Femtosecond Laser Introduced Cantilever Beam on Optical Fiber for Vibration Sensing
Abstract
:1. Introduction
2. Sensor Design and Manufacture
3. Experimental Results and Discussion
3.1. Experimental Platform Construction
3.2. Vibration Sensing Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bergmayr, T.; Kralovec, C.; Schagerl, M. Vibration-Based Thermal Health Monitoring for Face Layer Debonding Detection in Aerospace Sandwich Structures. Appl. Sci. 2021, 11, 211. [Google Scholar] [CrossRef]
- Jinachandran, S.; Li, H.; Xi, J.; Prusty, B.G.; Semenova, Y.; Farrell, G.; Rajan, G. Fabrication and Characterization of a Magnetized Metal-Encapsulated FBG Sensor for Structural Health Monitoring. Sensors 2018, 18, 8739–8746. [Google Scholar] [CrossRef]
- Kalizhanova, A.; Kunelbayev, M.; Kozbakova, A. Bridge Vibration Analysis Using Fiber-Optic Bragg Sensors with an Inclined Grid. IEEE Instrum. Meas. Mag. 2024, 27, 43–48. [Google Scholar] [CrossRef]
- Kamenev, O.T.; Kulchin, Y.N.; Petrov, Y.S.; Khiznyak, R.V.; Romashko, R.V. Fiber-optic seismometer on the basis of Mach-Zehnder interferometer. Sens. Actuators A Phys. 2016, 244, 133–137. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Z.; Li, J.; Song, Y.; Sun, Y.; Zhang, X.; Hu, Y.; Guo, R.; Han, X.T. A Novel Ultrasound-Vibration Composite Sensor for Defects Detection of Electrical Equipment. IEEE Trans. Power Deliv. 2022, 37, 4477–4480. [Google Scholar] [CrossRef]
- Yaghootkar, B.; Azimi, S.; Bahreyni, B. A High-Performance Piezoelectric Vibration Sensor. Sensors 2017, 17, 4005–4012. [Google Scholar] [CrossRef]
- Hadidi, S.; Hassanzadeh, A. A Novel Self-Powered, High-Sensitivity Piezoelectric Vibration Sensor Based on Piezoelectric Combo Effect. Sensors 2023, 23, 25797–25803. [Google Scholar] [CrossRef]
- Xin, Y.; Tong, Y.; Hou, T.; Liu, H.; Cui, M.; Song, X.; Wang, Y.; Lin, T.; Wang, L.; Wang, G. BiScO3-PbTiO3 nanofibers piezoelectric sensor for high-temperature pressure and vibration measurements. Measurement 2023, 212, 112694. [Google Scholar] [CrossRef]
- Cui, Y.; Jiang, Y.; Zhang, Y.; Feng, X.; Hu, J.; Jiang, L. Sapphire optical fiber high-temperature vibration sensor. Opt. Express 2022, 30, 1056–1065. [Google Scholar] [CrossRef]
- Villatoro, J.; Antonio-Lopez, E.; Schülzgen, A.; Amezcua-Correa, R. Miniature multicore optical fiber vibration sensor. Opt. Lett 2017, 42, 2022–2025. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, C.; Li, H.; He, Z.; Zhao, X. Optical fiber grating vibration sensor for vibration monitoring of hydraulic pump. Photonic. Sens. 2017, 7, 140–147. [Google Scholar] [CrossRef]
- Liu, K.; Jin, X.; Jiang, J.; Xu, T.; Ding, Z.; Huang, Y.; Sun, Z.; Xue, K.; Li, S.; Liu, T. Interferometer-Based Distributed Optical Fiber Sensors in Long-Distance Vibration Detection: A Review. Sensors 2022, 22, 21428–21444. [Google Scholar] [CrossRef]
- Song, H.; Song, E.; Peng, W.; Wang, B.; Liu, Y.; Zhao, G.; Liu, M. Miniature Structure Optimization of Small-Diameter FBG-Based One-Dimensional Optical Fiber Vibration Sensor. Sensors 2021, 21, 26763–26771. [Google Scholar] [CrossRef]
- Guo, T.; Zhang, T.; Li, Y.; Qiao, X. Highly Sensitive FBG Seismometer With a 3D-Printed Hexagonal Configuration. J. Lightw. Technol. 2020, 38, 4588–4595. [Google Scholar] [CrossRef]
- Jia, Z.; Zhao, X.; Fan, W.; Gao, H.; Liu, Q.; Yong, Z.; Liu, Y.; Yang, K. A two-dimensional cantilever beam vibration sensor based on fiber Bragg Grating. Opt. Fiber Technol. 2021, 61, 102447. [Google Scholar] [CrossRef]
- Fan, W.; Zhou, R.; Li, H.; Yu, D.; Qiao, X. Low-frequency temperature compensation fiber Bragg grating accelerometer based on double-arched beam. Opt. Commun. 2023, 528, 129058. [Google Scholar] [CrossRef]
- Xie, Z.; Tan, Y.; Huang, B.; Jiang, D.; Liu, H. High Sensitivity Fiber Bragg Grating Acceleration Sensor Based on Rigid Hinge. Sensors 2020, 20, 8223–8231. [Google Scholar] [CrossRef]
- Liu, K.; Fan, J.; Luo, B.; Zou, X.; Wu, D.; Zou, X.; Shi, S.; Guo, Y.; Zhao, M. Highly sensitive vibration sensor based on the dispersion turning point microfiber Mach-Zehnder interferometer. Opt. Express 2021, 29, 32983–32995. [Google Scholar] [CrossRef]
- Zhao, Y.; Xia, F.; Chen, M.; Lv, R. Optical fiber low-frequency vibration sensor based on Butterfly-Shape Mach-Zehnder Interferometer. Sens. Actuators A Phys. 2018, 273, 107–112. [Google Scholar] [CrossRef]
- Wu, S.; Wang, L.; Chen, X.; Zhou, B. Flexible Optical Fiber Fabry–Perot Interferometer Based Acoustic and Mechanical Vibration Sensor. J. Lightw. Technol. 2018, 36, 2216–2221. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Li, J.; Meng, F. Load and Vibration Optical Fiber Sensor Based on Miniature Fabry–Perot Cavity Encapsulated by Micrometer Thickness of Silica Film. Sensors 2023, 23, 12930–12935. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y.; Wei, H.; Wu, Q.; Peng, Y.; Yu, K.; Liu, Y. Temperature-Insensitive, Wide-Range Optical Fiber Vibration Sensor Based on Dispersion-Compensated Fiber. Sensors 2023, 23, 15597–15606. [Google Scholar] [CrossRef]
- Yu, H.; Luo, Z.; Zheng, Y.; Ma, J.; Jiang, X.; Jiang, D. Vibration Sensing Using Liquid-Filled Photonic Crystal Fiber With a Central Air-Bore. J. Lightw. Technol. 2019, 37, 4625–4633. [Google Scholar] [CrossRef]
- Khanikar, T.; Singh, V.K. V groove fiber plasmonic sensor with facile resonance tunability. Optik 2021, 243, 167480. [Google Scholar] [CrossRef]
- Hu, Y.; Hou, Y.; Ghaffar, A.; Liu, W. A Narrow Groove Structure Based Plasmonic Refractive Index Sensor. IEEE Access 2020, 8, 97289–97295. [Google Scholar] [CrossRef]
- Clifford, C.A.; Seah, M.P. The determination of atomic force microscope cantilever spring constants via dimensional methods for nanomechanical analysis. Nanotechnology. 2005, 16, 1666–1680. [Google Scholar] [CrossRef]
- Mao, X.; Yuan, S.; Zheng, P.; Wang, X. Stabilized Fiber-Optic Fabry–Perot Acoustic Sensor Based on Improved Wavelength Tuning Technique. J. Lightw. Technol. 2017, 35, 2311–2314. [Google Scholar] [CrossRef]
Year | Structure | Frequency Range | Sensitivity | Complexity |
---|---|---|---|---|
2018 | BSMZI [19] | 10–20 Hz | 13.575 dB/w | Medium |
2018 | Flexible FPI [20] | 200 Hz–97 kHz | 0.088 mV/mPa | High |
2023 | FP cavity encapsulated by silica film [21] | 200–400 Hz | 4.2 mV/V | High |
2023 | SMF-DCF-SMF [22] | 0.1 Hz–47 kHz | Unknown | Medium |
2019 | Photonic Crystal Fiber [23] | 10 Hz–20 kHz | Unknown | High |
2017 | FPI with a D-shaped silica ferrule [27] | 200 Hz–12.5 kHz | 0.121 mV/mPa | High |
2024 | Our work | 70 Hz–110 kHz | 60 mV/V | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, J.; Wang, Z.; Ke, Z.; Tao, T.; Liu, S.; Deng, Q.; Huang, W.; Tong, W. Femtosecond Laser Introduced Cantilever Beam on Optical Fiber for Vibration Sensing. Sensors 2024, 24, 7479. https://doi.org/10.3390/s24237479
Qiu J, Wang Z, Ke Z, Tao T, Liu S, Deng Q, Huang W, Tong W. Femtosecond Laser Introduced Cantilever Beam on Optical Fiber for Vibration Sensing. Sensors. 2024; 24(23):7479. https://doi.org/10.3390/s24237479
Chicago/Turabian StyleQiu, Jin, Zijie Wang, Zhihong Ke, Tianlong Tao, Shuhui Liu, Quanrong Deng, Wei Huang, and Weijun Tong. 2024. "Femtosecond Laser Introduced Cantilever Beam on Optical Fiber for Vibration Sensing" Sensors 24, no. 23: 7479. https://doi.org/10.3390/s24237479
APA StyleQiu, J., Wang, Z., Ke, Z., Tao, T., Liu, S., Deng, Q., Huang, W., & Tong, W. (2024). Femtosecond Laser Introduced Cantilever Beam on Optical Fiber for Vibration Sensing. Sensors, 24(23), 7479. https://doi.org/10.3390/s24237479