Development of Automated 3D LiDAR System for Dimensional Quality Inspection of Prefabricated Concrete Elements
Abstract
:1. Introduction
2. The Proposed 3D LiDAR System
2.1. Hardware Composition of Proposed System
2.1.1. Image Acquisition of the Column End Face
2.1.2. Selection of LiDAR Scanner Device
2.1.3. Overall Structure of Proposed Hardware System
2.2. Algorithm Design and GUI Implementation
2.2.1. Point Cloud Preprocessing and Automated Evaluation
2.2.2. GUI for Proposed System
3. Field Experiment and Verification
3.1. Field Experiment
3.2. Experimental Analysis and Results
4. Conclusions
- (1)
- Hardware Development: A hardware system that integrates the main components, such as a CCD camera, LiDAR, and step motor driver, was developed, which realizes the acquisition of a 3D point cloud from a 2D LiDAR scanner.
- (2)
- Algorithm Development: A series of algorithms for point cloud processing were developed, including noise reduction, reconstruction, segmentation, and clustering. Besides, a user-friendly GUI software system integrated with the above algorithms was developed using PyQt5 for portable applications.
- (3)
- Accuracy Verification: The accuracy of the developed system was verified in a field experiment compared with manual measurements. The maximum differences observed for size, spacing, and length were 4.9 mm, 9.4 mm, and 9.7 mm, respectively, while the average errors were 4.55 mm, 4.71 mm, and 4.54 mm, respectively, which verified the effectiveness and practicality of the proposed method.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, J.; Shi, Z.K.; Wu, Z.Y. Towards automatic generation of as-built BIM: 3D building facade modeling and material recognition from images. Int. J. Autom. Comput. 2016, 13, 338–349. [Google Scholar] [CrossRef]
- García de Soto, B.; Agustí-Juan, I.; Hunhevicz, J.; Joss, S.; Graser, K.; Habert, G.; Adey, B.T. Productivity of digital fabrication in construction: Cost and time analysis of a robotically built wall. Autom. Constr. 2018, 92, 297–311. [Google Scholar] [CrossRef]
- Wang, D.; Wang, X.L.; Ren, B.Y.; Wang, J.J.; Zeng, T.C.; Kang, D.; Wang, G.H. Vision-based productivity analysis of cable crane transportation using augmented reality–based synthetic image. J. Comput. Civ. Eng. 2022, 36, 04021030. [Google Scholar] [CrossRef]
- Sara, C.; Sameiro, C.M.; Carina, P.; Claudia, D. A systematic literature review and conceptual framework of construction industrialization. J. Constr. Eng. Manag. 2023, 149, 03122013. [Google Scholar] [CrossRef]
- Shu, J.P.; Li, W.H.; Zhang, C.G.; Gao, Y.F.; Xiang, Y.Q.; Ma, L. Point cloud-based dimensional quality assessment of precast concrete components using deep learning. J. Build. Eng. 2023, 70, 106391. [Google Scholar] [CrossRef]
- Ma, Z.L.; Li, S.Y.; Wang, Y.; Yang, Z.Q. Component-level construction schedule optimization for hybrid concrete structures. Autom. Constr. 2021, 125, 103607. [Google Scholar] [CrossRef]
- Lu, Z.W.; Wu, B.; Xu, G.S. Numerical analysis of a novel prefabricated concrete beam with double-grouted couplers under static loading. KSCE J. Civ. Eng. 2023, 27, 3501–3516. [Google Scholar] [CrossRef]
- Yoon, S.; Wang, Q.; Sohn, H. Optimal placement of precast bridge deck slabs with respect to precast girders using 3D laser scanning. Autom. Constr. 2018, 86, 81–98. [Google Scholar] [CrossRef]
- Ma, Z.L.; Liu, Y.; Li, J.Y. Review on automated quality inspection of precast concrete components. Autom. Constr. 2023, 150, 104828. [Google Scholar] [CrossRef]
- Yuan, X.X.; Moreu, F.; Hojati, M. Cost-Effective Inspection of Rebar Spacing and Clearance Using RGB-D Sensors. Sustainability 2021, 13, 12509. [Google Scholar] [CrossRef]
- Tommaselli, A.M.G.; Reiss, M.L.L. A Photogrammetric Method for Single Image Orientation and Measurement. Photogramm. Eng. Remote Sens. 2005, 71, 727–732. [Google Scholar]
- Ye, X.W.; Zhang, X.M.; Ni, Y.Q.; Wong, K.Y.; Fan, K.Q. Bridge deflection measurement method based on machine vision technology. J. Zhejiang Univ. (Eng. Sci.) 2014, 48, 813–819. [Google Scholar]
- Soudarissanane, S.; Lindenbergh, R.; Menenti, M.; Teunissen, P. Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points. ISPRS J. Photogramm. Remote Sens. 2011, 66, 389–399. [Google Scholar] [CrossRef]
- Gerbino, S.; Del Giudice, D.M.; Staiano, G.; Lanzotti, A.; Martorelli, M. On the influence of scanning factors on the laser scanner-based 3D inspection process. Int. J. Adv. Manuf. Technol. 2016, 84, 1787–1799. [Google Scholar] [CrossRef]
- Wang, Q.; Kim, M.K. Applications of 3D point cloud data in the construction industry: A fifteen-year review from 2004 to 2018. Adv. Eng. Inform. 2019, 39, 306–319. [Google Scholar] [CrossRef]
- Yuan, X.X.; Smith, A.; Moreu, F.; Sarlo, R.; Lippitt, C.D.; Hojati, M.; Alampalli, S.; Zhang, S. Automatic evaluation of rebar spacing and quality using LiDAR data: Field application for bridge structural assessment. Autom. Constr. 2023, 146, 104708. [Google Scholar] [CrossRef]
- Wang, Q.; Cheng, J.C.P.; Sohn, H. Automated estimation of reinforced precast concrete rebar positions using colored laser scan data. Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 787–802. [Google Scholar] [CrossRef]
- Zhang, H.C.; Zou, Y.; del Rey Castillo, E.; Yang, X.F. Detection of RC Spalling Damage and Quantification of Its Key Properties from 3D Point Cloud. KSCE J. Civ. Eng. 2022, 26, 2023–2035. [Google Scholar] [CrossRef]
- Maciej, T.; Ioannis, B. Dense 3D reconstruction of building scenes by ai-based camera–lidar fusion and odometry. J. Comput. Civ. Eng. 2023, 37, 04023010. [Google Scholar] [CrossRef]
- Truong-Hong, L.; Lindenbergh, R. Extracting structural components of concrete buildings from laser scanning point clouds from construction sites. Adv. Eng. Inform. 2022, 51, 101490. [Google Scholar] [CrossRef]
- Son, R.H.; Han, K. Automated model-based 3d scan planning for prefabricated building components. J. Comput. Civ. Eng. 2023, 37, 4022058. [Google Scholar] [CrossRef]
- Kim, C.; Son, H.; Kim, C. Automated construction progress measurement using a 4D building information model and 3D data. Autom. Constr. 2013, 31, 75–82. [Google Scholar] [CrossRef]
- Rebolj, D.; Pučko, Z.; Babič, N.Č.; Bizjak, M.; Mongus, D. Point cloud quality requirements for Scan-vs-BIM based automated construction progress monitoring. Autom. Constr. 2017, 84, 323–334. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.; Lee, D.E. Sustainable application of hybrid point cloud and bim method for tracking construction progress. Sustainability 2020, 12, 4106. [Google Scholar] [CrossRef]
- Alzubi, K.M.; Alaloul, W.S.; Malkawi, A.B.; Salaheen, M.A.; Qureshi, A.H.; Musarat, M.A. Automated monitoring technologies and construction productivity enhancement: Building projects case. Ain Shams Eng. J. 2023, 14, 102042. [Google Scholar] [CrossRef]
- Rasul, A.; Seo, J.; Khajepour, A. Development of Sensing Algorithms for Object Tracking and Predictive Safety Evaluation of Autonomous Excavators. Appl. Sci. 2021, 11, 6366. [Google Scholar] [CrossRef]
- Shen, J.; Yan, W.J.; Li, P.; Xiong, X. Deep learning-based object identification with instance segmentation and pseudo-LiDAR point cloud for work zone safety. Comput.-Aided Civ. Infrastruct. Eng. 2021, 36, 1549–1567. [Google Scholar] [CrossRef]
- Zhao, W.J.; Jiang, Y.; Liu, Y.Y.; Shu, J.P. Automated recognition and measurement based on three-dimensional point clouds to connect precast concrete components. Autom. Constr. 2022, 133, 104000. [Google Scholar] [CrossRef]
- Yuan, X.X.; Smith, A.; Sarlo, R.; Lippitt, C.D.; Moreu, F. Automatic evaluation of rebar spacing using LiDAR data. Autom. Constr. 2021, 131, 103890. [Google Scholar] [CrossRef]
- Kim, M.K.; Thedja, J.P.P.; Chi, H.L.; Lee, D.E. Automated rebar diameter classification using point cloud data based machine learning. Autom. Constr. 2021, 122, 103476. [Google Scholar] [CrossRef]
- Li, F.; Kim, M.K.; Lee, D.E. Geometrical model based scan planning approach for the classification of rebar diameters. Autom. Constr. 2021, 130, 103848. [Google Scholar] [CrossRef]
- Hodge, G.; Gattas, J.M. Geometric and semantic point cloud data for quality control of bridge girder reinforcement cages. Autom. Constr. 2022, 140, 104334. [Google Scholar] [CrossRef]
- Padmanabhan, P.; Zhang, C.; Charbon, E. Modeling and analysis of a direct time-of-flight sensor architecture for lidar applications. Sensors 2019, 19, 5464. [Google Scholar] [CrossRef]
- Ma, J.; Zhuo, S.L.; Qiu, L.; Gao, Y.Z.; Wu, Y.F.; Zhong, M.; Bai, R.; Sun, M.; Chiang, P.Y. A review of ToF-based LiDAR. J. Semicond. 2024, 45, 101201. [Google Scholar] [CrossRef]
- Lyu, W.; Ke, W.; Sheng, H.; Ma, X.; Zhang, H. Dynamic downsampling algorithm for 3D point cloud map based on voxel filtering. Appl. Sci. 2024, 14, 3160. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Barber, C.B.; Dobkin, D.P.; Huhdanpaa, H. The Quickhull Algorithm for Convex Hulls. ACM Trans. Math. Softw. 1996, 22, 469–483. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD’96, Portland, OR, USA, 2–4 August 1996; AAAI Press: Menlo Park, CA, USA, 1996; pp. 226–231. [Google Scholar]
- Likas, A.; Vlassis, N.; Verbeek, J. The global k-means clustering algorithm. Pattern Recognit. 2003, 36, 451–461. [Google Scholar] [CrossRef]
- Willman, J. (Ed.) Overview of PyQt5. In Modern PyQt: Create GUI Applications for Project Management, Computer Vision, and Data Analysis; Apress: Berkeley, CA, USA, 2021; pp. 1–42. [Google Scholar]
- Wang, D.; Gao, L.; Zheng, J.; Xi, J.; Zhong, J. Automated recognition and rebar dimensional assessment of prefabricated bridge components from low-cost 3D laser scanner. Measurement 2024, 242, 115765. [Google Scholar] [CrossRef]
- Xu, Y.; Luo, Y.; Zhang, J. Laser-scan based pose monitoring for guiding erection of precast concrete bridge piers. Autom. Constr. 2022, 140, 104347. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Zhang, B.; Zheng, J.; Wang, D.; Liu, Z. Development of Automated 3D LiDAR System for Dimensional Quality Inspection of Prefabricated Concrete Elements. Sensors 2024, 24, 7486. https://doi.org/10.3390/s24237486
Li S, Zhang B, Zheng J, Wang D, Liu Z. Development of Automated 3D LiDAR System for Dimensional Quality Inspection of Prefabricated Concrete Elements. Sensors. 2024; 24(23):7486. https://doi.org/10.3390/s24237486
Chicago/Turabian StyleLi, Shuangping, Bin Zhang, Junxing Zheng, Dong Wang, and Zuqiang Liu. 2024. "Development of Automated 3D LiDAR System for Dimensional Quality Inspection of Prefabricated Concrete Elements" Sensors 24, no. 23: 7486. https://doi.org/10.3390/s24237486
APA StyleLi, S., Zhang, B., Zheng, J., Wang, D., & Liu, Z. (2024). Development of Automated 3D LiDAR System for Dimensional Quality Inspection of Prefabricated Concrete Elements. Sensors, 24(23), 7486. https://doi.org/10.3390/s24237486