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Abstract: In occupational domains such as sports, healthcare, driving, and military, both individuals 

and small groups are expected to perform challenging tasks under adverse conditions that induce 

transient cognitive states such as stress, workload, and uncertainty. Wearable and standoff 6DOF 

sensing technologies are advancing rapidly, including increasingly miniaturized yet robust inertial 

measurement units (IMUs) and portable marker-less infrared optical motion tracking. These sensing 

technologies may offer opportunities to track overt physical behavior and classify cognitive states 

relevant to human performance in diverse human–machine domains. We describe progress in re-

search attempting to distinguish cognitive states by tracking movement behavior in both individu-

als and small groups, examining potential applications in sports, healthcare, driving, and the mili-

tary. In the context of military training and operations, there are no generally accepted methods for 

classifying transient mental states such as uncertainty from movement-related data, despite its im-

portance for shaping decision-making and behavior. To fill this gap, an example data set is pre-

sented including optical motion capture of rifle trajectories during a dynamic marksmanship task 

that elicits variable uncertainty; using machine learning, we demonstrate that features of weapon 

trajectories capturing the complexity of motion are valuable for classifying low versus high uncer-

tainty states. We argue that leveraging metrics of human movement behavior reveals opportunities 

to complement relatively costly and less portable neurophysiological sensing technologies and en-

ables domain-specific human–machine interfaces to support a wide range of cognitive functions. 

Keywords: inertial measurement units; optical motion capture; cognitive state estimation;  

workload; uncertainty; machine learning; movement dynamics 

 

1. Introduction 

Whether in the form of subtle finger movements or whole-body coordinated activity, 

humans are constantly moving. Research suggests that movement results from, indicates, 

and guides perception and thought, forming the basis of cognitive science theories of em-

bodied cognition and perception-action feedback loops [1–4]. The notion that subtle alter-

ations in movement behavior can indicate cognitive states is readily exemplified through 

everyday experience: a shaking knee can indicate stress and anxiety, erratic head move-

ments can indicate confusion or disorientation, increased postural stability can indicate 

engagement in a task, and anterior trunk lean can indicate mental workload [5–9]. In other 

words, humans embody the inherent mental demands of a context or task and produce 

measurable behavioral traces of this embodiment that can be leveraged to peer inside the 

“black box” of cognition. 

Prior research examining behavioral or neurophysiological correlates of cognitive 

states is largely restricted to laboratory contexts with highly controlled environments and 

tasks, leveraging diverse multi-modal sensors. For example, to assess mental workload, 
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researchers have variably measured pupil diameter and patterns of eye movements using 

infrared eye tracking [10–12], heart rate and heart rate variability using physiological 

monitoring [13–15], prefrontal cortical brain activity using functional near-infrared spec-

troscopy [16,17], frequency-domain oscillatory brain activity using electroencephalog-

raphy (EEG) [18,19], acoustic modulations of speech [20], and/or subjective assessments 

such as the NASA task load index (NASA-TLX) [21]. While each of these measures offers 

promise within specific contexts, they are also subject to several inherent limitations. In-

deed, neurophysiological sensing is largely restricted to non-ambulatory contexts due to 

low signal-to-noise ratios and motion artifact, speech analysis is restricted to tasks involv-

ing spoken language, and subjective instruments often necessitate disrupting task engage-

ment to probe self-reported states. Movement sensing offers an unintrusive supplement 

or alternative to traditional neurophysiological sensors used in the cognitive and brain 

sciences, with emerging research suggesting that it can be leveraged for cognitive state 

estimation. 

2. Movement Sensing and Cognitive State Estimation 

Human movement sensing is mostly performed in one of two primary modalities, 

using optical motion capture (OMC) or inertial measurement units (IMUs). OMC uses a 

synchronized array of infrared cameras to track sequences of Cartesian coordinates as 

markers (e.g., retroreflective marker balls) move through a limited measurement volume. 

In systems using markers, passive or active markers are typically placed over anatomical 

landmarks (e.g., knee, sternum, clavicle) or on tools (e.g., on a rifle). Based on sequences 

of translational and rotational marker movement, an image acquisition system processes 

and visualizes movement patterns of tracked objects and derives quantitative movement 

metrics of kinematics (e.g., velocity, acceleration) and/or kinetics (e.g., force, power) [22]. 

OMC has very high precision, with overall precision typically below 100–200 µm depend-

ing upon camera capabilities, tracking volume, calibration procedures, and the position 

of trackable objects [23,24]. However, OMC hardware and software are costly and re-

source intensive for training, operation, and maintenance [25]. They also track over a re-

stricted volume of space, reducing applicability to field environments. 

In contrast, IMU-based sensors use an array of gyroscopes, accelerometers, and/or 

magnetometers to track an object’s acceleration, velocity, rotation (roll, pitch, yaw), and/or 

heading relative to a global reference frame [26]. The gyroscope provides information re-

garding angular rate, the accelerometer provides information regarding force and accel-

eration, and the magnetometer (when equipped) provides information regarding the local 

magnetic field. Many modern handheld and wearable devices use integrated IMUs in-

cluding smartphones, tablets, and fitness trackers, and they are becoming increasingly 

miniaturized while maintaining reasonable accuracy and precision [27]. While IMUs can-

not achieve the precision of OMC, particularly over extended periods of time (i.e., as drift 

accumulates), they present sensing opportunities with relatively unintrusive, portable, 

low cost, and flexible technologies that can be used in several applications: seated or am-

bulatory, stationary or moving, and with individuals or groups [25,28–30]. 

We consider four domains in which research may benefit from movement sensing, 

whether via OMC or IMU, to provide insights into transient cognitive states: sports, 

healthcare, driving and navigation, and military. Thereafter, we describe a new dataset 

and provide a detailed demonstration of how OMC-based movement sensing may pro-

vide insights into dynamic mental states of uncertainty while military personnel move a 

weapon during a simulated marksmanship task. 

2.1. Sports 

Movement sensing is increasingly popular in sports medicine, with an emphasis on 

tracking and optimizing training trajectories and providing a basis for data-driven feed-

back between players and coaches [31,32]. While most work examining movement sensing 

in athletes tends to emphasize injury and fatigue prevention [33–35], a few recent studies 
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have suggested that movement sensing can be used to predict athlete intentions (a high-

level cognitive function involving goal-setting, decision-making, and planning) immedi-

ately prior to overt movement. 

In one study, participants performed a series of trials where they would stand and 

then transition to run in one of eight directions (e.g., straight ahead, to the right, to the 

left) based on a visual cue [36]. Participants’ movement was tracked using a combination 

of OMC, IMUs, force plates, and electromyography (EMG) to capture muscle activation 

and movement kinetics and kinematics. Using a machine learning algorithm (XGBoost) 

with ensemble learning and gradient boosting, the authors were able to identify partici-

pants’ intent to move, and in which direction, approximately 100 ms before the onset of 

detectable velocity change at the center of mass (i.e., absolute kinematic start). In other 

words, the algorithm can detect two mental states of interest: preparation to execute a 

movement, and an intent to move in a particular direction. The authors suggest that ki-

netics measured with OMC provided the most valuable contribution to the algorithm, 

perhaps given its relative precision. 

In sports, the ability to detect movement intent can provide insight into when an in-

dividual recognizes and successfully interprets game dynamics and uses them to guide 

their own behavior; it can also be valuable for predicting offensive and defensive plays in 

team sports contexts. 

2.2. Healthcare 

In healthcare, movement sensing has been used to infer mental states of both physi-

cians and patients. With physicians, tracking the movement of surgical tools during sur-

gery has been associated with varied skill level, with relatively novice and uncertain (a 

mental state of limited knowledge or information, making it difficult to predict outcomes 

or make decisions) surgeons showing different movement patterns relative to expert sur-

geons [37]. For example, Cao and colleagues tracked laparoscopic tool use during four 

surgical tasks (dissection, suturing, knot tying, suture cutting) and found distinct move-

ment features, including velocity, were related to surgeons’ uncertainty of position and 

orientation within the body cavity [38]. Furthermore, when pathologists examined (i.e., 

zooming, panning) tissue biopsies, several movement-related features including move-

ment entropy were related to diagnostic accuracy in detecting cancerous lesions, suggest-

ing that physicians with relatively high certainty and confidence show relatively predict-

able (i.e., less erratic) movements [39]. In a study with surgeons performing arthroscopic 

surgery, machine learning classifiers were able to identify confusion states with over 94% 

accuracy by examining head and eye movements alone [40]. In medical training, algo-

rithms resulting from this work could be used to automate the detection of uncertainty 

states and trigger expert remediation, AI-enabled assistance, and recommender systems. 

With patients, tracking hand movements during cognitive tasks can differentiate 

those with versus without autism spectrum disorder (ASD) or major depressive disorder 

[41,42], suggesting the value of limb movement tracking to detect psychological condi-

tions. In age-related clinical disorders, insole balance sensors have been used to predict 

mild cognitive impairment based on balance-related features [43], and features of gait 

measured using OMC can predict dementia onset [44] and mild cognitive impairment 

[45]. Head movement tracking has also been shown sensitive to chronically high mental 

workload levels that might be associated with changes in well-being and health [46]. 

2.3. Driving and Navigation 

Identifying reliable markers of driver inattention, disorientation, or workload could 

prove valuable for human–machine integration with semi-autonomous driving systems. 

While a lot of research has considered the value of oculomotor metrics such as eye gaze 

and blink frequency and duration, some work has considered relatively gross movement 

dynamics of drivers. For example, using sensors affixed to steering wheels in driving 
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simulators, researchers have found that rotational entropy of steering wheel movements 

is indicative of various mental states including workload and inattention [47,48]. 

Similarly, sensing the entropy of head movements during navigation tasks can be 

indicative of disorientation and uncertainty [7]. Specifically, when yaw-based head move-

ments are relatively unpredictable and erratic, navigators are more likely to be experienc-

ing uncertainty regarding direction of travel. Interestingly, entropy is a recurring feature 

in earlier work, suggesting that the inherent unpredictability and disorder of movement 

behavior can indicate mental states of confusion or uncertainty. Interestingly, when peo-

ple are placed under conditions of stress and uncertainty, neuroscientists have found in-

creased entropy in both functional brain activity and heart rate dynamics [49–52]; it could 

be the case that entropy-related movement features reflect these neural dynamics. 

2.4. Military 

In military contexts, dynamic coordinated body movements are fundamental to 

many common tasks. Whether maintaining a vehicle, hiking a mountain, entering a build-

ing, or setting up a roadblock, military personnel must coordinate their body and equip-

ment while variably experiencing states of stress, uncertainty, and workload. 

In the case of rifle marksmanship, military personnel constantly observe their envi-

ronment, orient towards potential threats, make decisions regarding the posture and in-

tent of potential threats, and then act accordingly [53,54]. While research in sports, 

healthcare, and driving and navigation domains suggest that movement dynamics might 

indeed indicate mental states, to our knowledge, no studies have examined whether rifle 

movement dynamics during marksmanship tasks might be indicative of unfolding mental 

states of uncertainty, workload, or stress. 

To fill this gap, we present data collected from military personnel engaged in a sim-

ulated marksmanship task while we used OMC sensors to track rifle position and com-

pute features of movement dynamics. In the next section, we describe the design, analysis, 

and results of this analysis. 

3. Classifying Uncertainty States via Rifle Movement Dynamics 

As part of a larger study previously reported [55,56], we used a marksmanship sim-

ulation system to collect data from military personnel engaged in a shoot/don’t-shoot de-

cision-making task. For these analyses, we focused on 6DOF OMC data of rifle movements 

collected during discrete task trials to assess whether time series patterns of movement 

data might reliably indicate self-reported uncertainty states. 

3.1. Participants, Design and Procedure 

A total of 83 male (Mean age 23.1) military personnel (active-duty U.S. Army soldiers) 

voluntarily provided written informed consent to participate in a study approved by the 

institutional review boards at Tufts University and the U.S. Army Combat Capabilities 

Command Armaments Center. During a series of laboratory sessions, participants com-

pleted several tasks measuring cognitive, affective, physiological, and biochemical re-

sponses to acute stress. To measure cognitive responses, tasks included spatial orienting, 

recognition memory, and simulated marksmanship. 

For the purpose of this analysis, we focus only on the simulated marksmanship task 

the details of which are described below. This task involved two phases: learning and 

testing. During learning, participants learned how to distinguish a friendly versus enemy 

camouflage pattern to an accuracy criterion of 80%. During testing, these camouflage pat-

terns were placed on simulated avatars with systematically varied clarity, similar to a tra-

ditional perceptual decision-making task [57,58]. Specifically, camouflage visual clarity 

was varied across six conditions that overlaid one pattern over the other to increase con-

fusability: 100% pattern A and 0% pattern B, 60–65% pattern A and 35–40% pattern B, and 

51% pattern A and 49% pattern B, and vice versa. In this manner, any given avatar was 
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relatively easy or difficult (and in some cases impossible) to distinguish as friendly versus 

enemy. This manipulation was intended to ensure that participants would experience var-

iable subjective uncertainty levels over the course of trials. 

The camouflaged avatars were used in a virtual reality scenario (built using the 

Unity3d (version 2018.2.6f1) engine [59]) that simulated an avatar walking towards the 

participant in the virtual world. Over the course of 15 trials, the participant had to decide 

whether the avatar was friendly or enemy (based solely on their camouflage pattern) and 

therefore whether to allow the avatar to pass (friendly) or to shoot (enemy) the avatar 

using a gaming rifle. At the outset of each trial, the participant was instructed to return 

the rifle to the downward-facing (i.e., low-ready) position; if they decided to engage an 

enemy, they would shoulder the rifle, aim at the avatar, and pull the trigger. If they de-

cided to let a friendly pass, they would leave the rifle in the downward-facing position 

and push a small button on the barrel of the rifle. Critically, immediately after each shoot-

ing decision, participants would rate their certainty on a scale from 1 (very low) to 6 (very 

high). The task was performed under stress, with participants receiving a mild electric 

shock to the torso when they made an incorrect decision (i.e., shooting a friendly, or miss-

ing an enemy); shock was administered only after they made their certainty rating. 

The simulated marksmanship task was performed two to three times by each partic-

ipant (on separate days) in a large-scale projection screen-based cave automatic virtual 

environment (CAVE). The rifle was equipped with an array of retroreflective marker balls 

that were registered and tracked by a TRACKPACK/E infrared motion tracking system 

(Advanced Realtime Tracking, GmbH, Weilheim, Germany). This afforded sensing of 

6DOF (xyz, roll, pitch, yaw) rifle movement at 60 Hz, recorded using the DTrack (version 

3.1.1) software (also by Advanced Realtime Tracking). 

3.2. Data Processing 

Data were collected from a total of 3735 trials, with the rifle being raised and a trigger 

pull occurring on approximately half (1875) of all trials; these trials were carried forward 

for pre-processing movement trajectories. Note that we did not include in the analysis 

trials where the participant let the avatar pass as there was no appreciable movement of 

the rifle in such cases. 

For the 1875 trials of interest, time series data from the OMC sensors were time-

locked to the onset of a trial, when an avatar first became perceptible in the virtual scene, 

and the end of a trial, when the trigger was pulled to fire upon the avatar. Upon initial 

inspection of our data, we found that when participants moved their rifle from the low-

ready to a shouldered position, movement was primarily within the translational degrees 

of freedom (i.e., xyz axes; predominately upward), with less movement in the rotational 

degrees of freedom (roll, pitch, yaw). Thus, analyses are restricted to the former. Example 

rifle movement trajectories are depicted in Figure 1. 
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Figure 1. Example time-series rifle movement data, demonstrating either low variability panel (A), 

or high variability early (B), middle (C), and/or late (D) in the trajectory. 

Pre-processing resulted in the removal of 250 trials due to extremely brief (i.e., <5 s) 

or extremely long (i.e., >1 min) trajectories typically due to either tracking error (the for-

mer) or scenario software errors (the latter). 

To derive features from the remaining 1625 trajectories, we leveraged two Python 

packages: the Time Series Feature Extraction Library (TSFEL [60]), and the Nonlinear 

Analysis Core’s NONANLibrary [61]. Together, the TSFEL and NONANLibrary packages 

allow for the calculation of features in the temporal, probability, spectral, divergence, and 

fractal domains. A full list of features can be found at the TSFEL and NONANLibrary 

GitHub pages. A total of 385 features for velocity (V) and each of the X, Y, and Z transla-

tional axes were computed resulting in 1540 features per trajectory. Relative to the partic-

ipant’s perspective, the Y axis reflects superior–inferior (up/down) movement of the rifle, 

the X axis reflects medial–lateral (left/right) movement of the weapon, and the Z axis re-

flects anterior–posterior (forward/backward) movement of the weapon. 

Data analysis was intended to assess whether the movement dynamic features could 

classify low versus high certainty states. A given trial for a given participant was deemed 

low certainty if the score was below the median score across all trials for that individual, 

or high certainty if the score was at or above the median. This process resulted in a total 

of 581 trials included in the low certainty class, and 1044 trials included in the high cer-

tainty class. 
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3.3. Data Analysis 

To evaluate whether the extracted features can predict (un)certainty, we conducted a 

five-fold cross-validation, utilizing 80% of the data for training and 20% for testing in each 

fold. Feature selection was performed on the training set using the Terminating Random 

Experiments Selector (T-Rex Selector) [62]. The T-Rex Selector is notable for its use of 

dummy variables to control the false discovery rate (FDR), ensuring that the proportion 

of falsely identified variables among all selected variables meets a user-defined criterion 

which was set at 0.05 for all analysis in this paper. 

The selected features from the training set were then used to train a scikit-learn (ver-

sion 1.4.0) pipeline, which included a robust scaler and a logistic regression model. Pre-

dictions were made using the selected features and the trained pipeline. The predictive 

models achieved an average F1 score of 0.77, indicating that the rifle trajectory features 

are effective in predicting shot certainty (accuracy 0.66, misclassification rate 0.34, preci-

sion 0.67, recall 0.92, MSE 0.34), detailed in Table 1. 

Table 1. Convergence of the model across the five iterations, including the number of features se-

lected and five key performance variables. 

Iteration 
Number of 

Features 
F1 Accuracy Precision Recall MSE 

1 11 0.775 0.664 0.682 0.897 0.336 

2 8 0.763 0.645 0.671 0.883 0.355 

3 6 0.766 0.651 0.677 0.883 0.348 

4 11 0.768 0.661 0.684 0.877 0.339 

5 7 0.775 0.657 0.670 0.920 0.343 

3.4. Results 

The most frequently selected features across the five iterations are detailed in Table 

2. Notably, selected features including Lyapunov exponents [63] and the slope of the 

power spectrum for the magnitude of the velocity, were related to the predictability or 

regularity of the trajectories in space. Two features were selected in most of the five itera-

tions. First, the Lyapunov exponent from the velocity magnitude was selected in all five 

iterations. This feature had a negative weight in each model iteration, suggesting that de-

creased regularity (i.e., higher Lyapunov exponent) in trajectory velocity is associated 

with lower certainty. Second, the Lyapunov exponent of the lateral (X) position, was se-

lected in four out of five iterations and also had a negative weight, indicating that predict-

ability in the participant’s medial–lateral rifle movement (X axis) is related to lower cer-

tainty. 

Table 2. The 5 most frequently selected trajectory features across iterations of the 5-fold cross vali-

dation, mean feature weights, and a description of each feature. VM = velocity magnitude, AMI = 

average mutual information using Stergiou method. 

Feature Weight Description 

Lyapunov Exponent of VM −0.29 

The rate at which small differences in velocity 

grow over time, indicating sensitivity to initial 

conditions and chaos. 

Lyapunov Exponent of X −0.27 

The rate at which small differences in X-axis (lat-

eral) movement grow over time, indicating sen-

sitivity to initial conditions and chaos. 

Lyapunov Exponent of Y −0.17 

The rate at which small differences in Y-axis 

(vertical) movement grow over time, indicating 

sensitivity to initial conditions and chaos. 



Sensors 2024, 24, 7530 8 of 12 
 

 

Spectral Slope −0.16 

Power of a trajectory’s velocity changing across 

different frequencies, revealing smoothness or 

complexity of the trajectory. 

AMI (Stergiou) of X −0.30 

Nonlinear dependencies and predictability of X-

axis movement over time, how much infor-

mation past values provide about future values. 

To test the statistical difference in the two most frequently selected features, we ran 

two-sample Kolmogerov Smirnov tests using Scipy’s (version 1.10.1) kstest method. Both 

features achieve a significant p-value (p < 1 × 10−5), suggesting the samples come from dif-

ferent distributions (Figure 2). 

 

Figure 2. Box plot distinguishing low versus high rated uncertainty for two notable features, includ-

ing 95% confidence intervals and an indication of pairwise statistical significance (**** p < 0.00001). 

4. Discussion 

Analysis of this data set demonstrated that features derived from rifle movement dy-

namics, particularly those related to the trajectories’ spatial predictability/regularity, can 

effectively distinguish between low and high uncertainty states in a simulated marksman-

ship task. Specifically, the Lyapunov exponents of both velocity magnitude and lateral (X-

axis) movement consistently emerged as key predictors, with higher variability (i.e., lower 

predictability) in these movement patterns associated with lower certainty. This finding 

aligns with previous research in healthcare [38,39], navigation [7], and driving [47,48] con-

texts, which also suggests that increased movement irregularity or unpredictability (typi-

cally measured via entropy) can reflect heightened cognitive demand or uncertainty. 

The consistent selection of features such as the Lyapunov exponent and velocity spec-

tral slope highlights the utility of these and related movement characteristics in cognitive 

state estimation. The fact that movement dynamics could be predictive of cognitive un-

certainty states, particularly in a highly stressful and dynamic task like marksmanship, 

supports the notion that movement sensing with OMS and/or IMUs can be an 
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unobtrusive, real-time indicator of cognitive processes. Importantly, this extends previous 

research in domains like healthcare and navigation by demonstrating that rifle movement, 

specifically in military tasks, is a valuable proxy for underlying cognitive states. 

These results suggest several practical implications. In military contexts, real-time 

detection of uncertainty based on movement features could be leveraged to provide adap-

tive feedback to trainees, optimize training protocols, quantify the transition from novice 

to expert, and reduce decision-making errors. There are also several promising civilian 

applications of our results. In law enforcement training, movement tracking for mental 

state classification it could improve decision-making under stress by providing real-time 

feedback on cognitive states like uncertainty, enabling tailored interventions that enhance 

officers’ confidence and resilience [64,65]. In sports training, movement tracking can opti-

mize performance and injury prevention by revealing cognitive states related to focus, 

anticipation, and fatigue [66]. Within healthcare, this approach can aid in medical training 

by identifying moments of uncertainty in procedures, for example during surgical train-

ing [67]. For driver training and navigation, movement sensing could enhance safety by 

detecting fatigue or disorientation, encouraging adaptive guidance to reduce driver stress 

[68]. Finally, in workplace safety and efficiency, tracking subtle movement dynamics in 

high-risk jobs can inform training to manage workload and fatigue, improving ergonom-

ics and reducing injury risks [69,70]. These applications demonstrate how movement sens-

ing can support real-time, adaptive feedback across diverse high-demand environments. 

Across domains, classifying uncertainty states from movement behavior could also assist 

in quantifying the progression from novice to expert during training. 

Future research should explore the potential for integrating movement-based cogni-

tive state estimation with other physiological or environmental sensing modalities, as well 

as testing these methods in real-world training and operational contexts. Sensor fusion 

could improve the accuracy and precision of uncertainty state classification; however, it is 

compelling that we can achieve moderate-to-high model performance with a single sensor 

suitable for resource-constrained settings. It will also explore whether there are unique 

movement signatures related to similar but dissociable cognitive states such as cognitive 

workload, uncertainty, and acute stress. More broadly, our results suggest that human 

movement dynamics may prove valuable for classifying a wide range of neurocognitive 

states accompanying diverse work-related movements; while we focused on healthy, neu-

rotypical participants, there are also potential applications for clinical surveillance and 

diagnosis. 

5. Conclusions 

In conclusion, we demonstrate that the movement dynamics characterizing weapon 

trajectories offer a promising avenue for estimating cognitive states such as uncertainty in 

complex, high-stress tasks. The findings pave the way for further exploration into how 

subtle changes in movement behavior can reveal cognitive states, offering new opportu-

nities for sensing and cognitive state monitoring in both research and applied settings. 
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