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Abstract: A method is proposed for fault classification in milling machines using advanced image
processing and machine learning. First, raw data are obtained from real-world industries, repre-
senting various fault types (tool, bearing, and gear faults) and normal conditions. These data are
converted into two-dimensional continuous wavelet transform (CWT) images for superior time-fre-
quency localization. The images are then augmented to increase dataset diversity using techniques
such as rotating, scaling, and flipping. A contrast enhancement filter is applied to highlight key
features, thereby improving the model’s learning and fault detection capability. The enhanced im-
ages are fed into a modified AlexNet model with three residual blocks to efficiently extract both
spatial and temporal features from the CWT images. The modified AlexNet architecture is particu-
larly well-suited to identifying complex patterns associated with different fault types. The deep fea-
tures are optimized using ant colony optimization to reduce dimensionality while preserving rele-
vant information, ensuring effective feature representation. These optimized features are then clas-
sified using a support vector machine, effectively distinguishing between fault types and normal
conditions with high accuracy. The proposed method provides significant improvements in fault
classification while outperforming state-of-the-art methods. It is thus a promising solution for in-
dustrial fault diagnosis and has potential for broader applications in predictive maintenance.

Keywords: milling machine; feature optimization; fault diagnosis; modified AlexNet; support vec-
tor machine; ant colony optimization

1. Introduction

In modern manufacturing, ensuring the reliability and efficiency of milling machines
is critical owing to their extensive use in many industries, such as aerospace [1], automo-
tive [2], and precision engineering [3,4]. Milling machines transform raw materials into
finished products by executing complex operations, such as cutting, grinding, and drill-
ing, at high speeds and under significant mechanical loads [5]. These operating conditions
make milling machines susceptible to faults, particularly in important components like
cutting tools, bearings, and gears. Mechanical faults, which account for 57% of all failures
in milling machines, can lead to considerable downtime and financial losses. Among these
faults, bearing failures represent 42% of the issues, while tool-related defects account for
nearly 20% of unplanned downtime. These faults not only increase operational costs but
also impact production timelines, making early detection essential for maintaining high
productivity levels. This study therefore focused on the development of an advanced fault
diagnosis system that detects mechanical component failures in milling machines, partic-
ularly those involving bearings, gears, and cutting tools [6].

Over the past decade, advancements in machine learning, feature engineering, and
deep learning have significantly enhanced condition monitoring systems. Recent studies
have demonstrated their ability to detect faults reliably under complex operating
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conditions. For instance, one study demonstrated a machine-learning approach for fault
detection in robotic systems using electrical current signatures [7]. Raouf et al. [8] high-
lighted the benefits of transfer learning in adapting models for different industrial sys-
tems. These studies underscore the growing importance of combining domain knowledge
with modern Al techniques for fault detection [9]. Furthermore, the emergence of explain-
able artificial intelligence (XAI) methods, such as the work on polymer composite struc-
tures, has emphasized the need for interpretable models in industrial applications [10].
These advancements serve as a foundation for our study, which helps AE-based monitor-
ing for fault diagnosis. Condition monitoring involves real-time data collection from ma-
chines through sensors, followed by processing the data using Al algorithms to predict or
detect faults before they lead to significant failures [11]. The literature identifies two main
approaches to condition monitoring: direct methods, which focus on physical changes in
the machine, and indirect methods, which analyze signals generated by the machine dur-
ing operation [12]. While direct methods, such as visual inspections or wear measure-
ments, offer high accuracy, they are often invasive, time-consuming, and sensitive to en-
vironmental factors such as lighting and fluid exposure. Indirect methods, on the other
hand, utilize sensors to capture signals, such as vibrations or acoustic emissions (AEs),
which are then processed through machine learning models for fault detection. AE-based
monitoring has become increasingly popular owing to its high sensitivity to fault-related
events and its ability to capture signals in noisy environments. AEs operate at frequencies
higher than typical machine vibrations. They consequently reduce interference from am-
bient noise, which makes them suitable for monitoring components such as bearings and
cutting tools in milling machines.

AEs are generated as a result of shear stresses between the tool and workpiece during
machining. Assessing AEs can elucidate the changes in material removal, tool wear, and
gear faults [13]. These signals can be collected using AE sensors, which are relatively easy
to install and maintain. Compared to traditional monitoring methods, AEs offer signifi-
cant advantages in precision, particularly in the detection of early-stage faults in rotating
machinery. This study thus leveraged AE-based monitoring to detect faults in fundamen-
tal milling machine components, including bearings, gears, and cutting tools, using deep
learning-based methods.

Related Literature

AE refers to the release of elastic energy from materials during deformation or frac-
ture. AEs are detected by sensors as acoustic emission hits (AEHSs). Faults in milling ma-
chines alter the distribution of AE signals. This has prompted researchers to explore vari-
ous methods for extracting fault-related features from these signals in the temporal do-
main (TD), spectral domain (SD), and time-frequency domain (TFD) [14-16]. Once fea-
tures are extracted, machine-learning models, particularly Al-based techniques, can be
utilized to identify and classify faults [17].

In earlier work, Twardowski et al. [18] developed a framework using time-domain
indicators, such as root mean square (RMS) values, to classify faults using a decision tree
model. Shao et al. explored how convolutional neural networks (CNNs) can be used to
diagnose induction motor faults by directly learning features from vibration signals. Me-
dina et al. [19] employed AE Poincaré plots and random forest classifiers to detect gear
defects such as broken teeth and scuffing. Li et al. [20] used long short-term memory
(LSTM) and support vector data description (SVDD) to monitor tool wear based on one-
dimensional TD signals [21]. While TD analysis is valuable, spectral domain analysis is
particularly useful in diagnosing faults, as faults in machine components often alter the
frequency spectrum of AE signals. Bai et al. [22] proposed a lightweight deep learning
model that outperformed traditional neural network classifiers when trained on a combi-
nation of TD and SD indicators. Wang et al. [23] employed empirical mode decomposition
(EMD) for signal preprocessing, followed by random forest classification for detecting
faults in tools. However, owing to the non-stationary nature of AE signals from milling
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machines, advanced TFD techniques, such as wavelet transform (WT), EMD, and feature
mode decomposition (FMD), are often necessary for effective fault diagnosis [24,25].

Several studies have leveraged these advanced techniques to enhance fault detection.
Hussain et al. [26] used wavelet-decomposed signals to extract statistical indicators, such
as the mean, standard deviation, and entropy, for fault diagnosis in machining centers.
Ding et al. [27] proposed a model combining discrete WT and lightweight CNNs to iden-
tify faults in spindles and tools. Wang et al. [28] utilized EMD to develop a tool fault di-
agnosis framework, which includes random forest classification of features extracted from
decomposed AE signals.

Despite their success, the above techniques also have limitations. TD indicators,
while sensitive to noise, may lack robustness in diagnosing complex faults. SD methods
are suitable for stationary signals; however, they struggle with the non-stationary nature
of AE signals from milling machines. Although TFD techniques, such as EMD, are more
effective, they are computationally costly and often require expert domain knowledge for
fine-tuning parameters such as filter length and mode numbers. To address these chal-
lenges, this study designed an enhanced approach for fault diagnosis using advanced
deep learning architectures.

AEH events result from hazardous occurrences such as material fractures or stress
cracks during milling operations, generating transient acoustic waves detected by AE sen-
sors. When faults develop, these stress waves induce distinct transients in AE signals,
commonly referred to as AEHs or events. Extracting these fault-related features from AE
signals is vital for diagnosing faults in milling machines. By analyzing these features, it
becomes possible to classify machine health based on the patterns detected in the AE sig-
nals. However, isolating these burst-like events can be challenging owing to background
noise and vibrations within the machine environment. To address these difficulties, this
study employed an approach in which AE signals are first converted into continuous
wavelet transform scalograms. These scalograms provide a detailed time-frequency rep-
resentation, capturing both transient and non-stationary fault characteristics [29]. Since
noise in AE signals can reduce diagnostic accuracy, an image sharpener is applied to the
scalograms. This technique sharpens the edges and enhances useful features while main-
taining important fault-related data. It improves the visibility of the distinct features, en-
suring that the feature extraction process is grounded in clean and reliable data.

Deep learning techniques have gained widespread popularity in recent years owing
to their ability to automatically learn and extract meaningful features from raw data with-
out manual intervention [30]. CNNs are highly effective in extracting spatial features from
image data and signals [31]. CNNs have demonstrated success in diagnosing mechanical
component failures, such as bearing faults, gear defects, and tool wear, by processing AE
signals or vibration data. However, CNNs primarily focus on spatial feature extraction
and may struggle to capture the temporal dependencies inherent in sequential AE signal
data.

Fault detection in milling machines presents several challenges due to their complex
operational conditions, including high-speed machining, non-stationary signals, and the
presence of significant noise. Traditional monitoring methods, such as TD or spectral anal-
ysis, often struggle with these challenges because they cannot capture transient and non-
linear features in noisy environments. Furthermore, the non-stationary nature of AE sig-
nals makes it difficult to accurately diagnose faults, particularly for early-stage defects in
components like bearings, gears, and cutting tools. To address this limitation, we propose
a variant of AlexNet 3D, which incorporates three residual blocks to improve the net-
work’s ability to capture both spatial and temporal features. The AlexNet 3D architecture
extends the traditional AlexNet model by combining 3D convolutions, which enable the
extraction of spatiotemporal features from AE signals. The inclusion of residual blocks
helps address the vanishing gradient problem commonly faced in deep networks, allow-
ing for better gradient flow and improved training performance. These residual blocks
enhance the model’s depth without compromising its ability to learn effective
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representations of the input data. By leveraging AlexNet 3D and its residual blocks, this
study strived to improve the fault classification accuracy of milling machines by capturing
both local and global patterns in AE signals.

Furthermore, deep feature extraction is performed using an average pooling layer to
reduce the dimensionality of the feature maps while retaining the most important infor-
mation. This process enables the model to generate a compact representation of the input
data, which can then be used for classification tasks. After feature extraction, the extracted
features are fed into a support vector machine (SVM) classifier, which is known for its
power in handling high-dimensional data and achieving high classification accuracy. The
integration of an SVM ensures a more precise separation between the different fault cate-
gories. The model’s ability to reduce the parameter count from 60 million (traditional
AlexNet) to 9.8 million (AlexNet 3D with residual blocks) further enhances its computa-
tional efficiency, making it suitable for real-time fault diagnosis in industrial settings. This
approach enhances the model’s ability to detect faults in milling machine components,
including bearings, gears, and cutting tools. Thus, the primary contributions of this study
are as follows:

1. A method is proposed for fault classification in milling machines utilizing advanced
image processing and deep learning techniques.

2. A modified AlexNet is introduced with three residual blocks to extract spatial and
temporal features from augmented scalograms, thereby enhancing feature represen-
tation for fault classification.

3. Extracted deep features are optimized using ant colony optimization (ACO) to retain
the most relevant information. The optimized features are then classified using an
SVM, resulting in highly accurate fault classification.

4.  The effectiveness of the proposed methods was evaluated using real-world AE data
collected from milling machines.

The remainder of this paper is organized as follows: Section 2 discusses the technical
concepts and methodologies used in the study. Section 3 provides an in-depth description
of the proposed deep learning model. Section 4 presents the experimental results and eval-
uation. Section 5 provides conclusions and directions for future research.

2. Proposed Work

The complete workflow of the proposed model is shown in Figure 1. The proposed
method is outlined as follows.

Step 1: The raw fault data (CWT images representing tool, bearing, and gear faults and
normal conditions) are augmented to increase the dataset size and variability. Techniques
such as rotating, scaling, and flipping are applied, helping to improve model generaliza-
tion by learning from diverse examples.

Step 2: A contrast enhancement filter is applied to the augmented images. This step en-
hances key features in the data, making fault-related patterns more prominent, which in
turn improves the ability of the model to effectively learn these features.

Step 3: The enhanced data are then input into a modified AlexNet model. This modifica-
tion includes the addition of three residual blocks to enhance network efficiency. Unlike
traditional models, this architecture extracts local and temporal dependencies from the
CWT images. This process is especially important for fault detection, as it allows the
model to capture both spatial features (local information) and time-based patterns (tem-
poral information), which are crucial for identifying fault behaviors in milling machines.
Step 4: The modified AlexNet is trained from scratch on augmented, contrast-enhanced
data. The network learns to extract deep features that represent both the spatial and tem-
poral characteristics of the different fault types (tool, bearing, and gear faults) and normal
conditions. This improves the model’s ability to detect subtle and time-dependent fault
signals.
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Step 5: After training, the deep features representing both local and temporal dependen-
cies are extracted from the model. These features are rich in information, capturing key
patterns over time, and serve as input for further optimization. The feature vector size is
640 x 1000.

Step 6: The extracted features are then optimized using ACO. ACO selects the most rele-
vant features, focusing on those that provide the best distinction between different fault
types and reducing the dimensionality of the feature set for improved classification accu-
racy. The feature vector size is 640 x 800.

Step 7: The optimized features are then fed into an SVM classifier. The SVM uses these
optimized features to classify the fault types (tool fault, bearing fault, gear fault, or normal
condition). The SVM classifier excels at separating the data into different categories based
on the most important features and providing the final fault classification output.

Milling Machine

CWT Scalograms

=

Data Augmentation

Model Training

Contrast Enhancement

Ant Colony Optimization

&

Modified AlexNet

Output

\
\
'
=
l
*

o_©
0% 0

° N w2 .

Figure 1. Workflow and overall process of a proposed fault classification method for milling ma-
chines.

2.1. CWT

CWT is a mathematical technique that is used to analyze non-stationary signals,
which are signals whose frequency characteristics change over time. Unlike traditional
frequency analysis methods, such as the Fourier transform, which decomposes a signal
into sinusoidal components, CWT uses wavelets, which are short, oscillating functions
localized in both time and frequency. This makes it particularly useful for studying tran-
sient and time-varying phenomena in signals. CWT is mathematically defined by Equa-
tion (1).

owr 9= o | Ty (e o

where X(T) is the signal to be analyzed, and 1~ is the complex conjugate of the mother
wavelet, a localized oscillating function chosen based on the type of signal being analyzed.
Moreover, s is the scale parameter, which controls the wavelet’s frequency. A smaller
scale corresponds to a higher frequency, revealing more finely detailed high-frequency
components. A larger scale corresponds to lower-frequency components and broader
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signal trends. Furthermore, the translation parameter 7 shifts the wavelet along the time
axis, allowing it to capture localized events at different times [32].

CWT works by translating and scaling the mother wavelet over the signal. The result
is a time-frequency representation that shows how the signal’s frequency content changes
over time, as shown in Figure 2. For each combination of scale s and time 7, CWT pro-
duces a coefficient that represents the correlation between the signal and wavelet at that
specific scale and position. These coefficients can be visualized using a scalogram, which
is a 2D plot where the x-axis represents the time (7), and the y-axis represents the scale
(s), or, inversely, the frequency. The color intensity represents the wavelet coefficient
magnitude, highlighting the energy or power of the signal at specific time and scale points.
CWT was chosen for this study due to its superior ability to analyze non-stationary signals
like AE signals. Unlike the STFT, which uses a fixed window size, CWT provides multi-
scale analysis, enabling the capture of both fine and coarse features in the time-frequency
domain. This capability is useful for detecting transient fault characteristics in AE signals.

() (d)
Figure 2. CWT images representing different fault conditions: (a) BF; (b) GF; (c) TF; and (d) N.

2.2. Contrast Enhancement

Contrast enhancement is an essential preprocessing step that is applied to the aug-
mented CWT images to improve the visibility of key fault-related features, as depicted in
Figure 3. By enhancing the subtle differences between normal and faulty conditions, the
model can more effectively differentiate between these states. Techniques such as histo-
gram equalization and adaptive contrast enhancement ensure that important spatial and
temporal patterns in the images are more easily detected by the modified AlexNet model.
This enhances the model’s ability to learn meaningful features and improves its overall
classification performance, making it more effective at detecting tool, bearing, and gear
faults.
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Figure 3. Comparison of CWT images before (a) and after (b) applying contrast enhancement.

2.3. Modified AlexNet

AlexNet marked a remarkable advancement in adopting GPU acceleration to en-
hance the performance of CNNs [33]. The CNN architecture, as shown in Figure 4, consists
of respective convolutional, max-pooling, normalization, and fully connected layers, and
it culminates in a SoftMax layer.

The convolutional layers contain convolutional filters followed by a nonlinear acti-
vation function, typically a ReLU layer. Pooling layers are used to perform max pooling,
and the input size is fixed owing to the presence of the fully connected layer. In the pro-
posed model, the input size is 227 x 227 x 3.

Output

—
Maxpoolin Convolutio H
P 9 nal Maxpooling

L ) Classificaiton

Convolutional

Y
Feature
Extraction

Figure 4. The architecture of the modified AlexNet model for feature extraction.

AlexNet Architecture with Residual Blocks and Parameter Reduction

The modified AlexNet is introduced with residual blocks that reduce the number of
parameters and improve the flow of gradients, making the model easier to train. Each
residual block consists of two convolutional layers, two ReLU activations, and one batch
normalization layer. These blocks are connected to the original layers of the AlexNet with
an additional layer after each residual block, as observed in Figure 5.

In Residual Block 1, the first convolutional layer has 256 filters with a filter size of 3 x
3, a stride of 1 x 1, and padding set to the same. The operation for the first convolutional
layer is represented as Equation (2):

Y, = Conv2D(X,W;) + b,y 2)

where X is the input tensor, Wi represents the filter weights, and b1 is the bias. After the
convolution, batch normalization is applied across the 256 channels to normalize the acti-
vations, followed by the ReLU activation function given in Equation (3):

A; = ReLU(BN(Y)) 3)

Next, the second convolutional layer in this block uses 256 filters with a filter size of
5 x 5, a stride of 1 x 1, and the same padding. The second convolution operation is given
in Equation (4):
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YZ = COHVZD(Al, Wz) + bz (4)
Again, the output passes through batch normalization and ReLU activation, as in
Equation (5):
A, = ReLU(BN(Y)) (5)
At the end of this block, output A2 is added to the original input, X, creating the re-
sidual connection, as in Equation (6):

Z 1= AZ + X (6)
— Residual Block 1
o .. @ N , l
= Conv 2| | Maxpool | |8 Conv @ | - Maxpool = Cony 1 Conv O Conv Max pool
N b Srdixit > &L 33 Xb 1BEE » X b B3 L 956x3x3 256x5x5 ; N 384x3x3 34
x| | strided  fen| | stide2 | | X| 0 padz R stride? st (%[ s padt stride2
Py a ] N
conv.3 g Cov | |8 Addition Conv € Maxpool | Conv3 Conv o Conv Maxpool &
Bx3x3 3 oo 30Ax3xd > e HET s 1000 o Kb 30 383X 384x3x3 L1280 PN R
sl Pl St x| R sopt | X stide2 st st layer " pa st stride2 | [ |
Residual Block 2 Residual Block 3

Figure 5. Architecture of the modified AlexNet, featuring three residual blocks for enhanced feature
extraction.

This connection allows the network to retain information from the original AlexNet
layers while adding the transformations introduced by a residual block. The structure of
the residual block illustrates the identity mapping that facilitates the addition of trans-
formed outputs from the convolutional layers. It is shown in Figure 6.

Residual
Block
|

| Identity Mapping i

Figure 6. Structure of a residual block.
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The structure of Residual Block 2 is similar to that of Residual Block 1. However, the
first convolutional layer of Residual Block 2 contains 384 filters with a filter size of 3 x 3, a
stride of 1 x 1, and padding set to the same. In Residual Block 3, the first convolutional
layer contains 384 filters with a filter size of 3 x 3, a stride of 1 x 1, and padding set to the
same.

The modified AlexNet model with residual blocks offers several advantages over
standard deep learning models commonly applied in industrial fault diagnosis. The in-
clusion of residual blocks improves gradient flow, enabling the network to train efficiently
even with increased depth. This allows the model to capture both spatial and temporal
features from CWT scalograms, which are essential for accurate fault classification. Addi-
tionally, the model significantly reduces the number of parameters, from 60 million in the
original AlexNet to 9.8 million in the modified version. This makes it computationally
efficient and suitable for real-time applications. The architecture was tailored to process
CWT scalograms effectively, outperforming existing methods like standard CNNs and
other reference models. Table 1 presents a structured breakdown of the various layers
within the neural network, detailing the layer type, activation size, and learnable param-
eters. It starts with convolutional layers (Conv2D) using filters of different sizes (e.g., 3 x
3 and 5 x 55), and describes their corresponding output activation dimensions. Each layer
is followed by ReLU activation, and non-linearity and BN layers that normalize the output
across channels are applied. Residual connections, shown as additional layers, combine
the outputs from different layers to improve learning. The table also lists the key details,
such as the number of filters, the filter size, and whether padding is applied, giving an
overview of the architecture’s structure and parameter flow.

Table 1. Modified AlexNet residual block layer architectures.

Layer Name Layer Type Activation Size (Spatial x Channels x Batch) Learnable Parameters
Conv 1 Convolution 13 x13x256 x1 Welghts:.3 x 3 %256 x 2563
Bias: 1 x 256
RelLU 1 ReLU activation 13 x13 x256 x 1 -

BatchNorm 1

Batch normalization

Offset: 1 x 1 x 256

1313 %256 x1 Scale: 1 x 1 x 256

Weights: 5 x 5 x 256 x 256

Conv 2 Convolution 13 x 13 x 256 x 1 Bias: 1 x 256
ReLU 2 ReLU activation 13 x13 x 256 x 1 -
Addition 1 Addition 13 x13 x256 x 1
Conv 3 Convolution 6x6x384x1 Welghts.: 3% 3% 236 x 384
Bias: 1 x 384
ReLU 3 ReLU activation 6x6x384x1 -
BatchNorm 2 Batch normalization 6x6x384x1 nghts,: 3% 3256 x 384
Bias: 1 x 384
ReLU 3 ReL.U activation 6x6x384x1 -
ffset: 1 x 1 4
BatchNorm 2 Batch normalization 6x6x384x1 CS)casleet 1 : 1 : ; : "
ights: 1 x1x2 4
Conv 4 Convolution 6x6x384x1 Weig ts' x 1% 256 %38
Bias: 1 x 384
ReLU 4 ReLU Activation 6x6x384x1 -
Addition 2 Addition 6x6x384x1 -
Conv 5 Convolution 2x2x384x1 Welghts.: 3% 3 x 384 x 384
Bias: 1 x 384
ReLU 5 ReLU activation 2x2x384x1 -
BatchNorm 3 Batch normalization 2x2x384x1 nghts,: 11 % 384 x 384
Bias: 1 x 384
ReLU 6 ReL.U activation 2x2x384x1 -
Addition 3 Addition 2x2x384x1 -
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Residual blocks were incorporated into the modified AlexNet architecture to address
the challenges associated with vanishing gradients and to improve training stability in
deeper networks. The shortcut connections in residual blocks allow gradients to bypass
one or more layers, ensuring efficient backpropagation and facilitating the learning of
identity mappings. This enables the network to effectively capture both spatial and tem-
poral features from the CWT scalograms without the risk of the performance degradation
typically seen in deeper architectures. The advantages of residual blocks, including im-
proved gradient flow and training stability, are well-aligned with the high performance
observed in this study.

2.4. Data Augmentation

Data augmentation plays an important role in enhancing the proposed approach by
boosting the model’s generalization capabilities through increased dataset diversity. Tech-
niques like rotation, scaling, and flipping are applied to the original CWT representations,
generating a broader and more varied set of training examples [34]. These transformations
mimic a range of real-world conditions, reducing the risk of the model overfitting to par-
ticular data patterns and enabling it to learn more robust and representative features. By
enriching the dataset, data augmentation significantly strengthens the fault classification
model’s performance, ensuring greater adaptability across diverse industrial scenarios.
Table 2 below shows the detailed augmented dataset.

Table 2. Detailed augmented dataset.

Condition Tested Total Samples Sampling Frequency Time Per Sample Augmented Samples
Normal operation (N) 40 1 MHz 2 min 160
Tool fault (TF) 40 1 MHz 2 min 160
Bearing fault (BF) 40 1 MHz 2 min 160
Gear fault (GF) 40 1 MHz 2 min 160

To address the limited sample size, data augmentation techniques, including rota-
tion, scaling, and flipping, were applied to the CWT scalograms. These transformations
generated diverse training samples, simulating various real-world conditions. By increas-
ing the dataset size and variety, these techniques enabled the model to learn from a
broader range of samples, improving its generalization capabilities and reducing the risk
of overfitting.

2.5. Ant Colony Optimization

In nature, ants emit a pheromone trail as they travel between a food source and their
colony. The more frequently a path is used, the higher the concentration of pheromones;
thus, more ants follow that path. Over time, this collective behavior helps ants find the
shortest and most efficient route. ACO mimics this behavior in feature selection by finding
the most relevant features contributing to accurate fault classification [35].

Let F be the set of all features extracted from the modified AlexNet model, where
the size of the feature set is 640 x 1000. The objective of ACO is to select a subset, Fopt
F, thereby reducing the feature set to 640 x 800 while retaining the features that provide
the best discrimination between fault types.

Each feature f; € F is represented as a node in the ACO search space. The ant
traverses this space, selecting features to form a candidate solution (i.e., a subset of fea-
tures). Let S = {f1, f, .... fin} represent the feature subset selected by an ant, where m <n
and n is the total number of features. The pheromone level determines the probability of
selecting a feature 7;; and heuristic information 7, ;. The selection probability is given in
Equation (7).
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Here, a controls the influence of pheromone levels, § controls the influence of the heu-
ristic factor, and 7 ; ; is the heuristic value associated with the feature f;. The selected fea-
ture subsets are evaluated based on their classification accuracy using an SVM, and the

fitness of each subset is calculated. The fitness function F(S) can be defined as Equation
(8):
F(S) = 1/E(S) ®)

where E(S) denotes the classification error rate when using the feature subset S. After
evaluation, the pheromone levels are updated. Features contributing to improved perfor-
mance receive more pheromones, while others decay. The update rule is shown as Equa-
tion (9):

Ti,j(t + 1) = (1 - p) . Ti,j(t) + AT,:J' (9)

The process repeats until a stopping criterion is met, and the best feature subset is
selected. ACO was employed for feature selection to identify the most discriminative fea-
tures for fault classification. ACO is inspired by the natural behavior of ants in finding
optimal paths, which allows it to evaluate and prioritize features based on their contribu-
tion to classification accuracy. This method retained the spatial and temporal characteris-
tics useful for distinguishing fault patterns while reducing the dimensionality of the fea-
ture set. The ACO-selected features were particularly relevant for fault classification be-
cause the optimization process focused on maximizing the separability of fault categories.
By preserving only the most informative features, ACO improved the model’s perfor-
mance and computational efficiency, making it well-suited for real-time fault diagnosis
applications. Table 3 shows the ACO parameters.

Table 3. ACO parameters.

Parameter Range The Proposed Method Value Used
Number of ants (Ngy¢5) 10-15 20
Maximum iterations (Tpax) 50-200 100
Pheromone importance (a) 12 1.0
Visibility importance (5) 2-5 2.0
Evaporation rate (p) 0.1-1 0.5
Initial pheromone value (1) 0.1-1 0.5

Selection strategy Probabilistic Probabilistic

The proposed integration of deep learning with ACO demonstrates significant ad-
vantages in feature selection by identifying the most discriminative features for fault clas-
sification. While this study focuses on the benefits of ACO, other feature selection meth-
ods, such as Principal Component Analysis (PCA) and Recursive Feature Elimination
(RFE), are commonly used in fault diagnosis. Compared to PCA, which reduces dimen-
sionality by transforming features into orthogonal components, ACO directly optimizes
features for classification relevance, preserving interpretability. Similarly, unlike RFE,
which iteratively removes features to improve performance, ACO considers feature inter-
dependencies, making it more suited for high-dimensional and complex datasets.

2.6.SVM

SVM is a powerful classification algorithm, particularly effective for high-dimen-
sional datasets. In this study, the SVM classifier was employed with a Radial Basis Func-
tion (RBF) kernel to handle non-linear relationships in the data. The key parameters were
carefully tuned: the kernel parameter (y) was set to 0.01, the regularization parameter (C)
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to 10, and the tolerance (tol) to 1073. To address the class imbalance, the class weight was
set to balanced. Table 4 summarizes the selected SVM parameters and their values.

Table 4. SVM parameters.

Parameter Range The Proposed Method Value Used
Kernel type Linear, polynomial, RBF, sigmoid RBF
Kernel parameter (y) 1073 — 1071 0.01
Regularization parameter (C) 1-100 10
Tolerance (tol) 10™* — 1072 1073
Class weight Balanced/none Balanced

2.7. Uniform Manifold Approximation and Projection (UMAP)

UMAP is a powerful and efficient algorithm used for dimensionality reduction, par-
ticularly in high-dimensional datasets, such as those generated in AE signal analysis for
pipeline health diagnosis. UMAP is conceptually rooted in manifold learning, which as-
sumes that high-dimensional data exist on a low-dimensional manifold that can be ap-
proximated and mapped onto a lower-dimensional space. This approach helps capture
the underlying structure of the data while reducing their complexity, allowing for easier
visualization and pattern recognition.

The theoretical foundation of UMAP is built on concepts from Riemannian geometry
and algebraic topology. Specifically, UMAP utilizes the mathematical framework of fuzzy
simplicial sets and Laplacian eigenmaps to construct a topological representation of the
data. In the case of AE signals, which often consist of complex, high-dimensional data
points representing various aspects of pipeline conditions, UMAP helps reduce the di-
mensionality while preserving both local and global structures. This preservation is par-
ticularly important for analyzing transient events and signal features that might indicate
anomalies or early signs of pipeline degradation.

UMAP works by constructing a weighted graph where each data point is connected
to its nearest neighbors, reflecting the local structure of the manifold. The weight of the
edges between points is determined using a Riemannian metric that approximates the
geodesic distance on the manifold. The weight function is given by Equation (10):

0,d(x;, x:) — p;
w(xi,xj)zexp<— max (0, d(x;, ) pl)

Oi
where d(xl-,x]-) represents the distance between points x; and x;, p; is the distance to
the nearest neighbor of x;, and o; is a scaling factor that normalizes the distances.

(10)

3. Experimental Setup and Data Acquisition

In the experiment of this study, AE signals were gathered from an operational milling
machine, as shown in Figure 7. The milling procedures were carried out using an INTER-
SIEG X1 Micro Mill Drill, a machine constructed from cast iron that functions similarly to
a compact pillar drill. The operations focused on straight parallel milling on steel work-
pieces, a common technique for shaping and machining hard materials. For this experi-
ment, five steel pieces were used, each measuring 20 mm, 35 mm, and 35 mm. Figure 8a
illustrates the workpieces before processing, and Figure 8b displays one of the finished
pieces after milling.
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Figure 8. Examples of the materials used in the experiment: (a) raw workpieces; and (b) workpieces
post-milling.

The two channels (channels 1 and 2) were set to identical acquisition conditions, in-
cluding the same bandpass filter range and threshold settings, to ensure consistency
across both channels. A bandpass filter was applied to each channel to remove low-fre-
quency noise and high-frequency interference, which helped to optimize signal quality
for subsequent analysis. Data from both channels were collected simultaneously to cap-
ture synchronous signals across different components, allowing for accurate, time-aligned
comparisons in fault analysis. To monitor AE signals, the R15I-AST sensor from MIS-
TRAS, Inc., USA, was affixed to the milling machine using industrial-strength adhesives.
The AE data were acquired through the NI-9223 data acquisition module from National
Instruments, with a custom software program written by the Ulsan Industrial Artificial
Intelligence Laboratory in Python 3.11. The data were acquired at an ultra-high sampling
rate of 1 MHz, with each second of data containing one million samples. Before actual
data collection, the HSU-Nelson test was performed to validate the functionality of the AE
sensors. The test successfully confirmed that both sensors were detecting AE events, thus
ensuring they were ready for the experiment.

The experiment used two AE sensors: the primary sensor was attached to the spindle,
while the secondary sensor, acting as a guard transducer, was mounted onto the motor.
Data collection began under normal milling machine operation. According to the ISO-
8688-2 guidelines, the tool lifespan is typically determined by an average flank wear of 0.3
mm. However, tools can sometimes fail unexpectedly early when machining hard mate-
rials. For this experiment, a carbide tool was thus artificially worn to an average of 0.3
mm, and AE data were collected under these defective conditions.
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Bearing Fault 3mm

(a) Bearing fault

Additionally, an initial defect was introduced into the outer race of the bearing sup-
porting the tool, and AE signals were recorded during the machining process. A minor
metal fragment was also removed from one of the gear teeth that transmitted torque from
the motor to the spindle, simulating a fault, and the corresponding AE signals were rec-
orded during operation.

For each operating condition, a total of 40 samples were gathered. Table 5 presents a
comprehensive summary of the dataset collected from the milling machine. To facilitate
easier identification in the table, the normal operation condition is designated as “N,”
while the faults related to the tool, bearing, and gear are labeled “TF”, “BF”, and “GF,”
respectively. Examples of a 1-s AE signal recorded during N, TF, BF, and GF conditions
are displayed in Figure 9. The faulty components used during the experiment are illus-
trated in Figure 10: the damaged bearing is shown in Figure 10a, the defective tool is de-
picted in Figure 10b, and the gear with faults is presented in Figure 10c.

Gear Fault - AE Signal

Bearing Fault - AE Signal

Signal Magnitude
Signal Magnitude

Data Sample

Data Sample

(@) (b)

Normal Operation - AE Signal Tool Fault - AE Signal

Signal Magnitude
Signal Magnitude

Data Sampl
ata Sample Data Sample

(c) (d)

Figure 9. Fault diagnostics via AE time domain signals for various fault scenarios: (a) BF signal; (b)
GF signal; (c) normal operation signal; and (d) TF signal.

(b) Tool fault (c) Gear fault

Figure 10. Components with induced faults used in the experimental setup: (a) bearing fault (BF);
(b) tool fault (TF); and (c) gear fault (GF).
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Table 5. Data collection overview.
Condition Tested Total Samples Sampling Frequency  Time Per Sample
Normal operation (N) 40 1,000,000 Hz 2 min
Tool fault (TF) 40 1,000,000 Hz 2 min
Bearing fault (BF) 40 1,000,000 Hz 2 min
Gear fault (GF) 40 1,000,000 Hz 2 min
4. Results

The creation of appropriate training and testing subsets was vital in assessing the
effectiveness of the proposed approach in identifying the health condition of the milling
machine. To this end, it was essential to create suitable training and testing subsets. This
study used a dataset of 640 CWT images, with 160 images each representing the BF, TF,
GF, and normal conditions. These images were then divided into training and testing sets
to accurately assess the model’s performance.

Performance and Comparison

In this study, we designed a method for fault detection using CWT scalogram images
with the modified AlexNet architecture. The method is enhanced by data augmentation,
contrast enhancement, and ACO for feature selection. The results showed superior per-
formance compared to state-of-the-art reference models. The proposed approach involves
data augmentation (rotation, scaling, flipping) to increase the dataset diversity and con-
trast enhancement to improve feature visibility. The modified AlexNet, with added resid-
ual blocks, efficiently captures the spatial and temporal features. ACO is used for feature
selection, thereby reducing dimensionality while retaining key information and leading
to precise classification with the SVM. In the experiment, various metrics, such as accu-
racy, precision, recall, F1 score, specificity, geometric mean, and computation time, were
used to assess and compare the effectiveness of the proposed approach against established
methods. Accordingly, Equations (11)-(16) are provided below, including the mathemat-
ical expressions used to calculate these metrics.

(TN + TP)

A x 1009 11

CUrAY TN+ TP + FN + FP) % (1)

Precision = TP X 100% 12

recision = (TP + FP) 0) (12)

Recall = TP X 100% 13

ecall = TP+ FN) Q) (13)

F.—§ _ 2TP 9w Precision X Recall (14)
1 core = 2TP+FP+FN Precission + Recall

TN

ificity = ———— 15

Specificity TN T FP (15)

G — Mean = \/Recall x Specificity (16)

In classification, TP (True Positive) refers to instances correctly identified as positive
by the classifier, while TN (True Negative) refers to those correctly identified as negative.
FP (False Positive) is a negative sample incorrectly classified as positive, and FN (False
Negative) is a positive sample incorrectly classified as negative.

K-fold cross-validation can be employed to provide a more reliable estimate of model
performance compared to a single training—test split. It reduces the risk of overfitting by
testing the model on multiple independent subsets. In this work, five-fold cross-validation
was employed as an effective evaluation strategy for diagnosing faults in the milling
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machine. The dataset was divided into five subsets, with the model trained on four and
tested on each remaining one in each subsequent iteration. This process was repeated five
times, ensuring each subset was used for testing once. The results were then averaged to
provide an overall performance assessment. Regularization techniques were incorporated
during model training to prevent overfitting. Dropout layers were added with a rate of
0.5, which temporarily deactivated 50% of the neurons during training to encourage the
model to generalize better. Additionally, L2 regularization was applied with a penalty
factor of 0.001, discouraging large weight values and ensuring a simpler model structure.
These measures reduced the risk of overfitting while maintaining the model’s predictive
performance.

Notable improvements were observed when applying the proposed technique to
real-world AE data, with metrics such as the accuracy, precision, recall, F1 score, specific-
ity, and geometric mean reaching values of 0.99, 0.9301, 0.9984, 0.9631, 0.9750, and 0.9866,
respectively. Table 6 highlights the superiority of this approach over reference methods in
terms of classification accuracy. The exceptional performance of the proposed method can
be attributed to its fundamental concept of employing CWT-augmented scalograms, con-
trast enhancement, and the addition of residual blocks in the modified AlexNet, which
enables the model to capture both spatial and temporal features more effectively. The pro-
cess begins by acquiring CWT images for different fault and normal states. Data augmen-
tation techniques are applied to expand the dataset, followed by contrast enhancement to
improve feature visibility. The modified AlexNet architecture, enhanced with residual
blocks, is then employed to extract dual temporal and spatial features from the augmented
scalograms. After feature extraction, ACO is used to select the most relevant deep features.
Finally, the SVM classifier is utilized to effectively classify the different fault classes, lead-
ing to efficient fault detection. The proposed approach provides superior time-frequency
resolution, improved detection of transient events, reduced interference, and easier inter-
pretability, which all contributed to its exceptional performance on all evaluation metrics.
Additionally, it showed a lower computation time of 12.3 s, significantly outperforming
the reference models in terms of efficiency.

The proposed model demonstrated substantial advantages in both methodology and
performance metrics, as shown by the confusion matrices in Figure 11. To evaluate its
efficacy, comparative analysis was performed with two other relevant models used for
similar purposes. The first model, employed by Weifang et al. [36], employs a fault diag-
nosis approach based on converted 2D vibrational signal matrices. A mean curvature al-
gorithm is applied to mitigate interference, and histograms of oriented gradient (HOG)
features are employed for extracting fault characteristics. Moreover, an SVM is applied for
automatic fault classification.

Implementing the steps outlined by Weifang et al. on our dataset resulted in an ac-
curacy of 90.94%, precision of 73.39%, recall of 100%, F1 score of 84.66%, specificity of
87.92%, and geometric mean of 93.76%. The computation time for the model was 25.437 s.
The underperformance and higher computation time were expected on account of the
high noise levels affecting the AE signals. Moreover, the spectrograms lacked accurate
energy distribution and failed to capture critical phase information. In contrast, the pro-
posed model utilized CWT images, which provided better time-frequency resolution, im-
proved transient event detection, reduced interference, and conferred easier interpretabil-
ity.

The second compared method was the CWT-CNN approach, where AE signals are
converted into CWT scalograms and then input into a CNN for feature extraction and
classification. The CNN consists of convolutional, pooling, and flattened layers, followed
by fully connected layers for fault classification. The CWT-CNN method achieved an ac-
curacy of 93.52%, precision of 80.94%, recall of 96.88%, F1 score of 88.19%, specificity of
92.40%, geometric mean of 94.61%, and computation time of 24.963 s, as displayed in Table
6. While the high accuracy highlights the effectiveness of using CWT for extracting key
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features from AE signals, the method cannot explicitly capture temporal dependencies in
the data. Figure 12 illustrates the UMAP representations for each method.

Confusion Matrix Confusion Matrix
= ]
E o o o E 1 o 1
2 2
5- 1 31 o o 5 2 a o
© ©
2 2
o o
< <
e o o o = o 2 1
w al o 4] = 2 1 2 27
Normal GF TF BF Normal GF TF BF
Predicted Predicted
(@) (b)
Confusion Matrix
K
£ 1
2
G- o
®
2
%]
<
e i
g L
Normal GF TF BF
Predicted
(c)
Figure 11. Confusion matrices for the (a) proposed model, (b) Weifang et al.[36] model and (c)
CWT-CNN model.
Table 6. Performance comparison of fault classification models.
Models Accuracy Precision  Recall F1 Score Specificity Geometric Mean Time (s)
Proposed model 0.99 0.9301 0.9984 0.9631 0.9750 0.9866 12.3
Weifang et al. [36] 0.9094 0.7339 1.0000 0.8466 0.8792 0.9376 25.437

CWT-CNN 0.9352 0.8094 0.9688 0.8819 0.9240 0.9461 24.963
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Figure 12. UMAP representation of the (a) proposed method, (b) Weifang et al.[36] method, and
(c) CWT-CNN method.

5. Conclusions

In this study, an approach for fault classification in milling machines using advanced
image processing and machine learning techniques was designed. By acquiring raw data
from real-world industrial environments and converting them into 2D CWT images, the
model achieves superior time-frequency localization. Data augmentation and contrast en-
hancement are employed to improve feature visibility and dataset diversity, ultimately
enhancing the model training. The modified AlexNet model, augmented with three resid-
ual blocks, proved effective in extracting both spatial and temporal features, which is cru-
cial for understanding complex fault behaviors. Optimization using ACO enables dimen-
sionality reduction while retaining key information, while the SVM classifier successfully
differentiates fault types with high accuracy. The proposed method demonstrated out-
standing performance across all metrics, achieving 99% accuracy, 93.01% precision,
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99.84% recall, 96.31% F1 score, 97.50% specificity, and a geometric mean of 98.66%. Addi-
tionally, with a computation time of only 12.3 s, it offers a significant reduction compared
to traditional approaches. These results validate the model’s high efficiency and effective-
ness in accurately diagnosing faults. It is thus a promising solution for real-world indus-
trial applications and has notable potential in predictive maintenance and improving the
reliability of fault detection systems.
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Nomenclature

AE Acoustic Emission

CWT Continuous Wavelet Transform
CNN Convolutional Neural Network
SVM Support Vector Machine

ACO Ant Colony Optimization

EMD Empirical Mode Decomposition
AEH Acoustic Emission Hit
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