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Abstract: Sleep apnea syndrome (SAS) affects about 3–7% of the global population, but is often
undiagnosed. It involves pauses in breathing during sleep, for at least 10 s, due to partial or
total airway blockage. The current gold standard for diagnosing SAS is polysomnography (PSG),
an intrusive procedure that depends on subjective assessment by expert clinicians. To address
the limitations of PSG, we propose a decision support system, which uses a tracheal microphone
for data collection and a deep learning (DL) approach—namely SiCRNN—to detect apnea events
during overnight sleep recordings. Our proposed SiCRNN processes Mel spectrograms using a
Siamese approach, integrating a convolutional neural network (CNN) backbone and a bidirectional
gated recurrent unit (GRU). The final detection of apnea events is performed using an unsupervised
clustering algorithm, specifically k-means. Multiple experimental runs were carried out to determine
the optimal network configuration and the most suitable type and frequency range for the input
data. Tests with data from eight patients showed that our method can achieve a Recall score of up to
95% for apnea events. We also compared the proposed approach to a fully convolutional baseline,
recently introduced in the literature, highlighting the effectiveness of the Siamese training paradigm
in improving the identification of SAS.

Keywords: sleep apnea syndrome; deep learning; clinical decision support system; sleep apnea; OSA
detection

1. Introduction

Sleep apnea syndrome (SAS) is a common but often undiagnosed condition, affecting
around 2–4% of middle-aged men and 1–2% of women in developed countries [1]. SAS is
characterized by a pause in breathing, which can last 10 s or more and persists despite the
patient’s continued efforts to inhale [2,3]. This disorder leads to repeated blockages of the
upper airways during sleep [4], causing reduced oxygen levels and frequent awakenings [5].
Lack of sleep contributes to daytime fatigue [6], increased risk of cardiovascular disease, and
long-term cognitive impairment [7,8]. Therefore, early detection of SAS is crucial to reduce
these associated risks. Currently, clinical evaluations are often based on clinician-generated
ratings [9], which are sometimes derived from questionnaires administered to patients.
However, this method is qualitative and depends heavily on the experience of the examiner.
To overcome these limitations, instrumental tests such as polysomnography (PSG) are used
to support diagnosis [10,11]. PSG is performed in a hospital setting, where patients are
equipped with several sensors [12], which may include an elastic chest band, a finger pulse
oximeter, a nasal cannula, and a position sensor to monitor and measure changes in the
sleep–wake cycle [13,14]. The intrusive nature of PSG, requiring an overnight hospital stay,
has led researchers to develop alternative systems of diagnostic support systems that can
extend assessment to home environments [15]. These systems often use microphones for
data collection [16], and the acquired data are then analyzed through machine learning
(ML) or deep learning (DL) algorithms [17].
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In [18], the focus is on analyzing tracheal and ambient microphone recordings to
calculate breathing probabilities in short audio segments, using a voice activity detection
(VAD) algorithm. However, when detecting apnea in recordings made under suboptimal
conditions, statistical methods may perform less well than DL techniques.

To overcome these limitations, other proposed approaches for detecting SAS use DL
methods with hand-crafted features, or end-to-end architectures that detect snoring sounds
associated with SAS or the SAS events. Li et al. [19] implemented spectral subtraction to
reduce acoustic noise, followed by an unsupervised method to segment episodes of snoring.
The audio signals are then represented as visual geometry maps, which are subsequently
fed into a convolutional neural network (CNN) for snoring-event classification. Similarly,
Cheng et al. [20] proposed a two-phase snoring classification system. In the first phase,
snoring-related features are extracted using techniques such as Mel-frequency cepstral
coefficients (MFCC), filter banks, short-time energy, and linear predictive coding (LPC).
These features are then used as inputs to a long-short-term memory (LSTM) network for
the classification of snoring events. In [21], the authors proposed a CNN-based method to
detect snoring sounds for diagnosing obstructive sleep apnea syndrome (OSA). It combines
spectrogram, Mel spectrogram, and continuous wavelet transform (CWT) into a multi-
channel input framework. The work proposed in [22] depicts a method for the real-
time detection of OSAs using breathing sounds recorded during sleep, even in noisy
environments. The input consists of audio recordings from a smartphone and signals from
a PSG device, with noise added to simulate home environments. The method involves
transforming breathing sounds into Mel spectrograms and using a deep neural network
to classify apnea events. Saini et al. [23] introduced an approach for detecting OSAs
and assessing their severity in adults using audio signal analysis. This method involves
processing recorded audio samples, applying noise reduction, and performing analysis in
both the time and frequency domains. Features are extracted using fast Fourier transform
(FFT) and discrete wavelet transform (DWT), which are then used to train an artificial
neural network (ANN).

In [24], the authors presented a method for detecting and classifying OSA events
through audio spectrogram analysis. Their approach involves extracting Mel spectrograms
from ambient audio recordings, which are then processed using a machine learning model
that combines a pre-trained CNN for audio classification with a bidirectional long short-
term memory (Bi-LSTM) network. Ding et al. [25] proposed an end-to-end approach
by examining a subset of the dataset from Korompili et al. [26]. Their method uses Mel
spectrograms feeding a VGG19 network for feature extraction, followed by an LSTM
network to classify normal and apnea-related snoring events.

Most of these studies rely on proprietary datasets, which hinders the reproducibility
of the proposed analysis. The only publicly available dataset is the one collected by
Korompili et al. [26], which includes tracheal audio recordings with an average duration
of five hours, collected from 193 patients diagnosed with SAS.

Building on the state-of-the-art approaches outlined above, the present study intro-
duces an innovative framework that exploits a Siamese convolutional recurrent neural
network (SiCRNN) for feature extraction, followed by a k-means clustering stage, to classify
apnea and non-apnea events. We conducted an in-depth hyperparameter tuning analysis to
identify the optimal configuration that balances accuracy and computational complexity,
which is crucial for deploying our decision-support system in clinical settings with limited
computational resources.

2. Materials and Methods
2.1. Dataset

To train, evaluate, and test the proposed DNN-based model, we gathered audio
recordings of 40 patients, from a larger collection released by Korompili et al. [26]. The
dataset includes a label for each apnea episode, stored in a separate metadata file, which
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marks its onset and offset times with a resolution of 500 ms. The labels were generated by
combining analyses performed by expert clinicians and PSG responses.

The audio recordings in the collection were captured using the Clockaudio CTH100
device. It is a tracheal microphone, secured to the patient’s throat with an elastic band
and designed to reduce wearing discomfort. The audio signals were originally recorded
at 48,000 samples per second, to conform with the joint use of an additional ambient
microphone [26]. However, in our study, we only considered recordings from the tracheal
device, which operates within a narrow frequency band. Therefore, we downsampled the
signals to 16 kHz, as this does not imply a loss of information. We then segmented the
stream into contiguous windows of 6 s each, with no overlap, and established a criterion to
assign a label to each of them: a window was labeled as positive if an apnea event extended
throughout the entire duration, otherwise, it was labeled as negative, indicating the absence
of apnea. A 32-band Mel spectrogram was calculated for each time window [27] and patient;
the spectrograms were saved in two different folders according to the labels (i.e., apnea or
non-apnea). Variants with fewer Mel bands, i.e., 25, 18, 12, and 8, were considered with
the purpose of simulating the downsampling of the signal to, respectively, 8 kHz, 4 kHz,
2 kHz and 1 kHz. The STFT spectrogram without frequency scaling was also included at
the lowest resolution.

This study faced computational constraints due to the high volume of audio data
(1 TB, or 3.5 million seconds) in the dataset by Korompili et al. [26], which originally
included 135,568 apnea event windows and 446,431 non-apnea event windows. Training a
Siamese neural network exacerbated the challenge of handling large data volumes because
it required generating all possible audio pairs for training, leading to a combinatorial
explosion of over 110 billion combinations if the full dataset was used. To address this,
we opted to use a subset of 40 patients, amounting to 30,000 instances. This reduced the
input pairs to 450 million, making the training process computationally feasible while
still maintaining sufficient data diversity and variability to ensure robust and effective
model training.

We conducted a preliminary analysis of the data from 40 patients to identify excessively
noisy audio samples in the dataset, potentially caused by a malfunctioning recording device
or proximity to an unidentified noise source. We conducted a preprocessing phase, which
dealt with analyzing high-level audio features, extracted from the SiCRNN model. This
phase involved overfitting the network with data from each single patient, and assessing
the “separability” of the embedding vectors, belonging to the positive and negative classes.
A visual evaluation was initially performed by using principal component analysis (PCA)
to reduce the embeddings’ dimensionality and allow for two-dimensional plots. The scatter
plots of Figure 1a,b show examples of noise-free and noisy embedding vectors after network
overfitting. We also assessed the presence of corrupted samples by measuring the distances
between the centroids of the positive and negative point clouds. For most patient data, the
network was able to separate apnea and non-apnea events, achieving an average distance
between class embeddings of 1.99 ± 0.11. However, three patients reported a separability
significantly below this range, (about 0.88), so they were excluded from the experiments.

Finally, the dataset, comprising the remaining 37 patients, was divided into three differ-
ent data splits. Each data split contained a train, validation, and test partition: 30,000 items
from 23 patients (about 65%) were used for training, 12,992 items from 6 patients (about
15%) were used for validation, and 15,162 items from 8 patients (about 20%) were re-
served for the test. To ensure a fair evaluation, each patient was assigned exclusively to
one partition.

Since apnea events were inherently less frequent than normal breathing episodes (only
30% of the total recording duration contained apnea events), we enforced the balancing of
positive and negative pairs in the training and validation sets by implementing oversampling
of the minority class (apnea).
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Figure 1. The scatter plots illustrate the output of the principal component (PCA) applied to the output
of the final GRU layer in the SiCRNN model. The resulting embeddings are derived from two patients
under two conditions: (a) noise-free patient embeddings and (b) noisy patient embeddings. The
observed distances between the apnea and non-apnea clusters are 2.0 in the noise-free scenario and
0.87 in the presence of noise, respectively.

2.2. SiCRNN Architecture

The proposed SiCRNN architecture was built on the convolutional-recurrent config-
uration used in [28,29], detailed as follows: the input features consisting of Mel or linear
spectrograms were processed using convolutional operators, with a unitary stride and
the same padding, to preserve the original size after convolution. Each convolutional
layer was followed by batch normalization and rectified linear unit (ReLU) activation.
Non-overlapping max-pooling was then applied to the feature map, reducing data dimen-
sionality by compressing it in both the time and frequency domains. The SiCRNN consisted
of a stack of convolutional blocks, which included convolution, normalization, pooling,
and activation. The kernel size was kept the same while the pooling size increased.

After stacking the feature maps along the frequency axis, the outputs of the CNN
backbone were fed into the bidirectional gated recurrent unit (GRU) layers. GRU selectively
updates and uses information from previous time steps, allowing it to capture long-term
dependencies in time series [30,31].
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2.3. Training Strategy

The training of the proposed framework was carried out in two stages. During the first
training stage, a Siamese-like strategy was followed, feeding two identical neural network
architectures with either positive (apnea–apnea) or negative (apnea–non-apnea) input pairs.
This is depicted in Figure 2, where the two architectures shared weights during the two-step
forward process, characteristic of Siamese networks [32]. The resulting 128-dimensional
embedding vectors for each input pair were then compared with a contrastive loss, to
minimize intra-class distances, pulling vectors representing the same class closer together,
and maximizing inter-class distances, pushing vectors from different classes further apart.
A more detailed description of the contrastive loss is reported in Section 3.1.

In the second training stage, the embedding vectors were processed with the k-means
clustering algorithm [33]. The latter computes the centroids of the clusters of points,
representing apnea and non-apnea events [34].

During the validation and test phases, 6-s frames from the audio recording were
processed by the model, and the resulting embedding vectors were compared with the
coordinates of the previously calculated centroids, to assign the label of apnea or non-apnea
to the frame under test, according to the shortest Euclidean distance.

GRU GRU

Contrastive Loss

Shared
weights

Input 1 Input 2

Backbone

K-means

Apnea Not-apnea

Inference pipeline

Training pipeline

Backbone

Figure 2. Overview of the proposed SiCRNN framework. The purple dashed line highlights
the Siamese configuration employed during the training phase, whereas the green dashed line
corresponds to the inference phase, which is carried out through the k-means clustering algorithm.
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3. Experimental Protocol
3.1. Training Settings and Performance Metrics

The maximum available batch size of 128 was used, according to the specifications
of the test lab workstation, which was equipped with an Nvidia Titan RTX GPU with
24 GB VRAM.

We used a contrastive loss function to minimize intra-class distances by bringing
vectors of the same class closer together and to maximize inter-class distances by pushing
vectors from different classes apart. The best model was selected based on the one that
minimized the loss during the training phase.

The mathematical formulation of the loss function is reported below:

Lc =
1
N

N

∑
i=1

(
(1 − labeli) · e2

d + labeli · (max(0, m − ed))
2
)

where

• Lc is the loss function.
• N is the number of instances in the dataset.
• labeli is the label of the i-th example.
• ed is the Euclidean distance between two instances in the dataset provided as input.
• m is a margin constant that serves to control how much the representations of samples

from different classes need to be separated in the embedding space. For our purposes,
m was experimentally set to 2.

The performance of our approach was assessed using Recall, Precision, and the F1
score [35]. Specifically, Recall focuses on a DL model’s ability to identify the true positives
(TPs) within the dataset. This is relevant in clinical applications as the cost of false negatives
(FNs) (i.e., not recognizing a clinical condition when it is present) is high.

Recall =
TPi

TPi + FNi
(1)

where i stands for the i-th class (which, for our purposes, is the apnea class) and TPi denotes
the correctly classified apnea sample. Conversely, FNi refers to those samples that belong
to the apnea class but have been incorrectly classified as non-apnea.

On the other side, Precision is used to measure how often a model correctly predicts
the positive class (apnea).

Precision =
TPi

TPi + FPi
(2)

where false positive (FPi) refers to those samples that are predicted as the apnea class but
are labeled as the non-apnea class.

Instead, the F1 score is a measure that combines precision and recall into a single metric,
treating both metrics equally [36]. It ranges from 0 to 1, where 1 represents a perfect model
that makes all correct predictions, and 0 indicates a model with no correct predictions.
Essentially, a higher F1 score signifies better performance, as it reflects a balance between
the ability to correctly identify positive instances (Recall) and the accuracy of those positive
predictions (Precision).

F1 = 2 · Precision · Recall
Precision + Recall

(3)

3.2. SiCRNN Tuning

Hyperparameter tuning was performed, focusing on the key components of the
SiCRNN architecture (see Table 1). Given a large number of possible parameter com-
binations, we employed an optimized search strategy based on the approach proposed
in [37].
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Table 1. Hyperparameter search space.

Parameter Values

CNN kernel size [5,5], [3,3], [5,1], [3,1]
Convolutional blocks 2, 3, 4
GRU hidden layers 32, 64, 128

Additionally, a frequency sensitivity analysis was conducted. Observing that most
acoustic energy, during apnea episodes, is concentrated in a low-frequency range of the MEL
spectrogram, we evaluated the model’s performance using different lower-dimensional
inputs. To that end, the MEL spectrogram input feature map was resized by discarding the
highest frequency bands, obtaining five configurations (see Table 2) that were included in
the hyperparameter search process, even though they are not strictly referred to network
parameters. Furthermore, at the lowest frequency range, we considered the use of the
STFT spectrogram without perceptual frequency filtering, in order to understand how the
compression applied by the Mel filterbank affects the model’s performance [38]. In both
the Mel-scaled and linear frequency spectrogram calculations, a window of 2048 samples
was used, with a hop size of 256. Experiments revealed that there is no direct relationship
between input size and classification performance, as will be outlined later.

Table 2. Different types of inputs considered for the frequency sensitivity analysis.

Input Type MEL Bands Frequency Range [Hz] Input Size

MEL 8 0–500 [8,374]
MEL 12 0–1000 [12,374]
MEL 18 0–2000 [18,374]
MEL 25 0–4000 [25,374]
MEL 32 0–8000 [32,374]
STFT - 0–500 [1025,24]

The hyperparameter tuning phase was conducted by training the network on a subset
of 10,000 instances out of the 30,000 in the original training set while using the validation
and test set, as previously defined. This choice was dictated by practical considerations,
due to the need to repeat several instances of the training process.

In the end, only the best hyperparameter combinations, chosen from those with the
highest F1 score in the validation set for each type of input, were retrained using the full
dataset as presented in Section 2.1, consisting of 30,000 instances.

3.3. State-of-the-Art Comparison

Our study included a comparative analysis with the DL model proposed by
Ding et al. [25], which is the most recent and closely aligned with our work. This model
employs a sound event detection (SED) approach, using a VGG19 [39] backbone for feature
extraction, three LSTM layers for temporal characterization, and three dense output layers
to distinguish between snoring events associated with apnea and those unrelated to apnea.
Following the workflow in [25], the network was pre-trained on the ImageNet dataset and
fine-tuned on our dataset. Hereinafter, we will refer to this model as VGG19+LSTM.

The VGG19+LSTM model encompasses an end-to-end architecture, where input
generation involves randomly extracting 6-s windows from the dataset, which are then
individually passed through the model. Additionally, the number of elements in each class
during the training phase is balanced to ensure equal representation.

In this case as well, to perform a comprehensive and detailed comparative analysis,
tuning of the input features passed to the network was carried out by using the hyperparam-
eter dataset, as described at the end of Section 2.1. However, it was not possible to perform
a complete hyperparameter tuning on VGG19, as was done with the SiCRNN, because
the former adopts a predefined configuration. Additionally, since we replicated the work
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conducted by other researchers, we decided to maintain the hyperparameter configuration
proposed in the reference paper except for the types of features in the model input.

4. Results

This section displays the results of the conducted studies. Figures 3–6 show the results
of the hyperparameter tuning for the SiCRNN model, performed using a random search
approach on 60 random combinations of the hyperparameters described in Section 3.2.

Specifically, Figure 3 highlights how the model’s performance is influenced by the
number of hidden layers in the GRU module; Figure 4 shows how the metrics vary with
changes in the convolutional kernel size; Figure 5 relates the metrics to input dimensionality,
while Figure 6 illustrates the impact of the number of convolutional blocks on the metrics.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Precision

0.2

0.4

0.6

0.8

Re
ca

ll

hidden_gru
32.0
64.0
128.0
f1_score
0.30
0.45
0.60
0.75
0.90

Figure 3. The scatter density plot shows the results of the hyperparameter tuning by relating the
Precision, Recall, and F1 score metrics to the number of GRU hidden layers used during training. On
the x-axis, Precision values are reported, while the y-axis represents Recall values, and the size of the
points indicates the F1 score. The different shades of orange represent the number of convolutional
blocks used in the model’s training.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Precision

0.2

0.4

0.6

0.8
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ll

kernel_size
[5, 5]
[3, 1]
[3, 3]
[5, 1]
f1_score
0.30
0.45
0.60
0.75
0.90

Figure 4. The scatter density plot shows the results of the hyperparameter tuning by relating the
Precision, Recall, and F1 score metrics to the dimension of the kernel size used during training. On
the x-axis, Precision values are reported, while the y-axis represents Recall values, and the size of
the points indicates the F1 score. The different shades of gray represent the kernel size used in the
model’s training.
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Figure 5. The scatter density plot shows the results of the hyperparameter tuning by relating the
Precision, Recall, and F1 score metrics to the number of MEL bands selected for each input sample
frequency during training. On the x-axis, Precision values are reported, while the y-axis represents
Recall values, and the size of the points indicates the F1 score. The different shades of blue represent
the number of MEL bands used in the model’s training.
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Figure 6. The scatter density plot shows the results of the hyperparameter tuning by relating the
Precision, Recall, and F1 score metrics to the number of convolutional blocks used during training.
On the x-axis, Precision values are reported, while the y-axis represents Recall values, and the size of
the points indicates the F1 score. The different shades of green represent the number of convolutional
blocks used in the model’s training.

Looking at Figures 3–6, the larger dots positioned toward the upper right corner
indicate the configurations that achieve the best performance among those tested during
hyperparameter tuning, demonstrating how the selection of the right hyperparameters can
significantly influence the model’s performance.

The results of the optimal configurations for each type of input are presented in
Table 3, while Table 4 shows the results obtained by the VGG19+LSTM model, for the same
input types.
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Table 3. Results obtained for each type of input, in the best configuration of hyperparameters, after
being retrained on the entire dataset. The highest values are shown in bold.

Input
Type

MEL
Bands

Kernel
Size

Conv.
Layers

Hidden
GRU F1 Recall Precision

MEL 8 [3,3] 2 128 0.89 0.86 0.91
MEL 12 [5,5] 4 32 0.90 0.95 0.86
MEL 18 [5,5] 4 32 0.89 0.91 0.88
MEL 25 [3,3] 2 128 0.85 0.79 0.93
MEL 32 [5,5] 3 64 0.88 0.87 0.90
STFT - [5,5] 4 32 0.89 0.93 0.86

Table 4. Results of the best configurations for each input type of the VGG19+LSTM model after being
retrained on the entire available dataset. The highest values are shown in bold.

Input Type MEL Bands F1 Recall Precision
MEL 8 0.75 0.84 0.68
MEL 12 0.71 0.79 0.65
MEL 18 0.71 0.81 0.64
MEL 25 0.66 0.77 0.58
MEL 32 0.70 0.72 0.68
STFT - 0.71 0.85 0.61

Table 5 below lists the resources required by the two models under comparison, in
terms of trainable parameters, floating points operations (FLOPS) in forward time, input
memory size, and total network memory footprint.

Table 5. Resource consumption and memory impact for the proposed SiCRNN and the
VGG19+LSTM architectures.

Model Input
Type

MEL
Bands

Params
(M)

FLOPS
(G)

Input
Size (MB)

Total Size
(MB)

SiCRNN

MEL 8 0.60 0.04 0.01 7.65
MEL 12 1.1 0.33 0.02 13.07
MEL 18 1.1 0.73 0.03 18.67
MEL 25 0.60 0.11 0.04 18.14
MEL 32 0.86 0.33 0.05 22.87
STFT - 1.1 0.13 0.09 41.06

VGG19+LSTM

MEL 8 24 1.27 0.01 105.37
MEL 12 24 1.60 0.02 111.25
MEL 18 24 2.39 0.03 120.81
MEL 25 24 3.56 0.04 133.13
MEL 32 24 4.60 0.05 145.62
STFT - 24 9.19 0.09 195.21

We carried out additional experiments to compare the performance of the proposed
SiCRNN model with that of VGG19+LSTM. Using the random hold-out method, we
generated multiple random data splits and conducted three separate tests, each using
distinct training, validation, and test sets while adhering to the patient-level split procedure.
The results of this validation are presented in Table 6; as shown, the proposed method
outperforms the state-of-the-art, demonstrating robustness to data variability and achieving
high average values with low variability in the results.

It is also important to highlight that the adoption of the k-means clustering algorithm
in this study is underpinned by two primary considerations following the work in [40].
First, its suitability for distance-based Siamese neural networks makes it a compelling
choice. These networks transform features extracted from input data into a representation
space where similar elements are spatially proximate, forming well-defined clusters of
points. This intrinsic organization makes k-means effective for classifying the embeddings
generated by the Siamese backbone. The second consideration deals with computational
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efficiency: indeed, the k-means algorithm has a lower computational burden. This charac-
teristic aligns well with the objectives of this research, which seeks to propose an effective
methodology that can be seamlessly deployed in real-world applications, particularly those
constrained by limited computational resources. Table 7 provides evidence supporting the
advantages of k-means in terms of both performance and inference time. Specifically, the
k-means algorithm achieves a superior F1 score, Precision, and Recall compared to support
vector classifiers (SVCs) and k-nearest neighbors (KNN). Additionally, its inference time of
0.09 s is faster than those of SVC (42.33 s) and KNN (0.37 s). The results and considerations
presented in the following sections pertain to the use of the k-means algorithm, as it proves
superior to the other read-out methods.

Table 6. Comparison of the F1 score (F1), Recall and Precision across different data splits (Split 1, Split
2, Split 3) for the proposed SiCRNN and the comparative method VGG19+LSTM. The results are
presented in term of mean value and standard deviation (in brackets).

SiCRNN VGG19+LSTM

F1 Recall Precision F1 Recall Precision
Split 1 0.90 0.90 0.90 0.75 0.84 0.68
Split 2 0.91 0.91 0.92 0.62 0.78 0.51
Split 3 0.90 0.88 0.92 0.64 0.91 0.50

Mean (SD) 0.90 (0.008) 0.90 (0.01) 0.91 (0.01) 0.67 (0.07) 0.84 (0.06) 0.56 (0.1)

Table 7. Performance comparison between k-means, support vector classifier (SVC), and k-nearest
neighbors (KNN) read-out algorithms. The results are presented in terms of the mean value and
standard deviation (in brackets) of Precision, Recall, and F1 score (F1) metrics.

Read-Out F1 Precision Recall Inference Time
(s)

K-means 0.90(0.008) 0.90(0.01) 0.91(0.01) 0.09

SVC 0.73(0.01) 0.72(0.03) 0.73(0.04) 42.33

KNN 0.73(0.01) 0.75(0.02) 0.70(0.03) 0.37

For the correct reproduction of the results, we present in Table 8 the IDs of the patients
used in each data split. It is also possible to find the codes used in the GitHub repository
https://github.com/LilloByte/SiCRNN.git.

Table 8. Summary of patient IDs used for each data split divided into training, validation, and
test sets.

Train Validation Test

Split 1

1112, 1110, 1108, 1106, 1095, 1093,
1089, 1088, 1086, 1082, 1071, 1069,
1057, 1045, 1041, 1039, 1037, 1028,
1022, 1010, 1008, 1006, 995

1120, 1104, 1043,
1024, 1018, 1014

1118, 1116, 1073, 1059,
1026, 1020, 1000, 999

Split 2

1120, 1118, 1116, 1112, 1110, 1108,
1106, 1104, 1095, 1093, 1089, 1088,
1086, 1082, 1073, 1071, 1069, 1059,
1057, 1045, 1043, 1041, 1039

1010, 1008, 1006,
1000, 999, 995

1037, 1028, 1026, 1024,
1022, 1020, 1018, 1014

Split 3

1086, 1082, 1073, 1071, 1069, 1059,
1057, 1045, 1043, 1041, 1039, 1037,
1028, 1026, 1024, 1022, 1020, 1018,
1014, 1010, 1008, 1006, 1000

1120, 1118, 1116
1112, 999, 995

1110, 1108, 1106, 1104,
1095, 1093, 1089, 1088

https://github.com/LilloByte/SiCRNN.git
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Qualitative Results

Upon conducting a qualitative analysis of the dataset, we found that identifying apnea
events is not always straightforward. For example, in Figure 7a, the apnea event (marked by
the top section of the red mask) can be visually recognized due to the absence of acoustic
energy. Once the apnea event ends, breathing resumes and is evident in the spectrogram as
periodic bursts of energy, representing inhalation and exhalation sounds.

In contrast, Figure 7b,c depict cases where the apnea event is indistinguishable from
normal breathing, as the spectrogram shows significant energy within the segment, labeled
as apnea by experts, making machine detection more difficult.

Spectrograms with patterns similar to those in Figure 7a are correctly classified by the
proposed method, whereas instances like Figure 7b or Figure 7c may lead to false negatives
during the network’s prediction stage.
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Figure 7. (a) The region located below the top of the red mask indicates the apnea events; (b,c) spec-
trograms with the labeled red mask display an apnea event with significant spectral content. The
time associated with each individual bin in the spectrograms is 11.56 ms.

5. Findings and Discussion

In the following, we discuss the data reported in Section 4. The experimental results
of the SiCRNN hyperparameter tuning (Table 3) show how performance is affected by
parameters such as the input type, Mel bands, convolutional kernels, convolutional layers,
and recurrent layers. Performance metrics such as the F1 score, Recall, and Precision are
analyzed, along with computational parameters, such as the number of training parameters,
FLOPS, and input size, which are reported in the upper section of Table 5.

Concerning the sampling rate (SR) of the audio input, both 1 kHz Mel and STFT
spectrograms exhibit strong performance. Specifically, the Mel configuration with 8 bands
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and a convolutional kernel size of [3,3] achieves an F1 score of 0.89, with a Recall of 0.86
and a Precision of 0.91, indicating a good balance between Recall and Precision. Simi-
larly, the STFT configuration, which uses a larger kernel [5,5] and 4 convolutional layers,
maintains a similar F1 score (0.89) but shows an improvement in Recall (0.93), suggesting
a higher capacity to detect events, although Precision remains stable at 0.86. However,
this configuration incurs a significantly higher computational cost, with FLOPS reaching
0.13 G and a total model size of 41.06 MB, compared to 7.65 MB for the Mel configura-
tion. This suggests that Mel provides a more efficient trade-off between performance and
computational complexity.

With a 2 kHz SR, performance improvements are observed with the Mel input and
12 bands. The F1 score reaches 0.9, with a very high Recall of 0.95 and stable Precision at
0.86. However, computational complexity increases significantly compared to the 1 kHz
Mel configurations, with FLOPS at 0.33 G and a model size of 13.07 MB.

Configurations with higher SR, such as 4, 8, and 16 kHz, maintain high performance,
with the F1 score hovering around 0.88–0.89. However, slight declines in Recall and
Precision are noted, especially at 8 kHz, where the F1 score drops to 0.85 and Recall to
0.79, while Precision remains high at 0.93. This trend suggests that increasing the SR and
Mel bands does not necessarily lead to a linear improvement in performance, and there
may be an optimal point, as indicated by the results at 2 kHz.

The number of hidden units in the GRU layer varies between 32, 64, and 128, but
there does not seem to be a direct correlation between the number of hidden units and
model performance. For example, configurations with 128 units perform well, but even
configurations with only 32 units compete in terms of F1, Recall, and Precision.

In conclusion, the results suggest that the 2 kHz configuration with the Mel input and
12 bands represents the best trade-off between performance and computational complexity,
offering an excellent balance of Recall, Precision, and F1. Higher frequency configurations,
while delivering good results, involve a significant increase in required resources without
substantial improvement in performance metrics. Lower frequency configurations, such
as 1 kHz and 8 Mel bands, remain competitive, especially in contexts with computational
efficiency constraints.

Tables 4 and 5 allow us to compare the performance and computational cost of the
VGG19+LSTM model for different inputs. It is worth noting that the SR, which ranges
from 1 kHz to 16 kHz, has an adverse impact on the model’s performance. The 1 kHz
configuration with the Mel input and 8 bands achieves the highest F1 score (0.75). Its
Recall and Precision are 0.84 and 0.68, respectively. The low SR configuration allows
the VGG19+LSTM to detect events sufficiently well but it suffers from a high number of
false positives.

When STFT is used instead of Mel with the same 1 kHz SR, the model displays a
slightly lower performance, with an F1 score of 0.71. Although Recall increases to 0.85,
Precision drops to 0.61, indicating that STFT improves the model’s ability to correctly
identify events but with reduced Precision. Additionally, the STFT configuration requires
significantly more computational resources; FLOPS increase to 9.19 G, and the total model
size grows to 195.21 MB, making this configuration much more computationally expensive
compared to Mel.

Increasing the SR to 16 kHz with the Mel input and 32 bands leads to a slightly
lower F1 score of 0.70. This means that, despite the increased spectral resolution, there
is no significant improvement in the overall model performance despite an increase in
computational complexity. At 16 kHz, FLOPS reach 4.6 G, and the total model size rises to
145.62 MB.

Examining intermediate configurations with SRs of 2, 4, and 8 kHz, the F1 score
remains relatively stable at around 0.71, with a slight decrease to 0.66 at 8 kHz. Precision
and Recall follow a similar trend, indicating that increasing the SR does not lead to a
significant improvement in performance. However, the increase in SR results in growing
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computational demands, with FLOPS rising from 1.6 G to 3.56 G and the total model size
increasing from 111.25 MB to 133.13 MB.

Overall, the experimental results of the VGG19+LSTM method indicate that the 1 kHz
configuration with 8 Mel bands offers the best trade-off between performance and computa-
tional costs, but the F1 score is much lower than the one obtained by the proposed method.

The results show that an increase in input dimensionality does not positively impact
the performance of the SiCRNN model. On the other hand, changes in input dimen-
sionality affect the computational cost of the model and memory usage In real clinical
settings, large computational resources are not always guaranteed, making it preferable
to have lightweight models. With our approach, we can ensure higher performance than
VGG19+LSTM while significantly reducing the computational load.

The strong performance of the SiCRNN can be credited to the effectiveness of the
Siamese methodology [41], widely applied in anomalous sound detection [42] or in data
scarcity scenarios [43]. This technique excels in enhancing the separation between two event
categories more efficiently than conventional binary classification models. Additionally,
Siamese networks take advantage of a potentially extensive set of training data pairs,
enabling the model to make effective use of even a small number of instances from the
minority class, such as apnea events, as demonstrated in the work by Schroff et al. [44].

6. Conclusions

This study introduces a novel clinical decision support system designed to identify
SAS events using audio signals recorded from tracheal microphones. Although PSG is
the gold standard for diagnosing SAS, it is invasive and heavily reliant on subjective
clinical assessments. To address these challenges, we propose a deep learning-based
approach that employs a SiCRNN in combination with k-means clustering for effective
apnea event detection.

The proposed SiCRNN model, trained on Mel audio spectrograms, exhibited a strong
ability to distinguish between apnea and non-apnea events, surpassing other state-of-the-art
methods. This model takes advantage of the Siamese training paradigm, which enhances
the distinction between apnea and non-apnea events, making it highly suitable for SAS
detection. This study uses a subset of the Korompili et al. dataset, ensuring high-quality
data by filtering out corrupted recordings during preprocessing.

Experimental results highlight the effectiveness of the SiCRNN model compared with
another deep learning model, VGG19+LSTM, underscoring the superior performance of
the SiCRNN despite its fewer trainable parameters. This success can be attributed to the
model’s efficient feature extraction and the Siamese approach’s ability to make optimal use
of limited minority class examples of apnea events.

In conclusion, the SiCRNN framework marks a significant step forward in the non-
invasive identification of SAS, offering a promising alternative to PSG by enabling accurate,
automated apnea detection through tracheal audio analysis. This method shows potential
for widespread clinical application, particularly in home settings, which could facilitate
early diagnosis and management of sleep apnea.

Future directions for this project will focus on improving the performance of the
decision support system by incorporating additional post-processing techniques to refine
classifier output and introducing more clinically oriented metrics, such as the Apnea-
Hypopnea Index (AHI), for objective assessment [45,46].
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