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Abstract: Monitoring the dynamic behaviors of self-aligning roller bearings (SABs) is vital to guaran-
tee the stability of various mechanical systems. This study presents a novel self-powered, intelligent,
and self-aligning roller bearing (I-SAB) with which to monitor rotational speeds and bias angles; it
also has an application in fault diagnosis. The designed I-SAB is compactly embedded with a novel
sweep-type triboelectric nanogenerator (TENG). The TENG is realized within the proposed I-SAB
using a comb–finger electrode pair and a flannelette triboelectric layer. A floating, sweeping, and
freestanding mode is utilized, which can prevent collisions and considerably enhance the operational
life of the embedded TENG. Experiments are subsequently conducted to optimize the output per-
formance and sensing sensitivity of the proposed I-SAB. The results of a speed-sensing experiment
show that the characteristic frequencies of triboelectric current and voltage signals are both perfectly
proportional to the rotational speed, indicating that the designed I-SAB has the self-sensing capability
for rotational speed. Additionally, as both the bias angle and rotational speed of the SAB increase,
the envelope amplitudes of the triboelectric voltage signals generated by the I-SAB rise at a rate of
0.0057 V·deg−1·rpm−1. To further demonstrate the effectiveness of the triboelectric signals emitted
from the designed I-SAB in terms of self-powered fault diagnosis, a Multi-Scale Discrimination
Network (MSDN), based on the ResNet18 architecture, is proposed in order to classify the various
fault conditions of the SAB. Using the triboelectric voltage and current signals emitted from the
designed I-SAB as inputs, the proposed MSDN model yields excellent average diagnosis accuracies
of 99.8% and 99.1%, respectively, indicating its potential for self-powered fault diagnosis.

Keywords: triboelectric nanogenerator; intelligent bearing; speed sensing; bias angle monitoring;
fault diagnosis; deep learning

1. Introduction

Self-aligning roller bearings (SABs) are designed to withstand significant radial loads
and relatively low axial loads, making them ideal for various applications, including
in wind turbines, construction machinery, and power transmission systems. SABs can
withstand axial loads, even when the shaft and the bearing housing are misaligned, enabling
them to operate efficiently when there is a bias angle between their inner and outer rings.
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The bias angle results in a change in the contact angle, and the value of the change is called
the self-aligning contact (SAC) angle [1]. An overweight SAC angle leads to weakened
stiffness and intensified friction and internal clearance, thus shortening the operational life
of the SAB [2–4]. Furthermore, SABs are prone to various faults due to the harsh working
environment [5]. To avoid industrial disasters caused by mechanical faults, it is necessary
to develop an efficient way of monitoring the health condition of SABs. Traditionally, the
bias angle of SABs is measured with a coordinate measuring machine, which is expensive
and cannot be used during real-time operations. Moreover, vibration-based fault diagnosis
techniques usually require extra radial space for the installation of acceleration sensors.
Therefore, there is a significant need to develop a self-powered and self-sensing method to
monitor the dynamic behaviors and health conditions of SABs.

Triboelectric nanogenerators (TENGs) have recently provided an elegant and promis-
ing solution to the self-sensing monitoring tasks of mechanical systems. Based on the
periodic transfer of triboelectric charges during mechanical motion, TENGs can convert
mechanical energy into electrical energy at a certain power density [6]. TENGs have at-
tracted considerable attention in the field of energy harvesting and self-powered sensing
owing to the advantages of high structural integration, small volume, and low cost [7–12].
Self-powered sensors based on TENGs can be manufactured with a small size [13] and are
capable of performing self-sensing tasks within a limited space. Meng et al. developed a
TENG-based self-powered sensor that is integrated into glasses and the brake and accel-
erator pedals of a car, aiming to monitor driver behaviors [14]. Jin et al. implemented a
wireless sensor based on a TENG and embedded it into a train chassis to monitor vibrations
during the running process [15]. Xie et al. designed a novel TENG by pasting electrode
and triboelectric layers onto gear teeth and carried out online fault monitoring using TENG
triboelectric signals and a deep learning model [16]. Being sensitive to many physical
quantities, TENGs are widely applied in mechanical systems for acceleration, distance,
and speed sensing. Liu et al. observed that the output amplitude of a contact–separation
TENG is proportional to the triboelectric–electrode displacement, which led to the design
of a self-powered acceleration sensor for vibration monitoring [17]. Similarly, Pang et al.
combined three TENG sensors for 3D acceleration monitoring [18]. Owing to their high
integration degree, flexibility, and great sensitivity, TENG sensors have also been widely
applied in self-powered intelligent bearings for the surveillance of rotational speed, slip
rate, and health conditions. Gao et al. used the spherical ceramic rollers of bearings as
a triboelectric material and developed an embedded TENG inside the bearing without
causing damage, achieving real-time behavior monitoring [19]. Moreover, the authors
proposed a compact intelligent bearing for skidding rate monitoring using an embedded
freestanding-mode TENG [20]. Xie et al. studied the influence of triboelectric–electrode
separation on the TENG output performance and proposed a long-life intelligent bearing
with non-contact triboelectric layers, which was applied to monitor the speed and skidding
rate of bearings [21]. Jiang et al. proposed a compact-mode self-powered smart bearing [22]
and a smart bearing embedded with a membrane-based disk-type TENG [23], both of
which were verified as being capable of fault diagnosis. The experiments showed that
diagnostic accuracy could reach 90%, demonstrating that TENG-based smart bearings are
promising for self-powered and self-sensing condition monitoring.

Though TENG-based smart bearings have shown considerable potential for self-
powered and self-sensing condition-monitoring applications, there remains a research gap
between intelligent bearings embedded with TENGs and the capability of simultaneously
monitoring the dynamic behaviors and health conditions of SABs. To this end, we propose
a novel-type self-powered intelligent SAB embedded with a TENG (I-SAB) in this study
and verify its applications in self-powered rotational speed sensing, bias angle monitoring,
and fault diagnosis. Specifically, a compact prototype of the I-SAB based on freestanding-
mode triboelectric layers and a comb–electrode pair is fabricated. Three triboelectric layers
are attached to an acrylic disk, which is fastened to the inner ring of the bearing using
a nut. The disk, coated with triboelectric layers, serves as the rotor part of the TENG
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since it rotates simultaneously with the inner ring. Steel cushions are placed between the
inner ring and acrylic disk in order to control the dielectric–electrode separation. Pairs
tin electrodes with comb shapes are printed on a ring-shaped PCB via the hot-air solder
leveling (HASL) process. The PCB is inlaid in acrylic housing that is adhered to the
outer ring using neodymium magnets. Based on the designed I-SAB prototype, detailed
design parameters, including the triboelectric layer material, comb–finger pair number,
the distance between the electrode and triboelectric layer surface, and the triboelectric
layer number, are discussed. Moreover, the variations in the triboelectric voltage and
current with load resistance are measured to evaluate the output power of the I-SAB. The
characteristic frequencies of the triboelectric current and voltage acquired at different speeds
are validated as accurate indicators of rotational speeds. A test bench is constructed based
on optical systems to conduct experiments on the I-SAB from various bias angles. Bias angle
monitoring is performed by analyzing the envelope amplitude of the triboelectric voltage
signals emitted from the I-SAB. A strong linear relationship between the triboelectric voltage
envelope amplitude and bias angle is discovered; thus, the newly designed I-SAB is found
to be reliable in bias angle monitoring. The triboelectric voltage and current signals emitted
from I-SABs under different health conditions are also assessed and analyzed. We propose a
novel Multi-Scale Discrimination Network (MSDN), based on the ResNet18 architecture, to
extract and classify the weak fault features hidden in the signals emitted from the designed
I-SAB with various faults. Both the triboelectric current and voltage signals emitted from
the I-SABs are processed and used to train and evaluate the MSDN. The evaluation results
of fault diagnosis show that the MSDN model trained using the triboelectric voltage and
current signals emitted from the I-SAB achieves average diagnostic accuracies of 99.8%
and 99.1%, respectively, outperforming the classical convolutional neural network (CNN)
and ResNet18.

The main contributions of this study can be summarized as follows: firstly, we de-
signed the first compact TENG that can be embedded to create an intelligent SAB with
excellent self-powered rotational speed sensing and bias angle monitoring; secondly, with
the aid of deep learning, we developed a novel MSDN model and achieved self-sensing
fault diagnosis with superior diagnostic accuracy based on weak fault features.

2. Design and Implementation of I-SAB
2.1. Structure and Principle of I-SAB

The sectional view of the designed I-SAB, which comprises an SAB (B21308CA/W33
type), an acrylic disk, acrylic housing, an epoxy resin PCB board, and cushions, is illustrated
in Figure 1a. The designed I-SAB is embedded with a compact TENG, which is configured
with an acrylic disk as the rotor and an epoxy resin PCB as the stator. Three flannelette
layers, pasted on three adjacent bosses present on the disk, serve as the triboelectric lay-
ers of the TENG; meanwhile, a 12-tooth tin comb–electrode pair sprayed on the epoxy
resin PCB forms the TENG electrode. The acrylic disk, acrylic housing, and 0.5 mm thick
#45 steel cushions are processed by CNC machining. A pair of tin electrodes, approxi-
mately 2 µm thick, are created on a 1.5 mm thick PCB board using the hot-air leveling
process. The PCB is fixed to the inner surface of the housing. The I-SAB is fixed onto the
#45 steel stepped shaft and fastened with a standard M35 nut. The assembly process is
illustrated in the explosion diagram in Figure 1b. Firstly, we inlaid the PCB and neodymium
magnets into the acrylic housing; secondly, we threaded the bearing, the cushions, and the
acrylic disk onto the stepped shaft; and thirdly, we screwed the tightening nut to fix the
disk onto the inner ring of the SAB. Finally, we magnetically adhered the acrylic housing to
the outer ring of the SAB. The I-SAB prototype is illustrated in Figure 1c.
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charge accumulates on the surface of the triboelectric layer. As the triboelectric layer 
moves between the combs of the different electrodes, electrons are periodically driven be-
tween the electrodes by the electrostatic forces. Initially, the triboelectric layer faces elec-
trode A, whose negative charges cause an equal number of positive charges to accumulate 
on the electrode. In this state, as shown in Figure 2(a1), electrostatic equilibrium is estab-
lished, and no charge transfer occurs between the two electrodes; thus, no current is ob-
served. As the acrylic disk rotates along with the inner ring of the SAB, the triboelectric 
layer moves toward electrode B. Simultaneously, some positive charges transfer from elec-
trode A to electrode B through the load circuit between the two electrodes. The transfer of 
charge between the electrodes results in there being a detectable transient current in the 
same direction, as shown in Figure 2(a2). When the triboelectric layer aligns with electrode 
B, a new electrostatic equilibrium is established, with positive charges accumulating on 
electrode B, as shown in Figure 2(a3). Then, the triboelectric layer sweeps back toward 
electrode A, causing the positive charges to transfer back to electrode A, as shown in Fig-
ure 2(a4). After the flanneleĴe triboelectric layer moves back to the initial state, one com-
plete cycle of power generation finishes. The continuous movements of the triboelectric 
layer repeat these stages (a1–a4), producing a continuous alternating triboelectric current 
(AC) signal between the two electrodes in the TENG. The open-circuit potential distribu-
tion corresponding to the four stages of one power generation cycle is shown in the image 
in Figure 2b, which was obtained using the finite element method (FEM) with COMSOL. 
The simulation results confirmed the power generation mechanism of the TENG inside 
the I-SAB, thereby demonstrating that an AC signal can be generated between the two 
electrodes of the TENG within the I-SAB when the inner ring of the SAB rotates. The short-

Figure 1. (a) Sectional view of I-SAB; (b) explosion diagram of I-SAB; (c) I-SAB prototype.

The full working cycle for the TENG embedded into the I-SAB is illustrated in Figure 2a.
As the shaft rotates, the flannelette triboelectric layers on the acrylic disk sweep along the
circumferential direction of the comb fingers on the electrodes. A constant negative charge
accumulates on the surface of the triboelectric layer. As the triboelectric layer moves
between the combs of the different electrodes, electrons are periodically driven between
the electrodes by the electrostatic forces. Initially, the triboelectric layer faces electrode A,
whose negative charges cause an equal number of positive charges to accumulate on the
electrode. In this state, as shown in Figure 2(a1), electrostatic equilibrium is established,
and no charge transfer occurs between the two electrodes; thus, no current is observed. As
the acrylic disk rotates along with the inner ring of the SAB, the triboelectric layer moves
toward electrode B. Simultaneously, some positive charges transfer from electrode A to
electrode B through the load circuit between the two electrodes. The transfer of charge
between the electrodes results in there being a detectable transient current in the same
direction, as shown in Figure 2(a2). When the triboelectric layer aligns with electrode
B, a new electrostatic equilibrium is established, with positive charges accumulating on
electrode B, as shown in Figure 2(a3). Then, the triboelectric layer sweeps back toward
electrode A, causing the positive charges to transfer back to electrode A, as shown in
Figure 2(a4). After the flannelette triboelectric layer moves back to the initial state, one
complete cycle of power generation finishes. The continuous movements of the triboelectric
layer repeat these stages (a1–a4), producing a continuous alternating triboelectric current
(AC) signal between the two electrodes in the TENG. The open-circuit potential distribution
corresponding to the four stages of one power generation cycle is shown in the image in
Figure 2b, which was obtained using the finite element method (FEM) with COMSOL.
The simulation results confirmed the power generation mechanism of the TENG inside
the I-SAB, thereby demonstrating that an AC signal can be generated between the two
electrodes of the TENG within the I-SAB when the inner ring of the SAB rotates. The short-
circuit current and open-circuit voltage of the I-SAB under different speeds are acquired
and are displayed in Figure 2(c1) and Figure 2(c2), respectively. It can be observed that both
the peak current and the peak voltage increase from 0.2 nA and ±1.7 V to ±0.55 nA and
±6.2 V, respectively, with the rotational speed increasing from 400 rpm to 900 rpm.
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Figure 2. (a) Power generation mechanism of I-SAB; (b) simulation results of electrostatic field
using COMSOL; (c) (1) short-circuit current and (2) open-circuit voltage from I-SAB under different
rotational speeds.

2.2. Output Characteristics and Parameter Optimization

To optimize the structural design of the I-SAB, we conducted the following experi-
ments to examine the impact of structural parameters on the output characteristics of the
TENG. Firstly, we sampled the output performance of TENGs in two different working
modes, namely, a single-electrode mode and double-electrode mode. Figure 3a shows a
comparison of the short-circuit current and open-circuit voltage of the I-SAB embedded
with TENGs in two working modes. The results indicated that the short-circuit current and
open-circuit voltage of TENG in the double-electrode mode reached peak-to-peak values
of approximately 2.7 nA and 3 V, respectively, which are nearly 20 times and 10 times
greater than those obtained in the single-electrode mode. For the single-electrode mode,
the charge only accumulated at one electrode; thus, no additional charge gathered when
the triboelectric layer moved away from the electrode comb. As a result, the electrode
was only charged during half of the cycle, limiting the charge density and, consequently,
reducing the output. This finding supports the selection of a double-electrode mode for
our I-SAB design. Secondly, to identify the most suitable material for the triboelectric layer
of the TENG in our I-SAB, we selected three different materials—flannelette, nylon-flocked
cloth, and EPE—and acquired the triboelectric current and voltage at a rotational speed of
600 rpm. As shown in Figure 3b, the flannelette produced the highest short-circuit current
and open-circuit voltage, with peak-to-peak values of 0.3 nA and 3.1 V, respectively. Based
on its superior output performance, flannelette was selected as the triboelectric layer mate-
rial in this study. Thirdly, another crucial design parameter, namely, the separation distance
(as illustrated in Figure 3c) between the triboelectric layer and electrode, was optimized.
The short-circuit current and open-circuit voltage from the I-SAB were measured at differ-
ent separation distances under a rotational speed of 400 rpm, and the results are shown in
Figure 3d. It is evident that both the short-circuit current and open-circuit voltage increase
as the separation distance decreases. Specifically, the peak values of the short-circuit current
and open-circuit voltage increase from 0.1 nA and 1.1 V at a 2 mm distance to 0.3 nA and
2.7 V at a 0.5 mm distance. Thus, a closer separation distance can enhance the output
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performance of the I-SAB. It should be noted that the separation distance should not be
too small, as collisions between the electrode and triboelectric layer shorten the device’s
lifespan. Considering the possible tilting of the acrylic shell under self-aligning conditions,
a separation distance of 1.5 mm was determined to prevent collisions during tests within
the allowable tilt range. Finally, the relationship between the output performance of the
I-SAB and the number of comb–finger pairs was also analyzed and optimized. The short-
circuit current and open-circuit voltage with different numbers of comb–finger pairs on
the electrodes were acquired at a rotation speed of 600 rpm, and the experimental results
are illustrated in Figure 3e. The results indicate that increasing the number of comb–finger
pairs can result in triboelectric signals with greater signal amplitudes generated from the
I-SAB. Thereby, to maximize the triboelectric signal amplitudes, we incorporated a 12-finger
comb–electrode pair into the designed I-SAB.
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Figure 3. The output performance of the I-SAB with different design parameters. (a) The short-circuit
current and open-circuit voltage in two working modes; (b) the short-circuit current and open-circuit
voltage for different dielectric materials; (c) an illustration of the separation distance in the I-SAB;
(d) a short-circuit current and open-circuit voltage with different separation distances; (e) a short-
circuit current and open-circuit voltage with different comb–finger numbers; (f) variation in output
power as load resistance changes.
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With the optimized structural parameters, the output performance of the I-SAB under
varying load resistances was also acquired under a rotational speed of 600 rpm. As shown
in Figure 3f, as the load resistance increases from 100 KΩ to 9 GΩ the root-mean-square
(RMS) value of the triboelectric voltage from the I-SAB increases from 0.3 V to 1.6 V, while
the RMS value of the triboelectric current decreases from 0.3 nA to 0.012 A. As a result, a
peak power of 0.15 nW is achieved at a load resistance of 5 MΩ.

3. Self-Sensing Applications

The newly designed I-SAB embedded with a TENG is an intelligent bearing with
multiple functionalities. To illustrate its self-sensing performance, we constructed the test
bench shown in Figure 4a. During the experiment, the triboelectric voltage signal was
detected using a Tektronix DPO-2024B Digital Phosphor Oscilloscope (Tektronix, Portland,
OR, USA), while the triboelectric current signal was measured using a Keithley 6514
System Electrometer (Tektronix, Portland, OR, USA). All data were collected with an NI
Data Acquisition Card and recorded on an ASUS laptop. The inner ring of the I-SAB
was fastened to a stepped shaft and connected to a brushless motor (AM-370L, Adlee
Servo Motor Manufacturer, Taichung City, Taiwan), and the motor’s rotational speed was
adjusted using a BL2-IPM controller.
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As shown in Figure 4b, the I-SAB was mounted on a specially designed acrylic bearing
seat, which was fixed to an RSP125-L rotational optical platform. The rotational optical
platform can be adjusted to tilt the bearing seat and simulate the application of different
bias angles to the I-SAB. Specifically, the outer ring of the I-SAB was secured to the bearing
seat and could be tilted when the optical platform was adjusted, as illustrated in Figure 4d.
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Meanwhile, the inner ring of the I-SAB remained fixed to the rigid stepped shaft, ensuring
that it was unaffected by the adjustments to the outer ring. This setup can simulate a
controllable bias angle between the inner and outer ring of the I-SAB. For the adjustment of
coaxiality, the motor was also fixed onto another LZ125-2-N, elevating the motor seat using
an optical stage (shown as Figure 4c). This delivered one translational degree of freedom
along the Z-axis. Additionally, the motor’s positioning hole diameter was 0.3 mm greater
than tthe screw diameter, providing two translational degrees of freedom in the horizontal
plane (X and Y) and a small rotational degree of freedom, enabling fine angular adjustments
within roughly ± 0.5◦. This design grants the motor three translational degrees of freedom
and one rotational degree of freedom, allowing for the precise alignment of its axis with the
bearing’s axis. Once aligned, the limit screws are tightened, and we use metal flat washers
to minimize the load on the hole walls and to ensure the stability of the entire test bench.
It is worthy of note that this configuration only ensures stability at relatively low speeds,
restricting the rotational speeds in this study to under 1000 rpm.

3.1. Rotational Speed Sensing

One key functionality of the newly designed I-SAB is its self-sensing capability in
terms of rotational speed. The waveforms of the open-circuit voltage and short-circuit
current from the I-SAB at a rotational speed of 600 rpm are displayed in Figure 5a, and
their corresponding spectra are presented in Figure 5b. The spectra show that both the tri-
boelectric current and voltage signals have a prominent frequency of 120 Hz. Theoretically,
the prominent frequency fs of the triboelectric signal of the TENG can be expressed using
the number of comb–finger pairs N and the rotational frequency fr as follows:

fs = N fr/60 (1)
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In our experiment, the number of comb–finger pairs N is 12; thus, the theoretical
signal frequency corresponding to a rotational speed of 600 rpm should be 120 Hz, which
is consistent with the experimental result. To further explore the relationship between
the signal frequency and rotational speed, we acquired 20 s long triboelectric current and
voltage signals emitted from the I-SAB at various speeds ranging from 400 rpm to 900 rpm.
Furthermore, the fast Fourier transform (FFT) algorithm was applied for signal analysis to
investigate the characteristic frequencies, as shown in Figure 5c. Figure 5d illustrates the
relationship between the characteristic frequencies of the signals and the rotational speed.
From these results, we found a strong linear relationship between the prominent signal
frequency and the rotational speed. After calculation, the linear correlation coefficients for
the current and voltage signals were 0.9997 and 0.9999, respectively, indicating that the
prominent frequency of triboelectric signals can be an excellent indicator for the self-sensing
and measurement of the rotational speed. The slopes of the linear regression lines for the
current and voltage signals were calculated to be 0.197 and 0.199, respectively, which are
very close to the theoretical value given by Equation (3), namely, 0.2.

3.2. Bias Angle Monitoring and Sensing Performance Optimization

Another key functionality of the I-SAB is its self-sensing capability to monitor the
bias angle. An illustration of the bias angle and varying triboelectric–electrode distances
in the operating I-SAB is depicted in Figure 6a. When a bias angle is introduced to the
self-aligning bearing, the separation distance between the flannelette triboelectric layer
and the electrode varies at different circumferential positions. The distance between the
triboelectric layer and electrode during operation can be formulated as follows:

d(t) = d0 + Rsin(α)sin(ωt +φ) (2)

where d0 represents the initial separation distance between the triboelectric layer and
the electrode in the scenario of zero bias angle, R denotes the distance from the center
of the triboelectric layer to the geometric center of the acrylic disk, α is the bias angle,
ω is the rotational speed, and φ is the initial phase of rotation. Supposing that the self-
aligning bearing (21308CA/W33 model) has a nominal maximum bias angle limitation of
1◦, Equation (2) can be approximated as follows:

d(t) ≈ d0 + Rαsin(ωt +φ) (3)

From Equation (3), it is evident that the distance between the triboelectric layer surface
and the electrode varies during rotational motions. The induced charge on the electrode
decreases with an increasing triboelectric–electrode distance, leading to a reduction in
the transferred charge. Conversely, the transferred charge increases as the triboelectric–
electrode distance decreases. The variations in the triboelectric–electrode distance are more
significant when the bias angle of the I-SAB increases. Given that the distance between the
triboelectric layer and the electrode layer varies periodically at an angular frequency ofω,
the output signals exhibit a sinusoidal envelope, modulated by this periodic variation. The
modulation of the signals’ envelopes can be expressed via the following equations:

Qi =
∫ ∫

ε0E(x, y, d(t))cos(θn)dxdy (4)

Isc =
Qi
∆t

=

∫ ∫
ε0E(x, y, d(t))cos(θn)dxdy

∆t
(5)

Voc =
Qi
∆t

Z =

∫ ∫
ε0ZE(x, y, d(t))cos(θn)dxdy

∆t
(6)

where Qi represents the induced charge accumulated on the electrode, E(x,y,θ) is the electric
field strength at a point on the electrode surface with the location of (x,y), d(t) denotes the
triboelectric–electrode distance, ε0 is the dielectric constant of the vacuum, θn is the angle
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between the electric field and the electrode surface, ∆t is the time duration of one rotation
cycle, and Z is the internal impedance of the I-SAB. Due to the fringe effects of the electric
field, the strength of the electric field on the electrode surface decreases with increasing
triboelectric–electrode distance. Thus, a reduction in the triboelectric–electrode distance
will increase the induced charge density. As a result, a larger bias angle will result in more
significant variations in the triboelectric–electrode distance, thus leading to both an increase
in voltage variation and a greater envelope amplitude on the triboelectric voltage signal.
The analysis of the envelope of output triboelectric signals can provide critical insights into
bias angle monitoring.
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Figure 6. (a) Illustrations of the bias angle and the triboelectric–electrode distance during one
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voltage signals.

Figure 6b exhibits the waveforms of the triboelectric current and voltage signals
emitted from the designed I-SAB with a bias angle of 0.6◦ at a speed of 600 rpm, with
their corresponding spectra presented in Figure 6c. The clear periodic envelopes can be
identified in both the triboelectric current and voltage signals. These envelopes have a
period of approximately 0.1 s, which corresponds to one rotation period. Theoretically,
the voltage signal shown in the figure can be regarded as an amplitude modulation (AM)
signal, as shown in the following equations:

V(t) = (V0 + Acos(2π frt))cos(2π fst) (7)
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V(t) = V0cos(2π fst) +
A
2

cos(2π( fr − fs)) +
A
2

cos(2π( fr + fs)) (8)

where V0 is the carrier amplitude, A denotes the envelope amplitude, fr represents the
rotational frequency, and fs is the carrier frequency ( fr<< fs). Similarly, the triboelectric
current signal can also be rewritten in the same form. Working from the equivalent
Equation (8), it can be stated that the three prominent frequencies in the triboelectric signals
are fs, fs − fr, and fs + fr. In the case of the I-SAB with a bias angle of 0.5◦ under a
rotational speed of 600 rpm, the three prominent frequencies of the triboelectric signals are
110, 120, and 130 Hz, which are clearly identified in the spectra. However, there exists an
apparent difference between the current and voltage envelope waveforms: only the voltage
envelope is perfectly sinusoidal. The current spectra show a noticeable 50 Hz ambient
interference, namely, the power frequency, which may seriously affect the monitoring of
the bias angle. To ensure reliability, the triboelectric voltage signal was analyzed via the
bias angle monitoring using the I-SAB.

To analyze the envelope of the triboelectric voltage signal, the signal processing
procedure was designed, as shown in Figure 7a. The Hilbert transform is a robust and
computationally efficient algorithm used for analyzing the instantaneous amplitude of
non-stationary signals [24], including the triboelectric voltages generated by the proposed
I-SAB. In this study, the Hilbert transform was utilized to extract the envelope of the voltage
signals. Firstly, the Hilbert transformation, defined in Equation (9), was applied to the
voltage signal V(t), which yields the imaginary part ˆV(t) of the analytic signal:

ˆV(t) = H(V(t)) = V(t) ∗ 1
πt

(9)

The analytical signal
∼

V(t) of the voltage signal V(t) is defined as follows:

∼
V(t) = V(t) + j ˆV(t) (10)

Since fs = 12 fr in Equation (7), which ensures no overlap between the spectrum of the
carrier and the envelope, the Hilbert transformation of the triboelectric voltage signal can
be written in the following form according to the Bedrosian Theorem [25]:

ˆV(t) = H((V0 + Acos(2π frt))cos(2π fst)) = (V0 + Acos(2π frt))H(cos(2π fst)) (11)

By substituting Equations (7) and (11) into Equation (10), the following equation can
be yielded:

∼
V(t) = (V0 + Acos(2π frt))(cos(2π fst) + jsin(2π fst)) (12)

Furthermore, the envelope amplitude of the analytic signal can be written as follows:∣∣∣∣ ∼
V(t)

∣∣∣∣= V0 + Acos(2π frt) (13)

According to Equation (13), the magnitude of the analytic signal can directly represent
the envelope amplitude when there is a DC component that can be easily removed by
subtracting the mean value.

As illustrated in Figure 7a, the presence of high-frequency noise can still be observed
in the envelope signal with the removal of the DC component. Therefore, the low-pass
filtering operation was further applied to mitigate the noise interference. Eventually, the
extracted envelope signal exhibited a perfect sinusoidal form, as illustrated in Figure 7a.
To further explore the influence of the bias angle on the envelope signal, we acquired
triboelectric voltage signals with various bias angles. The resulting original waveforms
are shown in Figure 7b, with the corresponding demodulated envelope signals shown in
Figure 7c. It is evident that the envelope amplitude increases with the increasing bias angle,
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showing that the AM voltage signal from the I-SAB can serve as an excellent indicator of
the self-sensing of the I-SAB’s bias angle. Figure 7d illustrates the relationship between the
peak-to-peak value of the envelope voltage signal and the bias angle at various rotational
speeds. This was determined using the linear regression method. The results in Figure 7d
show that the sensitivity of the peak-to-peak voltage to the bias angle increases with
the rotational speed, rising from 0.8092 V/deg at 400 rpm to 3.6067 V/deg at 900 rpm.
In addition, the results also reveal a strong linear correlation between the peak-to-peak
value of the envelope voltage and bias angle, with the Pearson correlation coefficients all
exceeding 0.99. Eventually, to determine the relationship between the line slope K and the
rotational speedω, the linear regression method was applied. The formulation obtained is
as follows:

K = 0.0057ω− 1.6279 (14)
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Figure 7. (a) Signal processing procedure; (b) voltage signals with different bias angles under
speed of 600 rpm; (c) demodulated envelope signals with different bias angles under speed of
600 rpm; (d) relationship between peak-to-peak value of envelope signal and bias angle at various
rotational speeds.
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The Pearson correlation coefficient of the linear regression in Equation (14) is 0.9894,
which indicates the existence of a strong linear relationship between the sensing sensitivity
and rotational speed. According to Equation (14), we can rewrite the relationship between
the bias angle and peak-to-peak value Vpp of the voltage envelope as follows:

α̂ =
Vpp

(0.0057ω− 1.6279)
(15)

where α̂ denotes the estimated bias angle. To demonstrate the accuracy of the bias angle
monitoring, we calculated the deviation value and deviation rate under different bias
angles, given by Equation (15), using the following formulae:

Deviation = |α̂− α| (16)

Deviation Rate =
Deviation

α
× 100% (17)

The calculated results are shown in Figure 8a, indicating that the deviation and
deviation rates of bias angle sensing are the most pronounced at the rotational speed of
400 rpm; meanwhile, the deviation rate reaches its highest value of approximately 50% at
bias angles of 0.6◦ and 1◦. However, as the rotational speed increases, both the deviation
and deviation rate decrease significantly. When the rotational speed exceeds 600 rpm, the
deviation rate can be maintained within the range of ±10%.
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Figure 8. (a) Deviation and deviation rate given by the linear regression algorithm; (b) volt-
age (1) and envelope signals (2) given by the I-SABs containing different numbers of flannelette
triboelectric layers.

To maximize the voltage signal amplitude and improve the capability of bias angle
monitoring, the number of dielectric patches was further optimized. Specifically, different
numbers of flannelette triboelectric layers were adhered to the acrylic disk and voltage
signals were acquired from the designed I-SAB with a bias angle of 0.6◦ at a rotational
speed of 600 rpm. As shown in Figure 8b, the disk with 12 dielectric patches produced a
maximum voltage peak-to-peak value of 22 V; however, no recognizable envelope exists
under this condition. With a decreasing number of dielectric patches, the envelope ampli-
tude increases and reaches a maximum peak-to-peak value of 1.07 V with three dielectric
patches, although the voltage signal amplitude decreases continuously. The main reason
for this is that reducing the number of dielectric patches decreases the total charge induced
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on the electrode, but it increases the variations in the induced charges during each rotation
cycle, leading to an increase in the envelope amplitude. Ultimately, to yield the maximum
envelope amplitude and a superior capability in terms of bias angle monitoring, three pairs
of flannelette triboelectric layers were adhered to the acrylic disk.

4. Fault Diagnosis Application

Due to the harsh working conditions, the key components of self-aligning bearings
are prone to faults after prolonged operation; therefore, it is necessary to monitor and
diagnose the condition of the bearings. To address this issue, we explored the usage of
triboelectric signals emitted from the newly designed I-SAB for self-powered fault diagnosis.
In detail, the output triboelectric signals emitted from the I-SAB were collected under
various conditions including ones with no fault, an inner ring fault, an outer ring fault,
a roller fault, and a rotor imbalance fault. All datasets were acquired across six different
rotational speeds. Moreover, we developed an end-to-end deep learning model, namely,
the Multi-Scale Discrimination Network (MSDN), based on the ResNet18 architecture, to
implement the automatic fault diagnosis application. The developed MSDN is a promising
method used to extract the hidden fault features embedded in the triboelectric signals
emitted from our designed I-SAB.

A data processing flowchart showing the self-powered fault diagnosis application
is presented in Figure 9a. Since bearing fault features are modulated onto a carrier sig-
nal through amplitude modulation [23], the envelope signals are first obtained through
the Hilbert transform for feature enhancement. Taking the triboelectric voltage signals
under the condition of an inner ring fault at a rotational speed of 600 rpm as an example,
the waveforms of the envelope signal and the corresponding spectrum are displayed in
Figure 9b. The envelope spectrum in Figure 9b indicates that the frequency components
related to fault features are overshadowed by the sinusoidal component produced by the
bias angle. To extract and enhance the weak fault features related to different health con-
ditions, singular spectrum analysis (SSA) [23] was further applied to the envelope signal.
This SSA technique decomposes the envelope signal into three different scales—the trend
term, the seasonal term, and the residual term—thus enabling feature extraction in these
three scales. As for the implementation details of SSA, firstly, the envelope signal x with a
length of N is embedded into a trajectory matrix using slide-window sampling with the
window length L. This is performed as follows:

X =

 x [0]
...

x[L−1]

x [1]
...

x[L]

· · ·
x[N − L]

...
x[N−1]

 (18)

Secondly, by applying the singular value decomposition (SVD) to the trajectory matrix
X, we obtain the following:

X = UΣVT =

[
⇀
u0,

⇀
u1,...,

⇀
u i, ...,

⇀
u L−1

]
√
λ0 0 0 0 · · · 0

0
. . . 0 0 · · · 0

0 0
√
λL−1 0 · · · 0




⇀
v 0
...

⇀
v N−L


(N−L+1)×(N−L+1)

(19)

where
⇀
u i ∈ RL×1 is the ith column vector in orthogonal matrix U,

√
λj ∈ R is the jth

eigenvalue, and
⇀
v k ∈ R1×(N−L+1) is the kth row vector in the orthogonal matrix VT . The

ith component of the trajectory matrix can also be represented as follows:

Xi =
√

λi
⇀
u i

⇀
v i, i ∈ [0, L − 1] (20)
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Figure 9. (a) The data processing flowchart; (b) the waveform and spectrum of the voltage enve-
lope signal under the health condition of an inner ring fault and a rotational speed of 600 rpm;
(c) waveforms and spectra for the trend term, seasonal term, and residual term given by the singular
spectrum analysis.
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Thirdly, the ith signal component, x̂i, is recovered from the corresponding component
matrix by calculating the average of the reverse diagonal elements:

x̂i[d] =
1

nd
∑m+n=d Xi[m, n] (21)

where nd denotes the element number in the d th reverse diagonal. In our study,
N = 125,000 and L = 10. To reconstruct the signal components in the three different scales,
we categorized the components into three groups based on their eigenvalue magnitude and
then superposed the discrete sequences within each group. The reconstructed sequences in
three different scales and their spectrum are displayed in Figure 9c.

As deep learning models require a large sample size, data augmentation was con-
ducted using sliding window sampling; this enables deep learning models to learn local
invariant features and enhances the model’s generalization capability. The sample number
obtained from each component of the fault signal, S, can be calculated as follows:

S =
N − M
Slide

+ 1 (22)

where N is the length of the signal components, Slide refers to the overlap length, and M is
the window length. The wavelet transformation effectively captures local features such
as transients, discontinuities, and singularities [26]. In this study, the Morlet wavelet was
selected as the mother wavelet for the wavelet transformation, as formulated below:

ψ(t) = ejω0te−
t2
2 , tϵ[−4, 4] (23)

where ω0 is the center frequency of the mother wavelet. The Morlet wavelet can be viewed
as a complex sinusoidal wave modulated by a Gaussian envelope. This unique structure
enables the Morlet wavelet to exhibit high sensitivity to time-variant features. Consequently,
the continuous wavelet transformation based on the Morlet wavelet was further applied
to the signal components to obtain component spectrograms at three different scales. The
component spectrograms in the three scales were then concatenated into three-channel
feature maps that were subsequently stored as RGB jpeg images. It is worthy of note that
channel normalization was also applied to each feature map before saving. These RGB
images were then fed into the deep learning models for end-to-end fault diagnosis.

To address the task of end-to-end fault diagnosis with weak fault features in the RGB
images of triboelectric signals, we developed a novel deep learning model, the MSDN. The
structure of the MSDN is shown in Figure 10a. The developed MSDN model consists of
three feature extractor modules and a decision layer, aiming to extract weak fault features
from the perspective of time–frequency spectrograms and achieve fault diagnosis with high
diagnosis accuracy. To accurately extract fault features at different scales, ResNet18 [27] was
selected as the baseline of the feature extractor modules in our developed MSDN model.
The architecture of the ResNet18-based feature extractor module is shown in Figure 10b.
It is worthy of note that the features from different channels in traditional convolution
layers are summed up after the convolution operations; hence, the weak features would
be overshadowed by the stronger ones. As a result of the premature feature mixing, some
important features disappear due to this inter-channel superposition. To mitigate this,
we introduced three independent feature extractor modules to process the three-channel
spectrogram separately at each scale. This strategy ensures that each feature extractor can
specially extract features for one single feature map. The features from one scale do not sum
up with those from other scales until reaching the decision layer, where the final feature
fusion based on the fully connected layer occurs. This delayed fusion helps the model to
extract weak fault features from each channel in turn [28]. The fused features are finally
reduced to a 5D vector, which is then input into a SoftMax classifier for fault classification.
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In our fault diagnosis experiments, the triboelectric signals emitted from the I-SAB
were sampled in each condition for 40 s, and the total length of these signals was 125,000.
The sliding window length M was 3125, and the Slide was 625. Both of these values were
further applied to segment the components into smaller pieces. According to Equation (22),
the number of samples obtained from one scale under one working condition was 196.
Since the complete dataset consists of samples from six different rotational speeds (400 rpm,
500 rpm, 600 rpm, 700 rpm, 800 rpm, and 900 rpm), each with five different working
conditions, the complete dataset consisted of 5880 samples. In our experiment, 60% of the
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samples from each working condition were used in the training set, 20% were used in the
validation set, and the remaining 20% were used in the testing set. To avoid the overfitting
issue, the learning rate was set to 10−5, and the stochastic gradient descent optimizer was
used for model training. The loss function was cross-entropy, and deep learning models
were built using Pytorch 1.12.0 on a Python 3.9 interpreter.

The fault diagnostic results of the proposed MSDN model built using triboelectric
voltage and current signals emitted from the newly designed I-SAB are illustrated in
Figure 11. The confusion matrix in Figure 11a demonstrates that the proposed MSDN
model built using triboelectric voltage signals can exhibit superior diagnostic accuracy
with a maximum level of 100%. To evaluate the robustness of the proposed model, five
independent repeated experiments were carried out, resulting in a high average accuracy
of 99.8% with a standard deviation of 0.23%. By contrast, the proposed MSDN model
designed using the triboelectric current signals emitted from the I-SAB also yielded an
optimal diagnostic accuracy of 99.7%, as shown in Figure 11b. The average accuracy
derived from the triboelectric current signals emitted from the I-SAB reached 99.1% with a
standard deviation of 0.71%. Additionally, the t-distributed stochastic neighbor embedding
(t-SNE) algorithm was further applied to visualize the features of the final layer in the
proposed MSDN model. The t-SNE feature visualization results shown in Figure 11c,d
indicate that the output features of the MSDN using the triboelectric voltage and current
signals emitted from the I-SAB can be perfectly separated, thus further validating the
robustness of the proposed MSDN model.

In order to compare the newly proposed MSDN with classical deep learning models,
the diagnostic performances of the CNN and ResNet18 using triboelectric voltage signals,
including the training loss, confusion matrix, and feature visualization results, were further
comprehensively analyzed. The training loss and accuracy during the training stage for
the three different methods are displayed in Figures 12a and 12b, respectively. It can be
observed that, after 15 training epochs, the best accuracy of the MSDN was maintained
at 100%. To verify the possibility of overfitting, the proposed MSDN model was further
examined on the validation set and the optimal diagnostic accuracy also reached 100%.
These results confirm that the proposed MSDN model has a higher convergence speed and
superior diagnostic accuracy compared to classical CNN and ResNet18 models, whose
average diagnostic accuracies are 85.4% and 96.6%, respectively. Furthermore, the confusion
matrices for CNN and ResNet18 are shown in Figure 12c,d, which indicate that neither CNN
nor ResNet18 could perfectly distinguish between inner ring faults and roller faults. In
addition, the t-SNE feature visualization results for the CNN and ResNet18 in Figure 12e,f
show that the output features are overlapped, illustrating their weakness in terms of
inter-channel feature extraction. By contrast, the MSDN has the least feature overlaps,
indicating that it has excellent potential in feature separation. These comparison results
solidly confirmed that the proposed MSDN model, which uses the triboelectric signals
emitted from the I-SAB, exhibits superior convergence speed, diagnostic accuracy, and
feature separation capability for self-powered fault diagnosis. Moreover, with the aid of
the proposed MSDN model, triboelectric signals emitted from the I-SAB can be used as
accurate and reliable indicators in self-powered fault diagnosis.
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Figure 12. (a) The variation in training losses seen for three different methods. (b) The variation
in training accuracies seen for three different methods. (c) The confusion matrix for CNN using
triboelectric voltage signals, where accuracy = 85.4%. (d) The confusion matrix for ResNet18 using
triboelectric voltage signals, where accuracy = 96.6%. (e) T-SNE feature visualization for the output
features of CNN. (f) T-SNE feature visualization for output features of ResNet18.
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5. Conclusions

In this study, a novel self-powered, intelligent, and self-aligning bearing (I-SAB)
embedded with a triboelectric nanogenerator (TENG) was designed and implemented.
This innovative smart bearing demonstrated extremely high accuracy in rotational speed
sensing. Most notably, the newly designed I-SAB performed the first ever example of
self-powered bias angle monitoring in a rotating machinery system. Benefiting from
its unique design, the triboelectric voltage signal from the I-SAB exhibits an amplitude-
modulated envelope, which occurs when a bias angle is present in the designed SAB
device. A strong linear relationship was observed between the envelope amplitude of the
triboelectric voltage signals and the bias angle. Moreover, the sensitivity of the bias angle
sensing exhibited a linear correlation with the rotational speed. These two strong linearities
enabled the proposed I-SAB to achieve self-powered and reliable bias angle sensing. To
facilitate fault diagnosis using the I-SAB, a new neural network framework, namely, the
Multi-Scale Discrimination Network (MSDN), was developed for weak feature extraction
and self-powered fault diagnosis. The proposed MSDN trained using the triboelectric
voltage and current signals yielded excellent average diagnosis accuracies of 99.8% and
99.1%, respectively, surpassing traditional deep learning models, including CNN and
ResNet18. In summary, the newly designed I-SAB has shown considerable potential for
self-powered rotational speed sensing, reliable bias angle monitoring, and accurate fault
diagnosis. Furthermore, this work pioneers self-powered bias angle monitoring and fault
diagnosis in rotating machinery systems supported by self-aligning bearings.

However, due to equipment limitations, the performance of the I-SAB under vari-
able temperatures and high-speed conditions and during long-term operation was not
investigated in this study. In the future, we plan to examine the performance of the I-SAB
under extreme conditions and further optimize its design to ensure adaptability to harsh
environments and to fault diagnosis applications under varying speed conditions.
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