the basis functions, resulting in the ripple torque
defined as:

τr = [cos(θ), . . . , cos(nθ)][wc1, . . . , wcn]
T

+ [sin(θ), . . . , sin(nθ)][ws1, . . . , wsn]
T . (12)

τr = ϕcos(θ)
Twc + ϕsin(θ)

Tws (13)

where ϕcos(θ) = [cos(θ), . . . , cos(nθ)]T , ϕsin(θ) = [sin(θ), . . . , sin(nθ)]T are the collection
of basis functions for the harmonics and wc = [wc1, . . . , wcn]T , ws = [ws1, . . . , wsn]T the
corresponding weights. The ripple torque in Equation (12) is plotted in Figure 2d where
the torque values are represented by harmonic oscillation curves between −1 and 1 Nm.

(d) Torque offset

Improper calibration of the torque sensor also can lead to erroneous readings. To
account for this factor, a basis function to account for the offset in the sensed torque is
introduced as follows:

τo = wo (14)

where the basis function is simply ϕo = 1. In summary, the torque sensed at every joint is
modeled as a sum of the aforementioned torques as:

τ = τf + τi + τr + τo (15)

τ = [ϕv ϕ+
c ϕ−

c ϕi ϕcos(θ)
T ϕsin(θ)

T ϕo][wv w+
c w−

c wi wT
c wT

s wo]
T (16)

All the dynamic parameters w = [wv w+
c w−

c wi wT
c wT

s wo]T are to be determined
experimentally using a training dataset acquired when the robot joint is rotating without
any external interaction.

3. Experimental Validation of Intrinsic Dynamics Compensation

The proposed framework is well suited for industrial wheel-bearing quality inspection
as a good bearing is identified from a faulty one based on the frictional forced offered
during its rotation. Currently, this kind of task is performed by human operators on the
factory floors where the bearing is rotated manually and based on the frictional torque
sensed by the human the quality of the bearing is determined. Typically, bearings with
frictional torque above a threshold value are categorized as faulty ones and are rejected in
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the factory line. Automating this process with an off-the-shelf robot arm (with integrated
joint torque sensors) poses the risk of wrongly disqualifying the product as the sensed
torque also reads the intrinsic dynamics of the robot in addition to the actual frictional
torques offered by the bearing. Therefore, compensating for the intrinsic dynamics leads to
a more accurate estimation of the bearing frictional torques, which brings down the chances
of wrongly disqualifying the bearing. With a detailed experiment analysis, we demonstrate
how the intrinsic compensation minimizes the error in the frictional torque estimation.

For this experiment, the robot was equipped with a Robotiq 2F-85 parallel jaw gripper
(Robotiq, Lévis, QC, Canada) to which the adapters for grasping the bearing were attached.
A good-quality bearing was fastened onto a fixed platform equipped with a load cell to
record the ground-truth/reference reaction torque measurements from the bearing.

3.1. Experimental Protocol

The first experiment is conducted to regress the intrinsic dynamic parameters under
no-load conditions, using the model presented in Section 2.1. Once the model for robot
intrinsic dynamics is known, we can use it to predict the intrinsics and subtract them
from the torque readings to identify interaction torques, i.e., torques due to wheel-bearing
friction. We then proceed with the second experiment, where the automated bearing
inspection is performed by actuating only the end-effector joint of the robot.

3.1.1. No-Load Conditions

To identify the intrinsic dynamics of the joint, the robot is initially configured to be in
the zero position before the experiment was commenced. A trapezoidal torque profile of
30 s duration, with varying maximum values of 1–3 Nm was applied to the end-effector
joint alone with alternating directions.

The resulting sensed torque (from 7th joint torque sensor) is shown in Figure 3. In
this scenario, the torque is filtered with a low pass filter with a cut-off frequency of 1 Hz to
eliminate the noises in the torque reading. From the plot (Figure 3a), it can be observed
that the integrated joint torque sensor, which ideally should read zero under no-load,
instead records the torques due to the intrinsic dynamics of the joint. Additionally, over
the joint angle, the measured torques are wave signals about −0.3 Nm away from the
zero-axis. Upon plotting the sensed torque with regard to the joint angle (Figure 3b), the
repeatable nature of this relationship can be viewed clearly. Specifically, the torque profiles
are identical with regard to the joint angle, but shifted up or down based on a clockwise or
anti-clockwise rotation of the joint.
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Figure 3. Intrinsic dynamic compensation from torque measurements under no-load conditions.
(a) The 1 Hz-filtered torque of freely rotating joint. (b) Torque vs. joint angle is repeatable and
directional. (c) Intrinsic dynamics components in Equations (7)–(14). (d) Residuals after intrinsic
dynamic compensation approach zero.

The components of the intrinsic dynamics torque after identification are represented
in Figure 3c. The two most stable components are the inertia τi ≈ 0 Nm and the torque
offset τo = −0.1189 Nm. The remaining components have larger variations in the torque
values. The position-dependent torque (τr due to gear ripple) fluctuates around the zero-
axis with an amplitude of ±0.2 Nm. The friction torque τf varies depending on the speed
at which the joint rotated and had a minimum value of −0.3 Nm and a maximum value of
+0.1 Nm. After identifying the intrinsic dynamics for the joint, we fit the sensed torque with
intrinsic model prediction. Clearly, the residual measurements obtained after compensating
the sensed torque by the predicted intrinsic dynamics, i.e., by subtracting the intrinsic
dynamics from sensed torques, are centered around the zero-axis with smaller deviations
(see Figure 3d). This is also an expected outcome ideally for the bearing inspection.

3.1.2. Measuring Wheel-Bearing Torques

We use a high-quality bearing from Schaeffler group to conduct the bearing inspection.
To engage the wheel-bearing and transmit the axial torque generated by the wheel-bearing
reliably, it is important for the robot’s end-effector axis to be aligned with the wheel-bearing
along with a secure grasp to be established between the robot’s end-effector and the wheel-
bearing flange. The shape of the wheel-bearing poses a challenge for this if we use the
traditional parallel jaw gripper. For this reason, a flexible gripper adapter (see Figure 4a) to
conform to the shape of the wheel-bearing was designed, prototyped and attached to each
robot’s finger. The objective of this adapter is to mate with the contour of the wheel-bearing
flange as the robot attempts to align it and secure the grasp. The bearing with its one ending
surface being locked on a jig is placed on the same plane where the robot base is mounted.
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The robot was operated with gravity compensation and one technician manually
guided the robot to reach a suitable position for grasping the bearing. Once the position
was decided, the gripper with the compliant finger pads was controlled to grasp the other
adapters (to which the load cell was connected) on the bearing. With the robot in high
compliance mode, it is allowed to self-align (Figure 4b) with the axis of rotation of the
bearing. Subsequently, all the joints except the 7th joint (i.e., the end effector joint) were
switched into impedance control mode with a high stiffness to maintain the respective
positions (experimental setup shown in Figure 4c). A trapezoidal torque profile was applied
to the joint to complete two revolutions in both clockwise and anti-clockwise directions
alternately. The kinematic parameters along with the joint torque sensor readings were
logged along with the data from the external load cell.

(a) (b) (c)
Figure 4. The design of compliant fingerpads is key to enabling the equivalent of a power grasp
(without the need for complex articulation) of the wheel-bearing by conforming to its shape and
preventing slipping while turning. The robot is guided by kinesthetic teaching under high compliance
to grasp the wheel-bearing and is allowed to self-adjust to minimize any misalignment between
robot and wheel-bearing axes. Once settled, the end-effector joint is driven in torque to assess the
wheel-bearing friction. (a) Grasping the bearing. (b) High compliance mode. (c) Experiment.

4. Results

The position, velocity and acceleration data collected from the joint 7 encoder were
used to compute the intrinsic dynamics, which upon subtracting from the sensed torque
isolated bearing torque. The obtained bearing torque was then compared against the torque
read by the external load cell (that would not sense the intrinsic dynamics of the robot),
which we consider as the ground truth.

4.1. Validation with External Load Cell

The external load cell, ATI F/T mini40 sensor (ATI, Markham, ON, Canada) is mounted
on the load side (i.e., the inner ring of the bearing). To that end, a customized adapter that
transmits the torque from the robot to the bearing through the load cell was prototyped.
As shown in Figure 4c, the adapter comprised two cylindrical parts with different sizes to
clamp the load cell and the outer ring of the bearing.

In reference to Figure 5, the root mean square (RMS) errors between the joint torque
sensor data and the load cell before and after the intrinsic dynamics compensation were
found to be 27% and 11%, respectively. Specifically, the robot torque sensor feedback
compared to the FT sensor torque shows a large deviation. Once our intrinsic dynamic
model compensation is applied, this error decreases.
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Figure 5. Illustration of the sensed torques in the benchmark ATI F/T sensor (mini40), and the Kinova
robot arm in the instances with and without compensating the robot intrinsic dynamics. (a) Single-
trial observations. (b) Observations over three trials.

4.2. Repeatability of Proposed Compensation

In this section, we demonstrate the repeatability of the proposed intrinsic dynamics
compensation. Here, the experiment protocol is same as the previous section. A total of
three trials were conducted and we were able to successfully characterize the bearing in
all the instances. The results are plotted in Figure 5b. Over the velocity, the maximum
deviation between the reference torque of the wheel-bearing (measured by the external
mini40 load cell) and the original robot sensor reading is roughly −0.7 Nm. Such a large
deviation would have wrongly classified many good or qualified wheel-bearings as faulty
and potentially eliminated them from the production line since wheel-bearing inspection
requires strict precision. Equipped with our proposed method for compensating robot
intrinsic dynamics, the corrected torque matched that measured by the external load cell
(ATI mini40). Our dynamics intrinsic compensation thus can enhance the reliability and
precision of bearing inspection by the robot arm while being repeatable enough over
multiple experiments.

5. Conclusions

In this paper, intrinsic dynamics in the robot arm is identified and predicted via linear
regression with a set of non-linear radial basis functions. Two experimental studies were
conducted to validate the proposed approach. In the first experiment, the no-load rotation
of the 7th joint (i.e., the end-effector joint) of the Kinova Gen3 robot was performed and
the measurements from its joint torque sensor were used to identify the intrinsic dynamics
of the robot. In the second experiment, the robot performed inspection of the bearing
by rotating it with the end-effector joint and the bearing frictional torques were isolated
after intrinsic dynamic compensation. To benchmark the obtained results, an external
force/torque sensor was employed, which was set up on the bearing side to only measure
the torques due to the wheel-bearing rotation. The results showed that the bearing torque
measured by the joint 7th torque sensor before compensating intrinsic dynamics has an
RMS error of 27%. After compensating using our intrinsic dynamic torque, the RMS error
is in the range of 11%, and this result is repeatable enough across multiple experiments.
Therefore, this study is meaningful for reducing the error in torque measurement of the
robot joint and the fault rate in bearing inspection.
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