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Abstract: Detecting defects in complex urban sewer scenes is crucial for urban underground structure
health monitoring. However, most image-based sewer defect detection models are complex, have
high resource consumption, and fail to provide detailed damage information. To increase defect
detection efficiency, visualize pipelines, and enable deployment on edge devices, this paper proposes
a computer vision-based robotic defect detection framework for sewers. The framework encompasses
positioning, defect detection, model deployment, 3D reconstruction, and the measurement of realistic
pipelines. A lightweight Sewer-YOLO-Slim model is introduced, which reconstructs the YOLOv7-
tiny network by adjusting its backbone, neck, and head. Channel pruning is applied to further
reduce the model’s complexity. Additionally, a multiview reconstruction technique is employed to
build a 3D model of the pipeline from images captured by the sewer robot, allowing for accurate
measurements. The Sewer-YOLO-Slim model achieves reductions of 60.2%, 60.0%, and 65.9% in
model size, parameters, and floating-point operations (FLOPs), respectively, while improving the
mean average precision (mAP) by 1.5%, reaching 93.5%. Notably, the pruned model is only 4.9 MB
in size. Comprehensive comparisons and analyses are conducted with 12 mainstream detection
algorithms to validate the superiority of the proposed model. The model is deployed on edge devices
with the aid of TensorRT for acceleration, and the detection speed reaches 15.3 ms per image. For
a real section of the pipeline, the maximum measurement error of the 3D reconstruction model is
0.57 m. These results indicate that the proposed sewer inspection framework is effective, with the
detection model exhibiting advanced performance in terms of accuracy, low computational demand,
and real-time capability. The 3D modeling approach offers valuable insights for underground pipeline
data visualization and defect measurement.

Keywords: urban pipeline; defect detection; YOLO network; lightweight; edge deployment;
3D reconstruction

1. Introduction

Sewers constitute critical infrastructure in urban areas, and their effective operation
is paramount for safeguarding urban facilities, personnel, and property [1]. The timely
detection and repair of pipe defects are crucial for mitigating extensive damage and
minimizing repair costs. Unfortunately, the concealed nature of underground drainage
pipelines allows internal defects to accumulate unnoticed until an accident occurs [2].
Hence, regular inspections of pipelines during both the construction and usage stages
are indispensable, facilitating the early identification and repair of any defects that may
arise. Pipeline inspection technologies encompass acoustic inspection, electromagnetic
inspection, and visual inspection. Among these, manual inspection using closed-circuit
television (CCTV) remains the predominant technique [3,4]. However, manual inspection
methods consume significant manpower and material resources, and the repetitive nature
of the work, coupled with subjective evaluations, makes pipeline defect assessment prone
to errors. With the ongoing process of urbanization and the increasing need for regular
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pipeline inspections, the efficiency and quality of manual defect detection through visual
information cannot be guaranteed. There is an urgent need to develop efficient and
intelligent detection methods to meet the demand for long-term pipeline detection and
maintenance in cities [5].

The emergence and development of machine vision and artificial intelligence technol-
ogy [6,7] have provided new ideas for the intelligent detection of pipeline defects. Early
researchers utilized computer vision algorithms, support vector machines [8], and ma-
chine learning algorithms, such as random forest [9] and histograms of oriented gradients
(HOGs) [10], for pipeline detection. Although capable of completing the defect detection
task to some extent, these methods require substantial computing power for preprocess-
ing and postprocessing, proving inefficient and falling short of the accuracy, real-time
performance, and practical deployment demands of modern urban pipeline detection.
Considering the practical scenario of defect detection in drainage pipelines, the use of
target detection technology is a more suitable choice. The current mainstream defect
detection algorithms can be broadly classified into two main categories: single-stage algo-
rithms, such as SSD [11] and the YOLO series [12], and two-stage networks, such as the
R-CNN [13] series, Fast R-CNN [14], and Faster R-CNN [15]. In recent years, numerous
researchers have focused on employing various computer vision technologies to achieve
the automated detection of defects in urban drainage pipes. Duran et al. [16] proposed
a method that leverages neural networks and image feature extraction. By integrating
pipe image data collected from cameras and laser profiler sensors, the approach signifi-
cantly enhances defect detection performance in low-light pipe environments. Similarly,
Guo et al. [17] introduced a detection method based on the analysis of differences be-
tween image frames, demonstrating rapid defect detection capabilities to a certain extent.
Cheng et al. [18] utilized CCTV to collect 3000 images of drainage pipes for training and
verification and adopted the Faster R-CNN algorithm for detection, achieving an average
accuracy of 83% and a detection speed of 9.434 FPS. Li et al. [19] employed pipeline
photographs collected via CCTV and QV and, based on the deep learning method of
two-stage learning, improved the defect detection mAP by 1.1% by strengthening the
region proposal network (RPN) and multilayer global feature fusion. Kumar et al. [20]
gathered 2100 sewer images via CCTV for training and verification. They adopted a two-
step detection strategy, initially classifying and subsequently using YOLO for fracture
detection, achieving an average accuracy of 71%.

In practical applications, the YOLO model series stands out for real-time detection
tasks due to its balance between speed and accuracy. For instance, Tan et al. [21] enhanced
an automatic sewer defect detection approach using YOLOv3, where the improvement
involves a loss function, bounding box prediction, and network architecture. Yin et al. [22]
proposed real-time automatic detection of sewer defects via the YOLOv3 network, which
uses a dataset of 4056 instances to implement six types of defects (breaks, holes, sediments,
cracks, fractures, and roots), achieving an mAP value of 85.37%. Oh et al. [23] incorporated
the convolutional block attention module (CBAM) into the YOLO framework to enhance
detection accuracy. Kumar et al. [24] conducted a comparative analysis of SSD, YOLO,
and Faster R-CNN for identifying root invasion and sewer sediment issues, highlighting
YOLO’s advantages in balancing detection speed and accuracy. As small embedded devices
gain increasing use in engineering applications, there is growing concern among experts
regarding the balance between lightweight model design and detection accuracy. Various
deep learning methods have been proposed to address different needs. However, for small
embedded devices, the detection accuracy and model size need to be further balanced
and improved.

In response to these problems, researchers have proposed methods of model compres-
sion and pruning, which aim to reduce the computing and storage overhead of models
based on the target premise of the existing dataset. Zhang et al. [25] proposed a Slim-
YOLOv3 model to achieve real-time target detection through UAV image collection by
pruning redundant channels and network layers. Wu et al. [26] presented a YOLOv4 deep
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learning algorithm based on channel pruning for the rapid detection of apple blossoms.
This pruning method effectively reduces the model’s size and inference time without
compromising accuracy. Situ et al. [3] proposed a YOLOv5s pipeline defect detection
method based on channel pruning, which simplifies the network by reducing the number
of channels. Zhang et al. [27] introduced a channel pruning-based compression technique
for YOLOv7, which significantly reduces the model’s parameters, although this results in a
slight decrease in detection accuracy.

Two-dimensional detection images face certain limitations in urban pipeline inspec-
tion, primarily due to their lack of depth information, which hinders their ability to fully
represent the actual condition of pipelines [28]. This challenge is further exacerbated in
low-light conditions, where target detection becomes significantly more difficult [29].
Moreover, urban pipelines feature curved surfaces, and 2D imaging technology fails to
accurately capture their 3D morphology. Consequently, achieving precise defect mea-
surement and quantitative evaluation solely based on 2D images remains challenging.
To address this issue, the application of 3D point cloud technology in pipeline inspection
provides an innovative solution [30]. By capturing the three-dimensional coordinate
information of object surfaces, 3D point cloud technology can construct realistic 3D
models, enabling a comprehensive and accurate representation of pipelines. This ap-
proach offers strong support for the precise measurement and evaluation of defects.
Previous studies have focused mainly on the use of 3D laser scanners or depth cam-
eras to capture the depth maps and 3D point clouds of various objects. For example,
Tan et al. [31] used LiDAR to diagnose pavement defects. In three-dimensional sewer
scenarios, researchers have employed various techniques to reconstruct urban drainage
pipes in 3D. Current related studies primarily focus on the use of laser or sonar technol-
ogy for three-dimensional pipeline scanning. Lepot et al. [32] introduced an unbiased
and high-precision laser profilometer, which was tested on various sewer defects and
demonstrated significantly improved measurement accuracy compared to traditional
CCTV systems. Additionally, Bahnsen et al. [33] employed depth cameras to obtain
precise point cloud representations of PVC pipes. However, current 3D point cloud
acquisition devices are not only costly but also face limitations due to the minimum dis-
tance required between the 3D sensor and the target [34]. Furthermore, 3D segmentation
methods that directly process point clouds tend to be computationally intensive and
resource-heavy [35]. In comparison, image acquisition via CCTV systems has gained
widespread adoption. Compared to the use of LiDAR, RGB cameras are more affordable,
and the process of image acquisition is simpler; this image-based approach offers greater
economic and practical benefits for real-world applications [34,36].

Zhang et al. [37] proposed a 3D reconstruction method for urban drainage pipes based
on multiview image matching using a low-cost panoramic camera, offering a practical
and efficient solution for pipeline detection. Fang et al. [38] proposed a sewer inspection
framework based on computer vision technology that uses RGB image data collected by a
floating capsule robot to achieve image defect instance segmentation, equipment localiza-
tion, and 3D model reconstruction. Ma et al. [39] developed an improved 3D analysis and
modeling platform for sewage pipelines. This platform identifies common issues, such as
misalignment, blockages, and cracks, via 2D image recognition. It processes image data
from multiple viewpoints to generate depth maps and employs a 2D-to-3D conversion algo-
rithm, successfully creating virtual replicas of two real pipeline segments. Wang et al. [40]
focused on the automatic classification and segmentation of 3D sewer pipelines. By refin-
ing the neural network architectures and learning strategies used in existing inspection
processes, the accuracy of defect identification was improved, particularly in handling 3D
point cloud data.
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Existing 2D image-based detection methods for pipeline defects often focus on improv-
ing a single aspect, such as increasing detection accuracy or achieving a lightweight model.
However, finding a balance between these two aspects can be challenging. YOLOv7-tiny
performs well in terms of speed and model compactness, yet there is potential for further
optimization. In practical engineering applications, detailed depth information maps can
be generated from multiview pipeline images, enabling the construction of a 3D model to
accurately represent the overall defect structure. The 3D model allows for the calculation
of key parameters, such as defect size and volume, facilitating a more scientific assessment
of the defect’s severity. This approach provides robust support for the measurement and
evaluation of pipelines.

This paper combines the advantages of 2D image detection algorithms and 3D point
cloud technology and proposes a computer vision-based inspection framework using
pipeline robots for sewer defect detection. The main contributions of this article are
summarized as follows:

1. A framework for drainage pipe defect detection and 3D reconstruction is proposed to
obtain comprehensive pipe condition information. This framework is illustrated in
Figure 1.

2. A Sewer-YOLO-Slim detection model is proposed for the automatic detection of urban
drainage pipe defects, and the proposed model is deployed on pipe robot equipment.

3. The YOLO model is optimized in three key areas: enhancing the backbone network
and neck network, integrating an attention mechanism within the detection head
(DyHead), and pruning the proposed model to achieve a lightweight model design.

4. The framework implements the positioning of pipeline inspection robots, the recon-
struction of realistic 3D sewer scenes, and measurement functionality. This enables
drainage pipeline condition data to be collected more comprehensively and presented
in a clear and intuitive manner.

Sewer pipe video/pictures

Real-time defect detection

Pipeline scene of 3D model

Detailed information 
of pipelines 

Amphibious wheeled robot
 RTK

( defects, locations, damage level)

Figure 1. Pipeline defect detection and 3D scene reconstruction framework.

The structure of this paper is organized as follows. Section 2 provides an in-depth
explanation of the data acquisition, the Sewer-YOLO-Slim algorithm, and the computer
vision methods utilized for 3D reconstruction. Section 3 outlines the experimental setup and
configuration details. Section 4 describes the experimental outcomes for defect detection
and 3D modeling, and Section 5 presents our conclusions.

2. Materials and Methods
2.1. Amphibious Wheeled Robot

To achieve efficient defect detection in urban drainage systems, an amphibious
wheeled pipe inspection robot device is designed. Three views of the amphibious wheeled
pipe inspection robot are shown in Figure 2.
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两栖轮式机器人

管道内表面

（a）Front View

（c）Top View

（b）Left View

Figure 2 Three views of the amphibious wheeled robot structure design
Figure 2. Three views of the amphibious wheeled pipe inspection robot.

The amphibious wheeled pipe inspection robot utilized in this study is equipped with
a high-resolution CMOS non-infrared camera, which meets the IP68 waterproof standard.
The camera supports horizontal rotation from 0 to 360 degrees and vertical rotation from
0 to 180 degrees. Additionally, the robot is fitted with various sensors, including an inertial
measurement unit (IMU), enabling real-time video data capture as it moves along the inner
wall of the pipe. Figure 3 illustrates the detailed process of data collection and inspection
inside the urban sewer. Using real-time kinematic (RTK) instruments, the GPS positioning
of pipeline inspection shafts accurately records the location data of the inspection wellhead.
The amphibious wheeled inspection robot is then deployed in the pipeline. The developed
robot exhibits stable movement capabilities, enabling continuous data acquisition along
the axial direction of the pipe. Due to the lack of wireless signals in underground sewers,
the integration of multi-sensor information plays a crucial role in robot positioning, defect
detection, and the accurate representation of world coordinate positions in 3D modeling.

of pipelines 
amage level)

。
。

。。

Amphibious wheeled robot

Cable Car

Host computer 

Cable rope

Pulley

Inspection engineering vehicle

Figure 3. Pipeline detection and data collection process.

2.2. Urban Sewer Defect Image Database

An urban sewer defect image database (USDID) was created to assess the efficacy of
the proposed target detection algorithm. The original image set was evaluated, and five
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prevalent types of pipeline defects were selected as identification targets for the detection
model. These defect types include misplacements, obstacles, roots, leaks, and fouling,
as defined in [41]. Figure 4 shows the defects and labels. Table 1 presents the defect data in
the USDID.

misplace obstacle root leaky fouling

Figure 4. Five types of defect examples and labels.

Table 1. The details of the datasets in the USDID.

Dataset
Defect Type

Number of Images
Misplace Obstacle Root Leaky Fouling

Training 3116 750 935 607 354 4466
Testing 1289 296 374 263 170 1902
Total 4405 1046 1309 870 524 6368

2.3. YOLOv7-Tiny Algorithm

YOLOv7 [42] is the seventh-generation version of the YOLO target detection algorithm.
YOLOv7-tiny [43], depicted in Figure 5, is a simplified variant of YOLOv7 comprising
three main components: the backbone network, neck network, and prediction head. In the
backbone section, the E-ELAN structure is replaced with the more concise ELAN; MP
performs only pooling downsampling; the neck part adopts a PANet structure for feature
aggregation; and in the head section, REPConv is substituted with a standard Conv to
adjust the number of channels. Compared to YOLOv7, YOLOv7-tiny sacrifices some
accuracy but excels in terms of its lightweight design. However, YOLOv7-tiny still presents
areas for further optimization. The ELAN network employed in the backbone exhibits
a complex structure and many parameters. The use of ELAN networks in the neck may
introduce redundancy in feature extraction. This paper aims to enhance YOLOv7-tiny’s
performance by proposing a more lightweight solution to reduce the number of parameters
and computations.

Embedding

Input

CBL

ELAN

CBL

MP

ELAN

MP

ELAN

MP

ELAN

Concat

Up

SPPCSPC

Concat

CBL

ELAN

Concat

CBL

ELAN

CBL

Concat

ELAN

Conv
(head)

Conv
(head)

Conv
(head)

Backbone Neck head

Input

ELAN

CBL

CBL

CBL

Up CBL = Conv BN LeakyReLU+ +

ELAN = CBL Concat

CBL

CBLCBL CBL

MP = Maxpool CBL Concat

CBL

CBLConcat

CBL

SPPCSPC = CBL Maxpool Concat CBL

Maxpool

Maxpool

CBL

Figure 5. YOLOv7-tiny network structure.
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This article makes the following improvements to YOLOv7-tiny: First, the lightweight
FasterNet is employed as the backbone network, and the effectiveness of these modi-
fications is experimentally validated. Second, in the neck part of the model, based on
the lightweight slim neck idea, the GSCConv and VoVGSCCSP modules are introduced
to reduce parameters and perform feature aggregation to obtain richer features. In the
head part, the DyHead target detection head, incorporating the attention mechanism, is
utilized to improve spatial perception capabilities and detection accuracy. The detailed
structure of the proposed improved YOLOv7-tiny is shown in Figure 6a. Subsequently,
channel pruning is applied to the improved YOLOv7-tiny model to reduce channels that
have little impact on detection accuracy while retaining important feature information,
making the model more lightweight and improving detection efficiency. The channel
pruning operation is illustrated in Figure 6b. To address the limitations of high-end hard-
ware, the pruned model, named Sewer-YOLO-Slim, is transferred to edge development
devices for rapid onsite data processing, and the model is converted to the ONNX format
for further optimization. This enables TensorRT acceleration, allowing for deployment
on edge detection devices to achieve real-time detection in field applications with the
pipeline inspection robot. The deployment process of the pruned model is illustrated in
Figure 6c.

2.4. Sewer-YOLO-Slim Model Construction
2.4.1. FasterNet Algorithm

FasterNet [44] is a lightweight network model released by the Hong Kong University
of Science and Technology team in March 2023. It exhibits broad applicability and operates
efficiently on edge devices. This model is built upon the PConv operation, which reduces
redundant information in the feature map and systematically applies conventional con-
volution to some of the input channels while leaving the other channels unchanged. This
operation effectively reduces the complexity and the number of parameters. FasterNet has
multiple models, including FasterNet-T0/1/2 and FasterNet-S/M/L. Given the lightweight
requirements for pipeline defect detection, FasterNet-T0 is chosen as the backbone network
for our model. This selection significantly reduces the number of parameters. Figure 7
illustrates the FasterNet network structure and its improved components. The primary
architecture consists of four levels, each comprising multiple FasterNet blocks, with PConv
being the main operation.

2.4.2. GSCConv and VoVGSCCSP Modules

For the neck part, this article replaces the standard convolution with the improved
GSCConv module for both upsampling and downsampling operations. By adding convo-
lution, the network’s feature extraction capability is enhanced. Li et al. [45] proposed the
GSConv and VoVGSCSP modules in the slim neck structure. The structure of the enhanced
GSCConv module is illustrated in Figure 8. Assuming that the number of input channels
is C1 and the number of output channels is C2, the standard convolution reduces the
number of channels to C2/2. This is followed by a depthwise separable convolution, where
the number of channels remains constant. After two convolutions, splicing and shuffling
operations are performed. The shuffling operation reorganizes the channel information,
enhancing the fusion of multifeature information and improving the expressive capacity of
image semantic information.
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Figure 6. The technical process of the proposed method. (a) The improved structure of YOLOv7-tiny.
(b) Channel pruning is applied to the improved model. (c) The process of Sewer-YOLO-Slim being
deployed on the edge detection device.

The ELAN is substituted with the improved VoVGSCCSP module for cost-effective
detection calculations. The specific VoVGSCCSP structure is illustrated in Figure 9. The two
convolutions preceding the Concat layer employ the GSCConv module, which efficiently
reduces the number of model parameters while maintaining detection accuracy.
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Figure 9. The structure of the VoVGSCCSP module.

2.4.3. DyHead Module

The urban pipeline defect dataset has a complex background, encompassing different ma-
terials, pipe diameters, and multiple defect categories. Consequently, the detection algorithm
must possess a comprehensive understanding of the pipeline. DyHead [46] introduces a novel
dynamic head framework to integrate head and attention mechanisms in object detection
tasks. This approach significantly improves target detection performance by integrating scale,
spatial, and task attention mechanisms using a multihead self-attention approach within the
feature layer. The detailed structure of DyHead is illustrated in Figure 10.

DyHead achieves the fusion of scale, spatial, and task awareness by integrating multiple
self-attention mechanisms across feature layers, thereby enhancing the performance of the
target detection head. Scale awareness focuses on the size of the pipeline defect range and
enhances features on appropriate layers by learning the relative importance between feature
layers. This adaptation to defects of different sizes improves detection robustness. Spatial
perception contributes to increased detection accuracy by learning spatial differences between
defects at various locations within the defect image, thus more effectively capturing specific
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location information. Task awareness processes pipeline defect feature data across different
channels, guiding the feature channels to identify diverse defects, processing varied feature
information, and improving the generalizability of detection. The synergy of these three
attention mechanisms enables DyHead to utilize the relationships among feature layers
comprehensively, effectively enhancing the detection of pipeline defects.
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Figure 10. The DyHead structure. (a) Description of a three-dimensional tensor from a general view,
where L, C, and S represent the number of layers, channels, and the height and width of the feature
map, respectively. (b) Three attention mechanisms (scale-aware, spatial, and channel) are applied in
sequence. (c) The specific application of DyHead in the detection framework.

2.4.4. The Design of Network Pruning

The improved YOLOv7-tiny model accurately identifies pipeline defects; however, fur-
ther optimization opportunities exist. This paper employs model pruning to reduce structural
complexity, making the model deployable on devices with limited computing power. As illus-
trated in Figure 11, the scaling factor γ of the batch normalization layer is utilized to assess
channel importance. Important channels (green channels) are retained, whereas unimpor-
tant channels (blue channels) are removed. The pruning decision requires a comprehensive
consideration of the distribution of the γ factors and the channel pruning rate.
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Figure 11. Schematic diagram of the channel pruning algorithm.
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When structural sparsity is incorporated into the improved model, the coefficient γ
of the batch normalization (BN) layer is used to evaluate channel importance. Channels
with lower importance in the improved model are eliminated according to the predeter-
mined pruning rate, resulting in a more storage-efficient model. After channel pruning,
meticulous fine-tuning recovery is conducted to address any potential degradation in
accuracy, optimizing the pruned model for compact performance. This process involves
performance evaluation, pruning iterations, and the eventual achievement of lightweight
network models. Notably, an excessively high pruning ratio can lead to a significant loss of
certain channels, thereby reducing model detection accuracy. Therefore, the pruning rate
must be selected carefully to strike a balance between model compactness and performance.

2.5. Robot Positioning and 3D Reconstruction
2.5.1. Amphibious Wheeled Inspection Robot Positioning

The sewer environment is characterized by a range of challenging conditions, such as
low lighting, water accumulation, and structural damage to pipes. In such environments,
accurately determining the position and orientation of the robot via sensors can be a
challenging task. Currently, CCTV inspection robots equipped with cameras are widely
used for video capture and recording. Visual odometry (VO) technology [47] addresses
these challenges by analyzing consecutive image frames to estimate the movement of the
camera or robot. Given the unique nature of drainage pipelines, the positioning of the
inspection robot can be considered a VO problem. Figure 12 illustrates the localization
process of the pipeline inspection robot.

Sewer pictures SFM Algorithm
Dense point cloud 
reconstruction

Mesh 
Reconstruction

Mesh Texture 
Map

Sewer 
pictures

Feature 
Extraction

Feature 
Matching

Motion 
Estimation

Local 
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Figure 12. The localization process of the amphibious wheeled pipeline inspection robot.

Feature Extraction: Scale-invariant feature transform (SIFT) is used to detect key points
in images and generate feature descriptors [48]. This process identifies feature points in
images that are highly distinctive and invariant to scale and rotation, making them suitable
for matching across images with different viewpoints and scales.

Feature Matching: After the feature points of multiple images are obtained, feature
point matching across images is performed. The nearest neighbor algorithm is used for
feature matching, and then RANSAC is used to eliminate mismatches and optimize the
matching results.

Motion Estimation: After feature point matching is completed, camera motion can be
estimated via geometric methods. According to the projection relationship between 2D
and 3D points in an image, the perspective-n-point (PnP) algorithm is used to solve the
camera’s position and orientation [49]. The core formula for this problem is as follows:

λ

ui
vi
1

 = K
[
R t

]
Xi
Yi
Zi
1

 (1)

where λ is a scaling factor. The 3D points (Xi, Yi, Zi) in world coordinates are related to
their 2D projection (ui, vi) in image coordinates through the camera’s intrinsic matrix K,
rotation matrix R, and translation vector t.

Local Optimization: After the camera poses are estimated, bundle adjustment (BA) is
applied to refine both the 3D coordinates and the camera poses [50]. BA achieves this by
minimizing the sum of the squared projection errors between the observed image points
and the corresponding projections of the 3D points.
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The projection error is defined as

error =
n

∑
i=1

∥∥proj(Xi, Rj, tj, K)− x̂ij
∥∥2 (2)

where the function proj(Xi, Rj, tj, K) represents the projection of the 3D point Xi onto the
image plane through camera j; Rj and tj represent the rotation matrix and translation vector
of camera j, respectively; and K is the camera’s intrinsic matrix. The term x̂ij is the observed
2D point corresponding to the projection of Xi in the image.

2.5.2. Three-Dimensional Reconstruction of the Pipe Scene

The purpose of positioning a sewer amphibious wheeled inspection robot is to obtain
images of the internal structure of the drainage system as well as the robot’s location, which
is critical for constructing a 3D model of the pipeline network. Figure 13 illustrates the
workflow of the entire 3D model reconstruction process.
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Figure 13. Three-dimensional reconstruction process of the pipeline scene.

The process involves various stages, from image acquisition to the generation of a
textured 3D model, integrating several computer vision techniques and graphical process-
ing methods.

SFM Algorithm: The structure from motion (SFM) [51] recovers the 3D structure of an
object from a 2D image with multiple views. This technique identifies and matches key
points across images and uses the relative motion between the camera positions to estimate
the 3D structure of the scene.

Dense Reconstruction: Building on the initial sparse point cloud obtained from SfM,
dense reconstruction algorithms [52] create a more detailed 3D representation by calculating
depth information for every pixel in the images.

Mesh Reconstruction: The dense point cloud is converted into a mesh by creating a
continuous surface using triangulation methods [53].

Texture Mapping: To make the 3D model look more realistic, the color information of
the image is mapped to the mesh surface.

With the help of open-source 3D modeling tools, such as the open-source multiview geo-
metric reconstruction library (OpenMVG) [54] and the multiview stereo reconstruction toolkit
(OpenMVS) [55], the construction from raw image data to the final 3D scene is completed.

3. Configuration and Evaluation
3.1. Experimental Configuration

The software used in this study included PyTorch version 1.11.0, Cuda version 11.3,
and Python version 3.8, running on a computer with the Ubuntu 18.04 operating system.
The CPU was an Intel(R) Xeon(R) Gold 5320 CPU@ 2.20 GHz, by Intel Corporation, headquar-
tered in Santa Clara, United States, and the system was equipped with 64 GB of running memory.
The graphics card used was the NVIDIA GeForce RTX 3090 (24 GB), produced by NVIDIA
Corporation, also based in Santa Clara, United States. The algorithm training parameters are
detailed in Table 2, while the pruning experiment parameters are specified in Table 3.

Following pruning, the enhanced model, Sewer-YOLO-Slim, was deployed for onsite
testing on the embedded AI terminal device EA-B400. The EA-B400 is an edge development
device produced by Lianbao (Hefei) Electronics Technology Co., Ltd., located in Hefei,
China. It is equipped with the NVIDIA Jetson AGX Xavier core module manufactured
by NVIDIA Corporation. This core module boasts a computing power of up to 32 TOPS
and an I/O performance of up to 750 Gbps, making it highly suitable for real-time onsite
pipeline data processing. The EA-B400 was assembled into the cable car of the crawling
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robot’s retracting and unwinding system and integrated with sensors and data acquisition
systems to achieve onsite pipeline data collection and processing.

Table 2. Algorithm parameter settings.

Parameter Value

Input resolution 416 × 416
Learning rate 0.001
Weight decay 0.0005

Epochs 300
Batch size 16

IoU 0.5

Table 3. Pruning experiment parameter settings.

Parameter Value

Input resolution 416 × 416
Sparse learning rate 0.002

Sparse iterations 200
Channel pruning rate 0.5
Fine-tuning iterations 300

3.2. Evaluation Metrics

Target detection evaluation metrics usually include precision, recall, average precision
(AP), mAP, and inference time. The calculation formulas are as follows:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

AP =
∫ 1

0
p(r) dr (5)

mAP =
∑K

i=1 APi

K
(6)

True positives (TP) refer to the correctly identified positive samples, while false pos-
itives (FP) denote instances where the model incorrectly predicts positive results. False
negatives (FN) signify cases where the model incorrectly predicts non-defects as negative
results. The AP can be expressed as the area under the precision–recall (P/R) curve. K
is the number of categories for the detected target, and the average of the K categories is
taken to obtain the mAP.

4. Experiment and Results
4.1. Sewer Defect Detection
4.1.1. Backbone Network Experiment

In pursuit of the goal of lightweight pipeline defect detection, this paper explored the
impact of replacing the YOLOv7-tiny backbone network with five different mainstream
lightweight models. These networks included GhostNet, ResNet18, EfficientViT_M0,
MobileNetV3-Small, and the modified FasterNet-T0. The experiment focused solely on
modifying the backbone network structure, and the comparison results are presented in
Table 4.

The results indicate that, compared with YOLOv7-tiny, employing the lightweight
model backbone GhostNet, ResNet18, EffcientViT-M0, and MobileNetV3 networks led to
a reduction in parameters but at the cost of varying degrees of accuracy loss and longer
training times. The use of the FasterNet-T0 backbone network resulted in a 1.4% increase
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in the mAP of the detection network, along with reductions in model parameters and
volume and an acceleration in training speed, and the network still has potential for
further optimization.

Table 4. Comparison of the impact of different lightweight backbone networks on YOLOv7-tiny.

Backbone PrecisionL (%) Recall
(%)

mAP
(%)

Model Size
(MB)

Total
Parameters
(Million)

FLOPs
(Giga)

Training
Hours

(h)

Original 92.1 84.6 92.0 12.3 6.03 13.2 9.847
GhostNet [56] 89.0 79.7 88.8 11.0 5.29 11.1 11.576
ResNet18 [57] 86.6 75.3 84.7 29.7 14.73 35.7 10.634

EfficientViT_M0 [58] 87.9 78.8 87.2 11.8 5.53 10.1 12.771
MobileNetV3 [59] 83.8 74.5 83.3 9.2 4.48 6.8 11.235

FasterNet-T0 93.5 85.2 93.4 11.6 5.66 11.6 6.278

4.1.2. Ablation Experiment

To assess the effectiveness of each improvement in YOLOv7-tiny, an ablation experi-
ment was devised using the same datasets and identical hardware environment configura-
tions. The specific design of the ablation experiment is outlined below.

The designs of the different solutions are shown in Table 5, where “✓” indicates that
the corresponding improvement method was used, and “×” means that it was not used.
The ablation experiment results are shown in Table 6.

Table 5. Different scheme designs.

Plan FasterNet-T0 GSCConv + VoVGSCCP DyHead

0 × × ×
1 ✓ × ×
2 ✓ ✓ ×
3 ✓ × ✓
4 ✓ ✓ ✓

Table 6. Comparison of ablation experiments.

Model Precision
(%)

Recall
(%)

mAP
(%)

Model Size
(MB)

Total Parameters
(Million)

FLOPs
(Giga)

Plan 0 92.1 84.6 92.0 12.3 6.03 13.2
Plan 1 93.5 85.2 93.4 11.6 5.66 11.6
Plan 2 93.3 85.1 93.1 8.1 3.89 7.7
Plan 3 94.3 87.3 94.2 11.5 5.61 11.3
Plan 4 93.9 87.7 93.8 10.2 4.94 9.0

From Table 6, it is evident that the precision, recall, and mAP values of Plan 1 signifi-
cantly increased compared to those of Plan 0, indicating the effectiveness of FasterNet-T0
as the backbone network in improving recognition accuracy. Plan 2, which incorporates
the GSCConv and VoVGSCCP structures, contributed significantly to model compactness
by reducing the model’s parameters and computational complexity. Plan 3 introduces
DyHead, an attention-based mechanism, resulting in a substantial improvement in accu-
racy. Through the ablation experiments, from Plan 0 to the final Plan 4, the effects of each
improvement were demonstrated, albeit at the cost of increased algorithm inference time.
The proposed method in the final scheme achieved increases of 1.8%, 3.1%, and 1.8% in
precision, recall, and mAP values, respectively. Furthermore, the reductions in model size,
parameters, and FLOPs were 17.1%, 18.1%, and 31.8%, respectively. These results indicate
that the optimizations applied throughout this work successfully enhanced the model’s
performance.
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4.1.3. Channel Pruning Experiment

After the weight file of the improved YOLOv7-tiny model was optimized, the channels
were pruned. To prevent potential overpruning, the channels were tested at pruning rates
of 40%, 50%, 60%, 70%, and 80%, respectively. The goal was to assess the pruning effect
and determine the most suitable pruning rate. Table 7 presents the comparative results
after channel pruning and fine-tuning of the improved model.

Table 7. Comparative experimental results of different pruning rates.

Pruning Rate
(%)

Precision
(%)

Recall
(%)

mAP
(%)

Model Size
(MB)

Total Parameters
(Million)

FLOPs
(Giga)

0 93.9 87.7 93.8 10.2 4.94 9.0
40% 93.8 87.2 93.7 6.6 3.14 5.9
50% 93.6 87.4 93.5 4.9 2.41 4.5
60% 90.5 82.5 89.4 3.8 1.86 3.0
70% 84.5 77.4 83.5 3.4 1.64 2.2
80% 53.9 51.0 51.9 3.2 1.52 1.8

After the channel pruning operation, the detection accuracy of the model decreased.
At a pruning rate of 50%, a good balance was achieved between pruning accuracy and
model size, with an average accuracy (mAP) loss of only 0.3%. When the pruning rate
was 60%, more important channels and convolutional layers were pruned, resulting in a
notable 4.4% decrease in detection accuracy. In summary, a pruning rate of 50% allows for
model size compression while maintaining the original detection performance. Figure 14
illustrates the change in the channels after the pruning rate was set to 50%. The figure
shows that the pruning algorithm effectively reduced the number of channels.
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Figure 14. Channel changes before and after pruning.

4.1.4. Comparison of Different Detection Algorithms

This paper conducted a comparative analysis against mainstream two-stage and single-
stage target detection algorithms under the same experimental conditions. The results are
summarized in Table 8.

The proposed Sewer-YOLO-Slim achieved an optimal balance between model size
and accuracy, with a smaller size, fewer parameters, and fewer FLOPs, while main-
taining high detection precision. Compared with the Faster-RCNN and SSD models,
the improved algorithm has greater advantages in terms of model size and mAP for
target defect recognition. Furthermore, in comparison to the original YOLOv5l, YOLOv4,
and YOLOv3 models, the mAP values increased by 4.0%, 7.7%, and 5.6%, respectively.
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Compared with YOLOv7, YOLOv8n, YOLOv9s, YOLOv10n, and YOLOv11n, some met-
rics for the Sewer-YOLO-Slim proposed in this paper were slightly lower. However,
considering the model size, parameters, and computational load, the proposed model
achieved optimal performance, especially after the pruning operations. The algorithm
offers obvious advantages for small embedded devices with limited space.

Table 8. Comparison of mainstream detection algorithms

Model
Precision

(%)
Recall

(%)
mAP
(%)

Model Size
(MB)

Total Parameters
(Million)

FLOPs
(Giga)

Faster-RCNN [15] 82.4 68.1 72.4 108.3 41.75 134.4
SSD [11] 91.7 75.2 87.1 92.6 24.15 116.2

YOLOv3 [60] 88.4 78.6 88.2 235.1 61.54 32.8
YOLOv4 [61] 87.8 75.4 86.1 244.5 63.95 59.9
YOLOv5l [62] 90.2 84.8 89.8 52.0 25.79 55.0

YOLOv7-tiny [61] 92.1 84.6 92.0 12.3 6.03 13.2
YOLOv7 [60] 95.3 86.8 94.4 74.8 36.5 103.2

YOLOv8n [63] 93.0 85.5 92.8 6.2 3.00 8.2
YOLOv9s [64] 93.6 86.6 93.4 15.2 7.17 26.7

YOLOv10n [65] 91.4 83.9 91.1 5.8 2.27 6.5
YOLOv11n [66] 90.7 83.4 90.5 5.5 2.58 6.3

Improved YOLO 93.9 87.7 93.8 10.2 4.94 9.0
Sewer-YOLO-Slim 93.6 87.4 93.5 4.9 2.41 4.5

Compared to the original YOLOv7-tiny, the improved algorithm, after pruning, re-
sulted in a 65.9% reduction in FLOPs, a 60.0% reduction in the number of parameters,
a 60.2% reduction in model size, and a 1.5% increase in mAP.

Figure 15a shows that the loss function curve converged quickly during the training
process, indicating that the improved algorithm has strong stability. Figure 15b shows
that the improved algorithm achieved high accuracy in misplacement detection but faced
challenges with leakage and roots.

(b) Precision-Recall curve(a) The training loss curve

fouling

Figure 15. The improved YOLOv7-tiny’s training loss and the precision–recall curve. (a) Loss curves
at three different stages during the entire training process of the improved model. (b) Precision–recall
curve of the improved algorithm.

Figure 16 presents a comparison of YOLOv7-tiny, the improved YOLOv7-tiny, and the
improved YOLOv7-tiny after pruning, named Sewer-YOLO-Slim. The proposed algo-
rithm performed better in terms of the defective target accuracy and target position detec-
tion frames.
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Original YOLOv7-tiny Improved YOLOv7-tiny Sewer-YOLO-Slim

(a)

(b)

(c)

Figure 16. Comparison of different models on the USDID dataset. (a) Detection of leaks. (b) Detection
of misplacements and fouling. (c) Detection of obstacles and misplacements.

In summary, the algorithm presented in this paper demonstrated its ability to achieve
high detection accuracy while maintaining a lightweight design, thus confirming the
practicality and advantages of the proposed approach.

4.1.5. Edge Deployment Experiment

The proposed Sewer-YOLO-Slim has a computational load of 4.5 GFLOPs and 2.41 M
parameters. It was transferred to the embedded AI terminal device EA-B400 for onsite
testing. Comparative experiments involving different devices are presented in Table 9,
illustrating the impact of converting the model parameters of Sewer-YOLO-Slim to the fp16
format using TensorRT. Sewer-YOLO-Slim was deployed on the EA-B400 and achieved
efficient onsite pipeline detection through model quantization, TensorRT serialization,
and hardware acceleration. This deployment is suitable for edge computing applications
in actual pipeline detection, aiming for inference acceleration. The quantized fp16 model
maintained a high mAP of 92.7% and an inference speed of 15.3 ms/image. Therefore,
TensorRT is instrumental in the real-time detection of pipeline defects using deep learning
solutions for edge devices.

Table 9. Comparison of different target detection devices.

Device Use TensorRT mAP Speed

RTX 3090 No 93.5 22.5 ms
RTX 3090 Yes 92.7 14.0 ms
EA-B400 Yes 92.7 15.3 ms

In practical detection scenarios, where a video consists of consecutive frames showing
the same defect over several seconds, two frames per second can be extracted for inspection.
This approach overcomes the low speed associated with the limitations of edge device
computing power. To validate the efficiency of pipeline video defect detection, a video of
a real pipeline was inspected; the frames in the video are shown in Figure 17. The image
acquisition speed was 10 FPS. The video included one obstacle and two misplacement
defects. In most frames, defects were correctly identified and annotated. However, in the
frames at 9 s and 10 s, the obstacles were incomplete and too small to be recognized.
The experimental results indicate that the detection accuracy and efficiency meet the
requirements for pipeline defect detection.
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Figure 17. Onsite video inspection results.

4.2. Amphibious Wheeled Robot Positioning and 3D Reconstruction
4.2.1. Data

To validate the effectiveness and practicality of the proposed method, video data of a
PVC corrugated drainage pipe were selected from a segment located between two concrete
wells in a park in Hefei, China. The video was approximately 6 min long with a resolution
of 2560 × 1440 pixels. The straight-line distance between the two wells was 18.2 m,
and the sewer pipe was buried at a depth of 2.1 m. This geographical setting not only
represents the typical characteristics of urban underground infrastructure but also offers a
challenging environment in which to test the performance of the proposed method in a
real-world application.

4.2.2. Robot Positioning

In the process of using multiview images for positioning the inspection robot, the SIFT
algorithm was employed to extract feature points from the images. Figure 18a shows the
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results of SIFT feature extraction, whereas Figure 18b shows the feature matching between
two consecutive images of the pipeline. Both the SIFT feature extraction and the feature
matching between adjacent images exhibit a high degree of accuracy. These precise feature
points and matches provide a robust foundation for subsequent 3D reconstruction, ensuring
a more accurate and detailed model of the pipeline.

特征提取

特征匹配

相机几何图

三角化

光束平差

相机参数和稀

疏模型

深度图计算

深度图融合

稠密模型

多视角图片3D重建过程

(a) Feature point extraction (b) Feature point matching

Figure 18. SIFT feature extraction and matching effect diagram.

The results presented in Figure 19 illustrate the robot’s positional changes throughout
the entire pipeline, whereas Figure 20 provides a detailed output of the camera positioning.
The robot’s movement trajectory between the two inspection wells was nearly a straight
line, indicating that the robot traveled along an almost linear path within the drainage
pipeline. This straight-line movement not only simplifies subsequent data processing and
analysis but also facilitates a more efficient interpretation of the pipeline’s condition.

Figure 19. Motion trajectory tracking of the amphibious wheeled robot.

Figure 20. Positioning of the amphibious wheeled robot during image collection.
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4.2.3. Three-Dimensional Construction

The reconstruction results of the textured 3D model of the drainage pipeline and
inspection well are shown in Figures 21 and 22. These models not only offer a clear visual
representation but also accurately replicate the real structural characteristics of the pipeline
and inspection well. Figure 23 shows the observation results along the bottom of the
pipeline, highlighting three locations (marked as 1, 2, and 3) where defects are potentially
present. These areas of irregularity are particularly evident in the 3D model, providing
valuable clues for further analysis of the pipeline’s condition. Delving deeper into the
interior of the 3D pipeline model, as illustrated in Figure 24, reveals a more detailed view
of the specific nature of these defects. This level of detail is crucial for developing effective
repair strategies.

Figure 21. Textured 3D model of the sewer scene.

(a) Front View (b) Left View

(c) Top View

Figure 22. Three views of the textured 3D model of the inspection well.
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Figure 23. Three defects in the 3D model.
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Figure 24. Three defects inside the 3D model.

The 3D reconstruction results verify the effectiveness of the proposed method in
practical applications and demonstrate its powerful capabilities in complex underground
pipeline detection. This study provides reference materials for pipeline maintenance per-
sonnel and provides a scientific basis and technical support for future pipeline management
and maintenance efforts. Monocular vision sensors face a scale ambiguity problem during
3D reconstruction, making it difficult to obtain the real dimensions of objects directly
from images. To address this issue, the scale ratio was determined by measuring the
corresponding real-world distances. Field surveys were conducted to gather actual data,
including critical parameters such as the diameter of the inspection wells, the depth of the
pipelines, and the distances between wellheads. By comparing these real-world measure-
ments with the corresponding features in the 3D model, the model’s scaling factor could be
accurately determined.

Based on field survey data of the drainage pipeline, the straight-line distance
between the two inspection wells was 18.2 m, with the burial depth of the drainage
pipeline being 2.1 m below ground. The diameter of the surface inspection well was
measured at 0.72 m. As shown in Figure 25, this diameter measurement served as the
reference for calculating the absolute scale factor. Using the formula for scale factor
calculation, the scale factor was determined to be 0.9446 m per unit, calculated as 0.72 m
divided by 0.7622 units. This scale factor allowed for an accurate representation of
real-world dimensions in the 3D model.

Scale =
real word length

3D length
(7)

Table 10 summarizes the results of the modeling process, indicating that the measure-
ment errors for the pipe burial depth and pipe diameter were within a minimal range.
Although the maximum error in measuring the pipe length reached 0.88 m, this level of
deviation is not significant enough to impact excavation and repair work on the pipeline.
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Figure 25. Inspection well bore diameter measurements.

Table 10. Verification of measurement results of one-way image 3D reconstruction model.

Known Verification

Inspection Well
Diameter

Pipe Burial
Depth

Pipe
Diameter

Length of
the Entire Pipe

Distance on 3D model (unit) 0.7622 2.1807 0.6034 20.1983
Reasoning distance (m) - 2.06 0.57 19.08
Actual distance (m) 0.72 2.10 0.60 18.20
Error (m) - −0.04 −0.03 +0.88

To increase the accuracy of the three-dimensional reconstruction of drainage pipes,
improvements were made based on existing methods. Specifically, the inspection robot
was deployed from the opposite end of the pipe to capture additional images in the
reverse direction. By integrating the image data collected from both directions, a more
precise three-dimensional model can be generated. The textured 3D model of the drainage
pipe resulting from this process is shown in Figure 26. Using the scale factor calculation
Equation (7), the measurements for the bidirectional 3D model are summarized in Table 11.

Figure 26. Textured 3D model of the drainage pipe based on bidirectional data.

When the inspection robot captured images while moving in only one direction,
the constructed 3D model exhibited a maximum error of 0.88 m. In contrast, using bidirec-
tional motion acquisition image data for modeling significantly improved the accuracy of
the reconstruction, reducing the maximum error of the 3D model to 0.57 m. The error in the
pipeline burial depth was eliminated, and the error in the pipeline diameter was reduced to
0.02 m. This approach effectively minimized errors while providing more comprehensive
visual spatial coverage.

This finding offers a new method for achieving high-precision modeling and serves as
a valuable reference for the structural design of inspection robots. For example, equipping
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a robot with additional cameras on its rear or top can help eliminate blind spots caused by
fixed viewing angles. Moreover, objects that interfere with modeling, such as tail cables,
can be removed from images during processing. By employing this multiangle image
acquisition approach, a more complete and accurate representation of the internal space of
the pipeline can be achieved, significantly enhancing the precision and comprehensiveness
of 3D reconstruction.

Table 11. Verification of measurement results of two-way image 3D reconstruction model.

Known Verification

Inspection Well
Diameter

Pipe Burial
Depth

Pipe
Diameter

Length of
the Entire Pipe

Distance on 3D model (unit) 0.7601 2.2132 0.6175 18.6115
Reasoning distance (m) - 2.10 0.58 17.63
Actual distance (m) 0.72 2.10 0.60 18.20
Error (m) - 0 −0.02 −0.57

To further enhance the practicality of the 3D reconstruction model, the calculated
scale factor was applied within Blender (the software used version is 4.2). This allowed for
scaling and precise measurement of the pipeline’s 3D model, enabling direct localization
and quantification of defects within the sewer. The measurement results of three defects in
the axial pipeline are shown in Figure 27. These defects, as well as parameters such as their
locations, lengths, and widths, are visually depicted in the 3D model.

123

Figure 27. Defect location and measurement of the axial pipeline 3D model.

Upon entering the interior of the 3D-modeled pipeline, a detailed assessment of
the damage at Defects 1 and 2 was conducted. As shown in Figure 28, both defects
exhibit cracks and deformation to varying degrees. Cracks can cause pipeline leakage or
blockage, seriously affecting the normal operation of the pipeline. According to visual
observations, Defect 1 is severe. The actual measurement results indicate that the damage
in Defect 2 is relatively high and should be repaired first. Therefore, 3D measurement and
evaluation are necessary to reduce errors associated with 2D visual judgment. Overall,
the visualization function provided by 3D modeling facilitates a comprehensive quantitative
analysis of pipeline defects and provides important guidance for subsequent excavation
and repair operations.

(a) Pipeline damage at Defect 1 (b) Pipeline damage at Defect 2

Figure 28. Three-dimensional measurement of internal pipeline defect damage. (a) Measurement of
Defect 1. (b) Measurement of Defect 2.
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5. Conclusions

To achieve fast and effective detection of drainage pipe defects in urban under-
ground structure health monitoring and to comprehensively address the challenge of
assessing complex urban pipeline conditions, this paper combines computer vision tech-
nologies such as deep learning and 3D geometric reconstruction to detect pipeline defects
from 2D images and construct 3D pipeline scene models from multiview images. The pro-
posed drainage pipe detection framework for the pipeline robot includes defect detection
and deployment, reconstruction of the real 3D model of the pipeline, and measurement.
The Sewer-YOLO-Slim algorithm is proposed for fast defect detection in complex urban
drainage pipe environments. Through the improved YOLOv7-tiny model, combined
with backbone network optimization, lightweight neck network design, and the intro-
duction of the DyHead attention mechanism, the network was restructured, followed
by pruning the improved model. These modifications resulted in a 60.2% reduction in
model size, a 60.0% reduction in parameters, and a 65.9% reduction in FLOPs. Ultimately,
the model size was reduced to only 4.9 MB, and the mAP value was increased by 1.5%,
reaching 93.5%. The experimental results indicate that the improved algorithm achieves
a smaller model size and faster detection speed while maintaining high accuracy, sat-
isfying the requirements of practical engineering applications. Sewer-YOLO-Slim was
deployed on edge devices and accelerated by TensorRT, achieving a real-time detection
speed of 15.3 ms per image, which is highly important for practical engineering applica-
tions. Additionally, the integration of target detection techniques and 3D reconstruction
strategies aids in assessing the condition of drainage pipes. The proposed bidirectional
data acquisition 3D reconstruction approach significantly enhances the accuracy of the
3D model, with experiments showing a maximum measurement error of only 0.57 m.
This research has made progress in utilizing visual sensors for pipeline defect detection
and 3D modeling. However, several limitations remain, particularly in complex imaging
environments, such as low-light conditions or water reflections within pipelines, which
can compromise the imaging quality of visual sensors. These challenges lead to subopti-
mal defect detection and 3D modeling outcomes, reducing the accuracy and reliability
of the detection system. Additionally, the 3D modeling process is computationally inten-
sive and time-consuming, posing challenges for meeting real-time detection and rapid
response requirements. Future research will focus on integrating information from mul-
tiple sensors, such as infrared and LiDAR, to address the limitations of visual sensors in
challenging imaging conditions. To reduce resource consumption, leveraging 2D defect
detection results for localized 3D modeling can significantly optimize computational
efficiency. In terms of model generalization, incorporating more extensive training data
and advanced optimization algorithms will enhance the accuracy and robustness of
defect detection systems, providing a reliable foundation for ensuring the safe operation
of urban underground pipelines.
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Abbreviations
The following abbreviations are used in this manuscript:

FLOPs Floating-Point Operations
mAP mean Average Precision
VO Visual Odometry
CCTV Closed-Circuit Television
IMU Inertial Measurement Unit
USDID Urban Sewer Defect Image Database
BN Batch Normalization
SIFT Scale-Invariant Feature Transform
PnP Perspective-n-Point
BA Bundle Adjustment
SFM Structure from Motion
MVS Multiview Stereo
AP Average Precision
TP True Positive
FP False Positive
FN False Negative
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