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Abstract: Non-contact heart monitoring is crucial in advancing telemedicine, fitness tracking, and
mass screening. Remote photoplethysmography (rPPG) is a non-contact technique to obtain infor-
mation about heart pulse by analyzing the changes in the light intensity reflected or absorbed by
the skin during the blood circulation cycle. However, this technique is sensitive to environmental
lightning and different skin pigmentation, resulting in unreliable results. This research presents a
multimodal approach to non-contact heart rate estimation by combining facial video and physical
attributes, including age, gender, weight, height, and body mass index (BMI). For this purpose, we
collected local datasets from 60 individuals containing a 1 min facial video and physical attributes
such as age, gender, weight, and height, and we derived the BMI variable from the weight and height.
We compare the performance of two machine learning models, support vector regression (SVR) and
random forest regression on the multimodal dataset. The experimental results demonstrate that
incorporating a multimodal approach enhances model performance, with the random forest model
achieving superior results, yielding a mean absolute error (MAE) of 3.057 bpm, a root mean squared
error (RMSE) of 10.532 bpm, and a mean absolute percentage error (MAPE) of 4.2% that outper-
forms the state-of-the-art rPPG methods. These findings highlight the potential for interpretable,
non-contact, real-time heart rate measurement systems to contribute effectively to applications in
telemedicine and mass screening.

Keywords: heart rate; machine learning; remote photoplethysmography; signal processing

1. Introduction

Heart rate is one of the most important vital signs observed to determine a person’s
health. This is because heart rate directly indicates cardiovascular diseases (CVDs) such as
heart disease, arrhythmia, stroke, and high blood pressure. CVD is a noncommunicable
condition that can lead to sudden death due to issues with the heart and blood vessels [1,2].
In addition, heart rate can also be an indicator of physical and emotional stress. The
precious information provided by the heart rate makes it important to monitor. There are
some tools for heart rate monitoring, such as stethoscopes, electrocardiograms, and pulse
oximeters. However, those methods often involve uncomfortable physical contact with
sensors, presenting challenges in continuous monitoring and real-time data collection [3–5].

The first non-contact heart rate monitoring techniques using optical sensors were
invented by Hertzman in 1937, developing with the advancement of science and technology
in medicine, known as photoplethysmography (PPG) [6]. PPG allows the measurement of
the heart rate by placing a sensor directly on the skin, typically at areas like the fingertip
or earlobe, to detect changes in the light absorbed or reflected by the skin due to blood
volume pulsatile. With the development of light source technology and photo detectors in
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the 1960s, more accurate and portable PPG devices were feasible. With further advances in
electronics and signal processing in the 1970s, applications of PPG became more feasible in
a clinical environment, as devices could now be smaller and more integrated.

In the early 2000s, researchers began exploring the potential of detecting PPG signals
remotely using regular digital cameras which later provided the roots for remote pho-
toplethysmography (rPPG). The main idea of rPPG is that skin color changes from the
circulating blood flow were to be recorded and analyzed, mainly on facial regions. Initial
attempts demonstrated that small changes in skin color due to blood flow could indeed
be captured using webcams and camcorders, paving the way for remote, non-contact
measurements. By using this technique, heart rate monitoring can be carried out remotely
and faster. One of the rPPG technique implication is mass screening for life insurance
underwriting. By using this approach, the assessment of prospective policyholders is much
faster and cheaper [7–9].

Different algorithms have been developed to perform heart rate calculations using the
rPPG technique. The first algorithm developed is called Green’s algorithm, presented by
Verkruysse et al. [10] in 2008. This algorithm highlights the green channel to find changes
in blood volume within cutaneous blood vessels, which can later be used to monitor heart
rate. The reason for choosing the green channel is related to the favorable absorption
characteristics of hemoglobin. However, it is susceptible to individual differences in skin
pigmentation, which might result in changing the obtained signal because of the various
amounts of light absorbed and reflected.

In 2010, Poh et al. [11] developed a method for calculating heart rate named Inde-
pendent Component Analysis (ICA). This method is a statistical method used to separate
overlapping signals into independent components. The use of ICA in rPPG is very impor-
tant because it helps improve the accuracy of noninvasive heart rate monitoring via video,
making it very useful in more convenient and easy health monitoring. However, ICA has
a major weakness—the assumption that the source signals that want to be separated are
completely independent of each other. In practice, especially in the rPPG technique, the
signal is related to the heartbeat, and the noise is not always completely independent.

Therefore, the next method is proposed, namely chrominance-based (CHROM) rPPG
signal extraction proposed by De Haan and Jeanne [12] in 2013. CHROM does not com-
pletely rely on the assumption of independence. Instead, CHROM utilizes color relation-
ships in the video to separate the heartbeat signal from noise so that it is more robust to
situations where the signal is not completely independent. Although more stable than ICA,
CHROM can still be affected by drastic changes in lighting because these changes affect the
chrominance values used. Therefore, this method was refined by research conducted by W.
Wang et al. [13] in 2017, who proposed the algorithm plane orthogonal to skin (POS). Due
to the linear combination of color signals in the POS representation, it is invariant to the
changes in the lighting conditions and, correspondingly, reduces the intensity variations
within an improved signal stability.

Recently, with the emergence of deep learning, many studies on noninvasive heart
rate measurement are shifted towards deep learning models such as convolutional neural
network (CNN) [14–17]. However, CNNs often work as black boxes, making it difficult
to understand how the inputs lead to the outputs. The lack of interpretability may raise
concerns about accountability and reliability in many applications, especially in healthcare.
On the other hand, rPPG has an advantage over CNN in terms of interpretability since the
theoretical background of rPPG is rooted in optics and physiology, not to mention that the
rPPG mechanisms are straightforward, making it easier for practitioners to understand
how the measure correlates with physiological signal [18].

Although progress has been made in rPPG for contactless heart rate measurement, the
current methods still struggle with noise and other external influences, including lighting
conditions and the skin pigmentation of the individual. Such challenges hint that the current
methods need a more wholesome approach by incorporating machine learning integration
and multiple data types to enhance robustness and accuracy. In the event of these gaps, our
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research proposes incorporating integration machine learning and a multimodal approach:
1 min facial video data along with physical characteristics, such as age, gender, height,
weight, and body mass index (BMI), to enhance heart rate estimation. Two machine learning
algorithms, namely support vector regression (SVR) and random forest, will be utilized to
model the data input to predict the heart rate. Ablation experiments will be employed by
removing or replacing each modality to investigate the impact on the model prediction.
Our work will contribute to the integration of robust heart rate measurement for more
personalized estimation, considering variability between individuals.

2. Methodology
2.1. Hypothesis

A study published by Quer et al. [19] utilized wearable fitness trackers to investigate
age, body mass index, and sex-related differences in resting heart rate among 92,457
adults. It was concluded that the association of age and body mass index with RHR were
statistically significant but small. Overall, the RHR tends to decrease with increasing
age and was slightly higher with increased BMI. Similarly, two studies conducted by
Ehrenwald et al. [20] and Gonzales et al. [21] studied the temporal changes in RHR. It
has been observed that in general, the RHR decreases as age increases and women have
a higher RHR compared to men. Furthermore, changes in BMI also affect the RHR; an
increase in body mass results in an increased heart rate. Consequently, based on this study,
we hypothesized that the inclusion of the rPPG technique and physical attributes, such
as age, gender, weight, height, and BMI, may enhance the measurement system in its
performance and reliability aspects.

2.2. Remote Photoplethysmography

Remote photoplethysmography (rPPG) is an innovative technique that allows mea-
suring the heart rate noninvasively and without direct contact with the skin. The basic
principle involves using light emitted onto the surface of the skin and detecting changes in
the intensity of light reflected or absorbed by the skin during the blood circulation cycle [22].
The resulting signal, known as blood volume pulse, describes changes in blood vessel
volume over time and allows the measurement of heart rate. The skin color measured by
the camera is a combination of the intensity and spectrum of the light source, the intrinsic
skin color, and the sensitivity of the camera’s color channels. Temporal changes in skin
color are proportional to the magnitude of lighting intensity that would be influenced by
specular variations caused by movement and subtle color changes due to blood circulation.
In rPPG, two components contribute to the observed color variations on the skin surface:
specular and diffuse reflections.

Specular reflection refers to light reflection due to a smooth surface, such as the skin.
This is the result of the direct reflection of light from the skin without any scattering. For
many cases, it may be the most dominant component in observed color variations and
overshadows other components. However, this does not contain information regarding
heart rate, so it needs to be rejected or minimized in the rPPG technique. On the other
hand, diffuse reflection may be said to deal with skin tissue absorption and light scattering.
This is influenced by factors such as the hemoglobin and melanin content of the skin [23].
Diffuse reflection contains information related to changes in blood volume in the vessels
around the skin. This component is of interest in rPPG because it can be used to extract
signals related to changes in blood volume [24]. Figure 1 shows an illustration of the use of
light emitted into the skin in the rPPG technique.
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Figure 1. Illustration of remote photoplethysmography.

To extract heartbeat signals from observed color variations, the rPPG method focuses
on isolating and analyzing diffuse reflection components while minimizing the impact of
specular reflections. For this purpose, the Plane-Orthogonal-to-Skin (POS) approach put
out by [13] is the methodology employed in this study. The main idea of the POS is that
the video sequence captures a visible skin region, where color variations correspond to
heartbeat-related blood flow changes. The POS algorithm aims to account for variations in
skin tone by projecting the RGB signal onto a plane orthogonal to the temporally normalized
skin tone direction when given a 15 s facial video where each frame’s RGB values are
averaged to obtain a single-color intensity value per frame, representing the overall color
change over time. This results in a temporal array of R(n), G(n), and B(n) where n

represents frame index. The array is then projected using a matrix px =

(
0 1 −1
−2 1 1

)
,

designed to minimize the influence of skin tone on pulse extraction. This guarantees that
there are as many beat components as possible in the final rPPG signal. After that, the
signal’s component will be separated to calculate heart rate representation. The algorithm
of POS is formulated in Algorithm 1 as follows:

Algorithm 1: Plane orthogonal to skin

Assumption: Video duration 15 s; Frame rate 30 fps; total frame 450 frames
Input: Video contains N frame
Output: rPPG signal
1: H = zeros (l, N), l = 48 (30 fps camera)
2: for n = 1, 2, . . . , N do:
3: C(n) = [R(n), G(n), B(n)]T

4: if m = n − l + 1 > 0 then

5: Ci
n = Ci

m→n
µ Ci

m→n

6: S =

(
0 1 −1
−2 1 1

)
·Cn

7: S1 = S[1] # The first row of S
8: S2 = S[2] # The second row of S
9: h = S1 +

σ(S1)
σ(S2)

·S2

10: Hm→n = Hm→n + (h − µ(h))
11: end if
12: end for
13: return H
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This algorithm has the benefit of being less constrictive regarding the degree of distor-
tion shown in the video and more resilient against noise. It is appropriate for a range of
applications since it can function well in both fixed and moving scenarios.

2.3. Signal Filtering

In the actual world, noise frequently taints signals. There are many different types of
noise, such as environmental interference, jitter in data acquisition, and electromagnetic
interference. To make the signal being measured or analyzed cleaner and more precise, noise
can be reduced or eliminated using the filter process. Butterworth bandpass filter, which is
thought to enhance the quality of rPPG signals, is one of the most popular filters [25,26].
According to Steiglitz [27], Butterworth filters are made to have a flat frequency response
within the passband frequency range, which permits all frequencies to go through without
distortion. The transfer function, a polynomial ratio of output to input, is a way the filter
process response to input signals may be described. The mathematical expression for the
transfer function is as follows:

H(s) =
1

s2 +
(
2
√

n · π · fc
)
s + Nπ2 f 2

c
(1)

where the transfer function H(s) is the transfer characteristics, and s is a complex variable
function. The parameter N indicates the filter order, whereas fc signifies the cutoff frequency.
In this study, a Butterworth filter will use the cutoff parameters in the range 0.8–2.0 Hz and
the order used is 4. The reason for choosing this interval is because the average resting
human heart rate is in the interval 48–120 bpm [28]. A fourth-order Butterworth filter
is chosen for several reasons. First, higher-order filters provide steeper roll-offs, which
enhance the filter’s ability to sharply distinguish between the passband and the stopband.

2.4. Fast Fourier Transform

After being filtered, the rPPG signals may now be used to obtain crucial information
for heart rate computations. The Fourier transform may be used to analyze frequency
by applying it to the rPPG signal. Signals in the time domain will be converted into the
frequency domain using this technique. Consider a discrete time signal x[t] of length
N (t = 0, 1, 2, ..., N − 1). Discrete Fourier transform (DFT) from x[t] can be defined as
follows:

X[ f ] =
N−1

∑
t=0

x[t]e
−j

2πkt
N (2)

where X[ f ] is the fth frequency spectrum, x[t] is time signal of tth sample, and N is the
signal length. However, O(n2) operations are needed for classical DFT, which can be
quite slow for long signal lengths. This issue is resolved by the fast Fourier transform
(FFT), which divides the DFT into smaller DFTs that can be computed more quickly. The
Cooley–Tukey algorithm is the most well-known FFT algorithm. The FFT is split into two
smaller pieces by this algorithm, which then processes each piece recursively [29].

2.5. Support Vector Machine

The support vector machine is one of the most powerful models of machine learning
widely used for both classification and regression. SVMs which are used for regression
tasks are called support vector regression (SVR). It has based its idea on finding the optimal
decision boundaries or a hyperplane with maximum margin [30]. The main optimization
problem of the hyperplane for regression involves the minimization of the sum of slack
variables, both positive and negative, allowing deviations within a margin ϵ from the true
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target value. Let N be the total number of data points in the training set; then, the formula
is as follows:

min
w,b

1
2∥w∥2 + C

N
∑

n=1
(ξn + ξ̂n)

s.t tn ≤ y(xn) + ϵ + ξn

tn ≥ y(xn)− ϵ − ξ̂n

ξn, ξ̂n ≥ 0

(3)

The w defines the weight vector that sets the hyperplane separating the classes in
a higher-dimensional space. Therefore, ∥w∥2 is the squared norm of the weight vector,
which represents the margin of separation between classes. Variable C is a regularization
parameter that controls the trade-off between maximizing margin and minimizing errors.
Two slack variables ξn and ξ̂n are introduced to handle deviations above and below the
margin. The Figure 2 below illustrates the hyperplane problem of the SVR and the role of
each variable.
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However, Equation (3) is complicated to solve. Therefore, the dual form will be
formulated using the Lagrange function and Karush–Kuhn–Tucker (KKT) condition. For
regression problems, the dual of the hyperplane optimization method can be obtained
using similar techniques. Therefore, the dual of regression hyperplane optimization is
given as follows:

argmax
a, a

− 1
2

N
∑

n=1

N
∑

m=1
(an − an) (am − am)k(xn, xm)− ϵ

N
∑

n=1
an + an

+
N
∑

n=1
(an + an)tn

s.t 0 ≤ an ≤ C, 0 ≤ an ≤ C
N
∑

n=1
(an − an) = 0

(4)

where an is associated with the upper constraint tn ≤ y(xn) + ϵ + ξn and an is associated
with the lower constraint tn ≥ y(xn)− ϵ − ξ̂n. Variable k(xn, xm) is a kernel function. There
are several kernel functions such as linear, polynomial, and RBF (Radial Basis Function)
kernel [31].

The SVR model can be implemented for multimodal heart rate prediction by in-
corporating signal features derived from photoplethysmography alongside the physical
information, such as age and body mass index, to improve accuracy. The SVR will build
the best model based on the optimization of the hyperplane problem during the training
process. The best model represented in mathematical function will be used to predict the
heart rate based on the input. To enhance machine learning performance, the hyperpa-
rameters of the SVR need to be tuned. One of the most important hyperparameters to be
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tuned is the kernel function. The kernel function converts data into the right format, hence
allowing SVRs to identify the best boundaries. Another hyperparameter to be tuned is
C which is the balance between attempting to fit the training data with a minimal error
and maximizing the margin of the decision boundary; a higher value of C will make the
considerations of correct classification more important. γ is a factor associated with the
influence of training data on the decision boundary, whereas ϵ is a margin within which no
penalty is incurred in the training loss function [32].

2.6. Random Forest Regression

The random forest regression is an ensemble machine learning model that relies on
the bagging approach: building multiple base models in parallel, and the final prediction is
performed with an average vote, ensuring variance reduction by building models using
several bootstrap datasets [33]. It consists of several fixed-size base models, which are
usually classification and regression trees (CARTs). It builds binary trees, where each
internal node splits the data into two child nodes based on a split criterion. The goal is to
create a tree structure that maximizes the accuracy of predictions for new data points.

Given the training data {xn, tn}, n = 1, . . . , n, where tn is a label. Let Q be the set
of data at a node, θ = (j, a) be the set of candidate feature j and threshold value a, and
Qle f t(θ) and Qright(θ) be the data in the left and right partitions of the threshold, defined
as the following equation:

Qle f t(θ)=
{
(x, t)

∣∣∣x(j) ≤ a
}

Qright(θ)= Q − Qle f t(θ)

G(Q, θ)=
Nle f t

N
H
(

Qle f t(θ)
)
+

Nright

N
H
(

Qright(θ)
) (5)

where N is the number of data points at the node, and Nle f t, Nright are the numbers of data
points in the left and right partitions, respectively. Therefore, selecting the feature and
threshold that produces the purest partition at a node can be expressed as the following
optimization problem:

θ∗ = min
θ

G(Q, θ) (6)

For regression tasks, the input is divided into several partitions called Rm. Each
region contains a subset of the data points (observations) that fall within it. The goal is to
find optimal partitions that minimize the error in each region. The node m represents a
region Rm with Nm observations, and the mean of the target values within each region is
cm. The common criterion to minimize is the mean squared error H(xM) as shown in the
following equations.

cm=
1

Nm
∑

i∈Nm

ti

H(Xm)=
1

Nm
∑

i∈Nm

(ti − cm)
2

(7)

Next, using the steps above, the random forest regression algorithm builds multiple
decision trees by bootstrapping and aggregating the results. The algorithm to perform
random forest regression is given in Algorithm 2 as follows:
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Algorithm 2: Random forest regression

Input: training dataset, n: number of trees; d: tree depth; m: number of features at each node
Output: prediction of Random Forest model
1: for i = 1, 2, . . ., n do:
2: Bootstrap sampling of the dataset Di
3: Build decision tree:
4: At each node, randomly sample m features
5: Find the best split using the m subset
6: Split the node and repeat until stopping criteria (max depth or minimum samples)
are met.
7: Save the decision tree Ti
8: end for
9: For each tree Ti, get the predicted value from all trees
10: return Average of the predictions from each tree

The random forest model can be implemented for multimodal heart rate prediction by
incorporating signal features derived from photoplethysmography alongside the physical
information, such as age and body mass index, to improve accuracy. Multiple decision
trees will be built to model the data, and the final prediction will be calculated by averaging
the result of each tree.

For random forests, there are three main hyperparameters that will be tuned to im-
prove the model’s performance. Firstly, the number of trees which controls how many trees
are involved in the ensemble. Secondly, max depth is the setting that controls the depth
of each tree, and this must be performed to avoid overfitting. The final hyperparameter,
minimum samples per split denotes the minimal number of samples that are necessary
to split an internal node, which prevents the trees from growing too complex [34]. The
illustration of the random forest regression can be seen in Figure 3.
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2.7. Data Collection

In this experiment, a dataset with the facial video recordings of 60 individuals was
utilized. Each video’s length was standardized to 1 min, where the resolution and frame
rate were set to be uniform at 480 × 640, and 30 fps, respectively. This resolution and
frame rate are used to balance the performance and computational efficiency, leading to
an accurate prediction but still feasible for real-time implementation. The data collection
was conducted at the same place and with fixed lighting and subjects had to take off any
facial accessories, such as eyeglasses. Together with video recording, there was manual
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measurement using an oximeter to gather the actual value as the ground truth. The height
in cm, weight in kg, age in years, and gender are also recorded in the dataset. To ensure
privacy, we anonymized the subjects by masking facial features such as eyes, nose, and
mouth to prevent unauthorized recognition. We also introduced variable body mass index
(BMI) into the dataset. Figure 4 depict the characteristics of the dataset used in this study.
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From Figure 4a, it can be concluded that from the 60 individuals, there are 45 males and
15 females in the dataset. Figure 4b shows the variations in heart rate between the males
and females. It also shows that females generally present a higher heart rate compared
to males, since their median rate is just above 75 beats per minute, while the median for
males is just about 70 beats per minute. The interquartile range (IQR), which represents
the middle 50% of the dataset, is wider for females, ranging approximately between 70
and 85 bpm. This indicates that there is a greater spread or deviation in the pulse rates
of females. In contrast, the IQR for males varies between 65 and 80 beats per minute;
this means that male heart rates are more huddled around the lower end of the spectrum.
Figure 4c–f indicate that our dataset has a good diversity of heart rate, height, weight, and
BMI, making this ideal for training machine learning.

2.8. Region of Interest Selection

Region of interest (RoI) selection in the rPPG technique involves selecting a specific
area on a person’s skin or face from which the rPPG signal will be extracted. The face
was chosen as the RoI in the rPPG algorithm because it has several advantages over other
body parts. First, the face has a high concentration of capillaries, making it easier to detect
changes in blood flow. Second, faces have a low level of reflection, making it easier to
separate PPG signals from environmental noise. Third, faces are easy to access and reach,
making them suitable for real-time video capture applications [26,35]. For this purpose, we
utilized Dlib facial landmarks that combine Histogram of Oriented Gradients (HOG) as the
feature extraction and SVM as the key points classifier [36]. The RoI used in this research
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is the facial skin without eyes, nose, and lips. For this purpose, the landmarks (36, 39, 40,
and 41) for the left eye, (42, 45, 46, and 47) for the right eye, (32, 33, 34, 35, and 36) for the
nose, and (49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, and 60) for the lips will be filled as black as
shown in Figure 5.
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2.9. Feature Selection

In machine learning, signal feature selection is the process of identifying and se-
lecting the most relevant features included in the signal data that contribute to an im-
provement in the performance of machine learning models. After several surveys in the
literature [27,37–39], we decided to utilize signal features as follows:

• Maximum and minimum values of the signal: They are the basic features of a signal
representing the maximum and minimum value of signal amplitude, respectively.
From those values, a new feature called peak to peak, which is the difference between
the maximum and minimum values of the signal, can be generated. Given that
x(t) represents the signal amplitude at time frame t, the maximum, minimum, and
peak-to-peak values of the signal are represented as follows:

maxvalue= max
t

x(t)

minvalue= min
t

x(t)

peak to peak= maxvalue − minvalue

(8)

• Skewness and Kurtosis: Skewness is a measure of the asymmetry of the signal’s
amplitude distribution around the mean, while kurtosis is the existence of outliers in
the signal’s distribution. Given that x(t) represents the signal amplitude at time frame
t, and µ, σ are the mean and standard deviation of the signal, respectively, skewness
and kurtosis of the signal are represented as follows:

xske =
E((x(t)−µ)3)

σ3

xkur =
E
(
(x(t)−µ)4

)
σ4 − 3

(9)

• Entropy: It measures the complexity or randomness in the signal based on the proba-
bility distribution of its values. It is often used to assess the predictability of a signal.
Given that x(t) represents the signal amplitude at time frame t, to calculate entropy,
the signal x(t) needs to be discretized over a period of 30, matching the fps assumption
used in this study. This process results in xi where i = 1, 2, . . . , 30. Each xi covers a
specific range that x(t) can take. The entropy can be calculated as follows:

H(s) = −
30

∑
i=1

p(xi)log2 p(xi) (10)
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where p(xi) represents the probability that x(t) falls within the range specified by
xi. Higher entropy indicates a more complex or less predictable signal, while lower
entropy suggests a more regular, predictable pattern.

• Zero crossings: Zero crossings are a count of how many times the signal crosses
the horizontal axis—that is, changes from positive to negative or vice versa. This
feature also gives some insight into the frequency content of the signal. Given that
x(t) represents the signal amplitude at time frame t, zero crossings can be formulated
as follows:

Z=
n−1

∑
i=1

I(t, t + 1)

I(t, t + 1)=
{

1, i f x(t)·x(t + 1) < 0
0, i f x(t)·x(t + 1) > 0

(11)

• Spectral centroid and spectral bandwidth: The spectral centroid is that point, con-
sidering the signal in the frequency domain, where the signal can be said to balance
domain while spectral bandwidth is a measure of the spread or width of the frequency
spectrum around the spectral centroid. They provide a measure of the amount the
energy that is concentrated or dispersed across frequencies. Given that X( f ) repre-
sents the frequency domain of the signal obtained by implementing x(t) into DFT in
Formula (2), spectral centroid and spectral bandwidth can be formulated as follows:

SC =
∑ f f ·|X( f )|

∑ f |X( f )|

SB =

√
∑ f ( f−SC)2·| f (X)|

∑ f |X( f )|

(12)

• Dominant frequency and total power: Dominant frequency is the frequency at which,
in the Fourier spectrum of the signal, its magnitude is the largest, whereas total power
is a notion of the overall energy, computed by summing over squared amplitudes.
Given that X( f ) is the representation of time-domain signal x(t), dominant frequency
and total power can be calculated as follows:

fd= argmax
f

|X( f )|

Ptotal= ∑
t
|x(t)|2

(13)

3. Experiments
3.1. DeepFace for Gender and Age Prediction

In this study, it is necessary to utilize a sensor to automatically predict the physical
properties. Therefore, DeepFace, a popular open-source framework for facial analysis,
is utilized. DeepFace, which internally uses deep learning models pre-trained on very
large datasets, offers a very high degree of accuracy for various facial attribute predictions,
including age estimation and gender classification. Currently, the library supports several
backend models, such as VGG-Face, Google FaceNet, and OpenFace. The VGG-Face
backend provided by DeepFace was used in our implementation to analyze the first frame
of every video regarding predicted age and gender due to its balance of speed and accuracy.

3.2. Experiment with Random Forest and Support Vector Regression for Multimodal Heart
Rate Calculation

In this section, we outline the workflow utilized for our experiment, which encom-
passes a series of systematic steps designed to ensure a comprehensive evaluation of the
machine learning models for heart rate estimation. The process begins with RoI extraction.
Following this, feature engineering is employed to extract meaningful features from the
signal data, including critical metrics such as the maximum, minimum, and peak-to-peak
values; skewness; and kurtosis, which are vital for accurate model performance. All the



Sensors 2024, 24, 7537 12 of 21

features collected from facial videos will be concatenated with physical features such as
age, gender, weight, height, and BMI.

Next, we conduct model selection, opting for support vector regression (SVR) and ran-
dom forest regression by tuning the hyperparameter. This tuning phase is executed using
a grid search method, where various hyperparameters are evaluated to find the optimal
configurations for each model. Hyperparameters for each model are given as follows:

• Hyperparameters for SVR: Kernel ∈ {Linear, RBF}, C ∈ {0.01, 0.1, 1, 10, 100}, γ ∈
{0.01, 0.1, 1, 10, 100} and ϵ ∈ {0.001, 0.01, 0.1, 1, 10};

• Hyperparameters for Random Forest Regression: number of trees n ∈ {50, 100, 200},
max depth d ∈ {none, 5, 10, 20}, and min samples per split m ∈ {2, 5, 10, 20}.

All the processes are implemented using the scikit-learn library, which is a well-known
and open-source tool for data analysis and machine learning implementation provided
by Python.

Subsequently, we apply 5-fold cross-validation (CV), which is a statistical technique
used to assess the performance of the tuned models on unseen data. This iterative process
works by splitting the dataset into 5 folds, followed by training process using 4 folds as the
training set and the remaining fold as the validation set. We repeat the training process until
every fold becomes a training set. The result of the model can be obtained by averaging the
results across all the folds [40]. Figure 6 below illustrates model evaluation using 5-fold CV.
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Finally, we evaluate the models using performance metrics such as mean absolute
error (MAE), root mean squared error (RMSE), and mean absolute percentage error (MAPE)
to quantify their predictive accuracy. Some commonly used techniques for measuring
model performance in this study are MAE, RMSE, and MAPE, which can be formulated
as follows:

MAE =
n

∑
i=1

|yi − ŷi|
n

(14)

RMSE =

√√√√ n

∑
i=1

(yi − ŷi)
2

n
(15)

MAPE =
100%

n

n

∑
i=1

|yi − ŷi|
yi

(16)
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where yi is the actual value and ŷi is the predicted value. For each metric, the lower the
value, the better the performance of the model being tested. A detailed diagram illustrating
this workflow is presented in Figure 7 to provide a visual representation of the steps taken
throughout the experimental process.

 

Figure 7. Workflow of the proposed method.

3.3. Performance Results

This study explored machine learning integration and multimodal approach for heart
rate measurement by combining two types of data: signal features obtained from the facial
video as listed in Equation (8) until Equation (13) were given the name “Video” and physical
attributes, such as age, gender, height, and weight, were given the name “Physical”. Two
distinct machine learning models, namely support vector regression and random forest
regression, are utilized. We systematically conducted ablation study by removing or
altering specific video features and physical attributes to assess their impact on the MAE,
RMSE, and MAPE. The focus was on understanding how each feature contributes to the
model’s overall accuracy in predicting the target variable. Table 1 shows the performance
of all the ablation experiments conducted in this study. The columns Video and Physical
use checkmarks (✓) and crosses (✗) to indicate whether the corresponding input type is
included in each method. A checkmark means the input is included, while a cross means
it is not. Generally, the random forest models perform better than the SVR with the best-
performing method obtained when using the multimodal approach with the lowest MAE,
RMSE, and MAPE of 3.057, 10.532, and 4.2%, respectively. In contrast, the best SVR is
obtained when using physical information only with the MAE, RMSE, and MAPE of 3.251,
12.797, and 4.9%, respectively.
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Table 1. Performance of proposed methods.

Index Method Video Physical MAE RMSE MAPE Hyperparameter Pairs

1 RF ✓ ✗ 4.321 18.624 6% n = 70, d = 7, m = None
2 RF ✗ ✓ 6.612 11.018 8.3% n = 120, d = 5, m = 2
3 RF ✓ ✓ 3.057 10.532 4.2% n = 80, d = 7, m = 2

4 SVM ✓ ✗ 7.601 18.624 10.2% C = 1000, ϵ = 10, γ = 0.01,
kernel = linear

5 SVM ✗ ✓ 3.251 12.797 4.9% C = 1000, ϵ = 0.001, γ = 1,
kernel = RBF

6 SVM ✓ ✓ 7.496 18.787 10.1% C = 1000, ϵ = 10, γ = 0.01,
kernel = linear

To gain more valuable insights from the random forest model, we checked predictive
performance and interpretability using feature importances as shown in Figure 8 Feature
importance provides a quick sense of how each feature is useful for the decisions of the
model and, therefore, helps identify the most influential variables driving the predictions.
This visualization is useful for making informed decisions about which features to retain,
prioritize, or analyze further. By focusing on the most influential features, we can not only
improve model performance but also uncover actionable insights for the problem domain.
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In addition, Figure 9 shows Shapley additive explanation (SHAP) values, which
completely explain how each feature contributes toward the output of the model for
specific predictions. The values to the right, or more positive SHAP values, increase the
prediction, while the values to the left, or negative SHAP values, decrease the prediction.
Features that are further away from zero have a greater influence on a particular prediction.
The SHAP values tell not only the direction or magnitude of each feature’s effect but also
consider the dependencies among the features, thus giving rich insight into the behavior of
the model.
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For deeper analysis, Figure 10 shows a partial dependence plot (PDP), which provides
insights into the effect of various features on the predictions of the random forest model
on the multimodal data. Each subplot shows the partial dependence of a single feature,
revealing how changes in its values impact the model’s output. The y-axis, representing
partial dependence, indicates the direction and strength of each feature’s influence on the
prediction. Higher values suggest a positive effect, while lower values suggest a negative
one. Meanwhile, the x-axis shows the range of feature values, which are often normalized
to facilitate comparison across different features.

For certain features like zero crossings, peak to peak, and BMI, the PDP curves display
notable variations across specific ranges, suggesting that these features significantly impact
the model’s predictions in those areas. In contrast, features such as age, weight, height,
skewness, and spectral bandwidth exhibit relatively flat lines, indicating that changes in
these values have minimal effect on the prediction. The plot also shows the behavior of
binary or categorical variables, like gender, where the flat line across 0 and 1 values suggests
a limited impact on the outcome.

Features with sharp increases or decreases, like zero crossings, may indicate threshold
effects, where a small change within a certain range can substantially affect predictions.
This pattern suggests that the model may have learned non-linear relationships with these
features, capturing complex interactions. Overall, this PDP grid highlights features such
as zero crossings, peak to peak, and BMI which play a more prominent role in driving
predictions, whereas others have less influence on the model’s decision-making process.
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3.4. Comparison with State-of-the-Art Methods

To evaluate the performance of the proposed method, we compared the result of
our work to four different state-of-the-art methods explained in the introduction. The
comparison is carried out by applying the state-of-the-art methods to the dataset used in
this study and evaluated using the same metrics. It aims to compare how the proposed
methodology measures the heart rate much more accurately than the state-of-the-art. It is
easy to see from Figure 11 that our work considerably outperforms the existing state-of-the-
art methods of remote photoplethysmography in heart rate measurement, evident from
the lowest MAE, RMSE, and MAPE of 3.06, 10.53, and 4.02%, respectively. The random
forest with multimodal approach outperforms the random forest without multimodal by
30% in terms of error, indicating the multimodal approach improves the remote heart
rate measurement. Furthermore, the integration of random forest model and multimodal
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approach outperforms the base POS with FFT by 72%, indicating that our approach is
more reliable.
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4. Discussion

In this study, we investigated the performance of machine learning integration and a
multimodal approach for heart rate measurement by using the combination of the rPPG
blood volume pulsatile signal extracted from the facial video and physical attributes such
as age, gender, height, weight, and BMI. By combining these diverse data sources, we aim
to improve heart rate estimation accuracy in non-contact scenarios, which is beneficial for
telemedicine, fitness monitoring, and mass health screening.

This study explored machine learning integration and multimodal approach for heart
rate measurement by combining two types of data: facial video as listed in Equation (8)
until Equation (13) was given the name “Video” and physical attributes, such as age,
gender, height, and weight, was given the name “Physical”. Two distinct machine learning
models, namely support vector regression and random forest regression, were utilized.
We systematically conducted an ablation study by removing or altering specific video
features and physical attributes to assess their impact on the MAE, RMSE, and MAPE.
The focus was on understanding how each feature contributes to the model’s overall
accuracy in predicting the target variable. Figure 8 shows the performance of all the
ablation experiments conducted in this study. Generally, the random forest models perform
better than the SVR with the best-performing method obtained when using the multimodal
approach with the lowest MAE, RMSE, and MAPE of 3.057, 10.532, and 4.2%, respectively.
In contrast, the best SVR is obtained when using physical information only with the MAE,
RMSE, and MAPE of 3.251, 12.797, and 4.9%, respectively.

Table 1 shows that the random forest regression with a multimodal approach is the
best method which gives the lowest error with an MAE, RMSE, and MAPE of 3.057, 10.532,
and 4.2%, respectively. This indicates the effectiveness of combining the two different data
types in the prediction of heart rate. The models that did not include physical data or relied
totally on video data had a higher error rate, underpinning the importance of physical
attributes in enhancing the accuracy of the prediction.

In contrast, the SVR models perform comparably but are not better than the RF model
that leverages both video and physical attributes. Interestingly, the SVR model with only
physical data, Index 5, yielded a relatively low MAE of 3.251, while further addition of
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either video or physical features degraded its performance. This suggests that while the
SVR is successful with physical data, it is sensitive to the integration of video features,
possibly due to the feature complexity or noise contributed by the multiple data types,
which is the main drawback of SVR as mentioned by Farahmand, Desa, and Nilashi [41].

From these findings, it becomes clear that a multimodal approach, especially one
that incorporates video and physical information, could greatly affect the performance of
the model in estimating heart rate. The combined-data RF model’s superior performance
strengthens the promise of multimodal machine learning methods for improvement in the
accuracy of remote heart rate measurement systems. This has led to the conclusion that
multiple sources of data contribute to the overall better performance for applications, such
as rPPG, when compared with single-modality methods.

These conclusions are further supported by the feature importance and SHAP value
analyses of the best-performing RF scenario shown in Figure 9. First, it shows zero crossings
as the most critical feature, with its importance score way higher than the other features,
valued at 0.3979; hence, it contributed most to the model’s predictions. Physical features
such as BMI and dominant frequency also contribute to key roles but at a lower degree
compared to the others. The SHAP value plot in Figure 9 offers more granularity on this,
pointing out that zero crossings tend to have a consistent, high positive impact on the
model output, while the impact of features such as BMI and peak to peak varies depending
on their value. The domination of zero crossings as the most important feature in this study
is due to its ability to measure the frequency of estimation, which is correlated with the
heart rate.

Coupled with the discussion of feature importance, this suggests that the better
performance of the RF model is indeed derived from its ability to exploit both video-
derived features such as zero crossings and physical attributes like BMI. Allowing it to
capture the complex interaction between these multimodal features tends to yield a low
error rate in heart rate prediction. The SHAP analysis points out how these key features
weigh in the output from the model, further reinforcing the fact that the conclusion must
be about the inclusion of both video and physical data for the best performance. These
results align with our hypothesis that physical attributes such as BMI influence the heart
rate prediction [19–21].

The comparison in Figure 11 shows that the combination of random forest regression,
POS algorithm, and multimodal data, which includes both video and physical attributes,
achieves the lowest error rates among all the methods evaluated, with an MAE of 3.057,
RMSE of 10.532, and MAPE of 4.2%. These results significantly outperform the other
state-of-the-art methods, such as Green + FFT, ICA + FFT, and CHROM + FFT, which show
considerably higher error rates. For instance, the Green + FFT method exhibits an MAE of
15.217 and a MAPE of 18.5%, highlighting the vast improvement achieved by integrating
multimodal data with the random forest model.

5. Limitations and Future Works

Despite the promising results, there are some limitations in this study. First, the dataset
used in this work is relatively small because no open-source site provides facial videos
along with physical attributes information. Due to limited access to a large multimodal
dataset, there is a risk that the model may be overfitting to the dataset used in this study.
Future work should prioritize the collection of a larger, more diverse dataset to improve
the model’s generalizability and robustness across different populations.

Furthermore, an inaccurate physical attribute feed to the system such as the input of
false weight or height may influence the result because measuring heart rate is based on
false information. The limitation of this study is one that should be resolved in the future by
collecting more multimodal datasets and aiming to develop a model that automatically pre-
dicts physical attributes to avoid manual inputting with the intent of avoiding feeding false
information to the measurement system. Lastly, the rPPG signals extracted from the video
are sensitive to lighting and environmental conditions, which could affect the accuracy
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of heart rate estimation in non-controlled settings. Variations in light sources, shadows,
and even skin tone may introduce noise in the video data. Future work could involve
improving robustness to such factors by implementing data normalization techniques or
training the model with data captured under diverse lighting conditions.

6. Conclusions

In this study, we aim to make noninvasive heart rate measurements more robust
and reliable. We propose a machine learning integration into multimodal data including
facial video, age, gender, weight, height, and BMI. The plane orthogonal to skin algorithm
is utilized to extract blood volume pulsatile signal from the RGB facial video. Region of
interest for video recording covers facial areas without eyes, nose, and lips. Signal filtering is
implemented to denoise the obtained signal followed by signal extraction. Several features
are selected, such as the maximum, minimum, and peak-to-peak value; skewness; kurtosis;
zero crossings; spectral centroid; spectral bandwidth; dominant frequency; total power;
and entropy value of the signal. Two machine learning models, support vector regression
(SVR) and random forest regression are compared for this task. The experimental results
demonstrate that incorporating a multimodal approach enhances model performance,
with the random forest regression model achieving the best result surpassing the state-of-
the-art methods. Furthermore, our method improves the robustness of non-contact heart
rate measurement.
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