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Abstract: This paper presents a contribution to the state of the art in the design of tactile sensing algo-
rithms that take advantage of the characteristics of generalized sparse matrix-vector multiplication to
reduce the area, power consumption, and data storage required for real-time hardware implementa-
tion. This work also addresses the challenge of implementing the hardware to execute multiaxial
contact-force estimation algorithms from a normal stress tactile sensor array on a field-programmable
gate-array development platform, employing a high-level description approach. This paper describes
the hardware implementation of the proposed sparse algorithm and that of an algorithm previously
reported in the literature, comparing the results of both hardware implementations with the software
results already validated. The calculation of force vectors on the proposed hardware required an
average time of 58.68 ms, with an estimation error of 12.6% for normal forces and 7.7% for tangential
forces on a 10 × 10 taxel tactile sensor array. Some advantages of the developed hardware are that
it does not require additional memory elements, achieves a 4× reduction in processing elements
compared to a non-sparse implementation, and meets the requirements of being generalizable, scal-
able, and efficient, allowing an expansion of the applications of normal stress sensors in low-power
tactile systems.

Keywords: tactile sensing; triaxial contact forces estimation; hardware implementation; sparse
matrix-vector multiplication; FPGA

1. Introduction

In artificial tactile sensing systems, the measurement of contact forces plays a crucial
role in the description of the contact phenomenon [1,2] seeking to resemble human dexterity
for object manipulation [3]. Force estimation provides direct information about the contact
area and facilitates the reconstruction of other tactile properties such as roughness [4,5], and
hardness [6]. Moreover, triaxial forces are critical for slip and grip sensing in control loops
for robotic manipulation [3,4,7–12], wearable robots [13], human-computer interaction [2],
prosthetic hands and wearable devices [14–16].

The scientific community has already provided solutions for reconstructing normal,
shear, and multiaxial contact forces. Some authors [12,17–19] have estimated forces using
integrated biomimetic-design tactile sensors for robotic grippers using vision-based trans-
ducers. Alternatively, the piezoelectric effect [20,21], piezoresistive-based tactile sensor
arrays [2,14,15,22], capacitive sensors [13,16,23–27], magnetic transducers [28,29], optical
fibers [30,31], and Hall effect transducers [32] can be used. However, contact-force sensing
remains a major research challenge due to issues such as the complexity and multiplicity of
mathematical force estimation models, the different transduction technologies employed,
the commercial availability of sensors, the area size and contact medium, and the demand
for real-time processing [2,33].
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Despite recent advances in multiaxial contact-force reconstruction, the community
continues to work towards achieving tactile sensing systems that meet the criteria of general-
ization, scalability, and efficiency described in [34]. A challenge to generalization lies in the
fact that force estimation methods depend on the information provided by the tactile sensor
and the contact medium used. Scalability is limited by the transduction technology and
sensor size used with contact areas typically small (less than 164 mm × 164 mm) [25,35].
In terms of efficiency, force reconstruction time must be predictable and done in real
time [2,13,15,23,25]. All of this involves systems with high processing requirements that
need very short response times. The approach to these issues is based on the development
of specialized software that runs on high-performance PC stations, which limits their ap-
plication in cases where high portability is required, such as in electronic skin applied in
biomedical or robotic systems.

Regarding sensor types used in tactile sensing applications, pressure-sensor arrays
offer advantages such as high resolution, high sensitivity, low noise, simple electronics,
physical flexibility, large surface area, wide commercial availability and price, dynamic
response, low thickness, large-scale coverage, and high bandwidth [36–40]. In spite of their
advantages, the use of pressure-sensor arrays in multiaxial force reconstruction has been
quite limited, as they only provide information on normal stresses and require complex
mathematical models to process the data they generate. Their applications have been
limited to obtaining normal forces [37], and through subsequent processing stages, other
authors have estimated shear [39] and triaxial forces [41], but none of those methods have
been validated in hardware using efficient performance metrics. In [42], an optimized
option for the hardware implementation of triaxial force estimation in real-time tactile
decoding tasks is provided. However, since such implementation has only been validated in
software, it is necessary to investigate the implications of the properties of its mathematical
model on hardware design, memory consumption, and data-processing efficiency.

An alternative to address the high complexity, real-time execution, and large data vol-
ume requirements of tactile decoding systems is to leverage the benefits of highly parallel
embedded systems such as field-programmable gate arrays (FPGAs), graphics processing
units (GPUs), and others. These systems provide high concurrency, lower power consump-
tion, and high computational acceleration, which, if properly exploited through a highly
optimized design, can greatly exceed the performance of software-based (PC) solutions [43].
Embedded systems have been used to implement model- and data-driven solutions in
tactile sensing applications like texture estimation [44], texture classification [45], tactile
data decoding [46,47], slip detection [48], and force estimation [41]. However, hardware
implementations in this context are scarce because the hardware design process remains
slow and complex [43], is highly dependent on the sensor characteristics, transduction
technology, and contact type, and the mathematical model is not always easy to modify as
it involves significant changes in the hardware deployment. One way to overcome these
problems is to use high-level design methodologies, which have been validated in other
fields but rarely used to develop hardware for tactile sensing systems [49].

This work contributes to the theoretical development of algorithms for multiaxial
contact-force reconstruction from normal stress tactile sensor arrays by proposing using
sparse matrices to reduce the computational requirements for its implementation in hard-
ware in terms of area, power consumption, and data storage. It also contributes to the
practical implementation of tactile sensing algorithms in hardware by comparing the results
of [42] with those obtained for a new model presented herein. Although it has only been
validated for two single static contacts on flat surfaces, we believe this work will contribute
to expanding the use of stress sensor arrays for multiaxial force estimation in large-scale
wearable electronic skin systems.

Among the most relevant aspects of the hardware implementation carried out here
are that it is efficient (in terms of computation times and area occupation), generalizable
(independent of the transduction sensor technology and the contact phenomenon), scalable
(independent of the size of the contact sensing area) and described at a high level (using
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high-level tools such as Matlab® MathWorks™, AMD Vitis™ HLS, and Vivado™ Design
Suite) which allows a reduction of the design effort and quick validation of the functionality
of the system.

The rest of the paper is organized as follows: Section 2 focuses on recalling the main
features of the reconstruction forces algorithm addressed, Section 3 describes the strategy
of integrating sparse matrices into the forces algorithm, Section 4 presents the hardware
design flow and the efficiency criteria considered, Section 5 discusses the results obtained,
and Section 6 concludes the paper.

2. Triaxial Forces Reconstruction Algorithm from Normal Stress Tactile Sensor Arrays

In the field of tactile property decoding, the TFRA algorithm [42] stands out for
allowing the reconstruction of triaxial forces in large contact areas from tactile sensor arrays.
Such an algorithm inputs a vector with scalar values of normal stresses and produces
as output three vectors with the triaxial force magnitudes (one for each axis), which
correspond to a solution to the problem of estimating multiaxial forces from a discrete
normal stress distribution as shown in Figure 1. In addition, it is characterized by being
generalizable, efficient, and scalable, which makes its implementation feasible for real-time
tactile decoding systems.

Figure 1. Triaxial forces reconstruction algorithm (TFRA).

The TFRA algorithm is based on the inverse problem of the classical Boussinesq
equation, which determines the stress fields in a homogeneous and linearly elastic half-
space under a concentrated load applied at a specific point on its upper surface [50]. The
relationship between stress fields and load forces, established by the Boussinesq equation,
is very significant for contact modeling on flat surfaces using tactile sensing arrays [41]
since if the contact load is concentrated into an array of f point forces, then a b stress
discrete distribution can be calculated through a linear vector equation as:

b = C f (1)

where C is a rectangular matrix defined by the distances between the coordinates of the m-
stress points and those of the n-force vectors, b = [bx, by, bz]T is a vector of size [3m× 1] with
bx and by represents the tangential stress, while bz is the normal stress, and f = [ fx, fy, fz]T

is a vector of size [3n × 1] of fx, fy, and fz components. Under the premise of Equation (1),
if m = n, C is a square full-rank matrix, and the direct application of this equation generates
m-values of the spatial stress distribution from m-triaxial force vectors; see Figure 2.

For the same case, the inverse application of Equation (1), expressed as:

f = C−1b (2)

This allows the discovery of m-force vectors from the stress values at m-points, and mod-
els the contact forces on a tactile sensor array of m-discrete sensing units (taxels), with
m = u × v, where u is the number of rows and v the number of columns of the array; see
Figure 3. For this problem, the application of Equation (1) allows us to find the normal
stress distribution at the m-points located at a depth h of the surface (sensor thickness),
defined as:
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bz =
[

C31 C32 C33
] fx

fy
fz

 (3)

with C31, C32, and C33 constant submatrices of size [m × m] defined from the sensor geome-
try characteristics, as:

[
C31 C32 C33

]T
=

 C0 · r̂(ji)x
C0 · r̂(ji)y

C0 · h

 (4)

where C0 = (3h2)/(2π(r̂(ji)2 + h2)5/2), r̂(ji) is the projection on the xy-plane of the r(ji)
distance vectors between the coordinates (r̂(ji)x, r̂(ji)y) of the i-th taxel (i = 1, . . . , m) and
the j-th force vector (j = 1, . . . , m) [51], see Figure 3b.

Figure 2. Relationship between m-stress values and m-triaxial forces for an m-taxel tactile sensor
array under the Businessq Equation: (a) Direct problem, (b) Inverse problem, and (c) Ill-posed inverse
problem from normal stress data.

Figure 3. Normal stress on a tactile sensor array of m taxels: (a) Sensor top view, and (b) Interaction
between the i-th taxel (dot in red) and the j-th force vector (green arrow) on the sensor surface for
m-stress values and m-force vectors.

For the case of a tactile sensor that only provides discrete normal stress data bz for
the m-taxels, the inverse problem becomes ill-posed because the number of unknowns
in Equation (2) is three times larger than the sensor outputs, requiring an additional
mathematical description. In such a case, the Moore–Penrose pseudo-inverse matrix
provides a solution of the form f = A−1 · bz [52]:

f =
[

fx fy fz
]T

= A†bz + (I − A† A)w (5)

where A is a rectangular matrix of size [m × 3m], defined as:

A =
[

C31 C32 C33
]

(6)
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A† is the pseudo-inverse matrix of A of size [3m × m], such that:

A† = AT
(

AAT
)−1

= [A†1 A†2 A†3]T (7)

in which A†1, A†2, and A†3 are constant submatrices of size [m × m], and w is an optimal
vector of size [m × 1], for which

w =

 µx|wz|
µy|wz|

wz

 (8)

where µx and µy are two continuous scalars in the range [−1, 1] defined into an optimization
process, and wz a vector made up of the negative values of the tactile sensor, as follows:

wz =

{
C−1

33 · bz ;
(

C−1
33 · bz

)
(i) < 0

0 ; other case
(9)

By replacing Equations (6)–(9) in Equation (5), the TFRA allows the discovery of
an optimal solution for this problem by calculating the components of a f triaxial forces
as follows:  fx

fy
fz

 =

 g10 + µxg11 + µyg12
g20 + µxg21 + µyg22
g30 + µxg31 + µyg32

 (10)

where gpq vectors of size [m × 1] are computed as shown in Equations (11)–(13) for
p = [1 : 3], q = [0 : 2], such that:

[
g10 g11 g12

]T
=

 A†1bz + D10wz
| wz | +D11 | wz |

D12 | wz |

 (11)

[
g20 g21 g22

]T
=

 A†2bz + D20wz
D21 | wz |

| wz | +D22 | wz |

 (12)

[
g30 g31 g32

]T
=

 A†2bz + wz + D30wz
D31 | wz |
D32 | wz |

 (13)

Dpq are nine matrices of size [m × m] calculated by an offline precomputation carried
out by matrix multiplications between the submatrices of A† and C, as follows: D10 D11 D12

D20 D21 D22
D30 D31 D32

 =

 −A†1C33 −A†1C31 −A†2C32
−A†2C33 −A†2C31 −A†2C32
−A†3C33 −A†3C31 −A†3C32

 (14)

To implement Equation (10), TFRA requires the execution of 16 matrix-vector mul-
tiplications, denoted as M0 − M15, and the iterative calculation of the optima of µx and
µy. The first 13 operations (M0 − M12) correlate the sensor geometry and the normal stress
distribution measured by the tactile sensor array so that:

M0 = C−1
33 bz (15)

M1 M2 M3
M4 M5 M6
M7 M8 M9
M10 M11 M12

 =


D10wz D11 | wz | D12 | wz |
D20wz D21 | wz | D22 | wz |
D30wz D31 | wz | D32 | wz |
A†1bz A†2bz A†3bz

 (16)

The last three operations (M13 − M15) produce bz
z and bxy

z vectors to evaluate the
fulfillment of the optimal conditions:
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[
M13 M14 M15

]
=

[
C33 f k

z C31 f k
x C32 f k

y

]
(17)

where f k
x , f k

y , and f k
z are force components estimated for the k-th iteration of the algorithm,

while the vectors bz
z of size [m × 1], and bxy

z of size [2m × 1] are defined as:

bz
z = C33 f k

z (18)

bxy
z =

[
C31 C32

][ f k
x

f k
y

]
(19)

As mentioned in [42], the TFRA optimization process allows us to ensure that: (i) nor-
mal forces ( f k

z ) will be correctly reconstructed if they generate only a compression effect
at the sensor base when they are considered independently, and (ii) tangential forces ( f k

x ,
f k
y ) will be correctly reconstructed if they generate a traction distribution similar to that

measured by the sensor. Formally, each condition is evaluated as follows:

Condition 1:

Bz ≡
m

∑
i=1

bz
z(i) = 0; bz

z(i) > 0 (20)

Condition 2:
Bxy ≡

∣∣∣∑m
i=1 bxy

z (i)− ∑m
i=1 bz(i)

∣∣∣ = 0;

bxy
z (i) > 0, bz(i) > 0

(21)

To evaluate the optima µx or µy in Equation (10), TFRA selects only one of these, µx or
µy, as an independent variable and evaluates the other (the unselected one) from the angle
between the tangential forces (ϕ) and the Gpq resultants of the vectors gpq. Therefore, the
dependent variable selected can be computed as:

µx =
G20 − G10 tan ϕ + µy(G22 − G12 tan ϕ)

G11 tan ϕ − G21
(22)

or

µy =
G10 tan ϕ − G20 + µx(G11 tan ϕ − G21)

G22 − G12 tan ϕ
(23)

where Gpq = ∑m
i=1 gpq(i), and ϕ is calculated by identifying the compression centroids,

with coordinates (cx, cy), and the tension centroids, with coordinates (tx, ty), of the stress
distribution, as:

ϕ =


tan−1

(
cy−ty
cx−tx

)
; tx < cx

tan−1
(

cy−ty
cx−tx

)
+ 180◦ ; tx ≥ cx

(24)

Following the aforementioned specifications, TFRA requires six stages (see Figure 4)
to evaluate Equation (10) for:

i. [For one time only (offline stage)] Calculate and save in memory the set of matrices
(A†1, A†2, A†3, C−1

33 , Dpq, C31, C32, and C33), the vectors describing the taxel coordi-
nates (px, py), and the sensor resolution (sx, sy),

ii. Read and store in memory the data for sensor bz as an m × 1 size vector,
iii. Calculate the contact centroids and angle ϕ of tangential forces,
iv. Calculate the wz vector,
v. Calculate the gpq coefficient vectors,
vi. Find the optima µx and µy, and compute the forces triaxial reconstruction.
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Equations (15)–(17) are computed in stages iv–vi, requiring 16 matrix-vector multi-
plications with a computational complexity of O(m2) for m-taxels in a tactile sensor array.
When in a software implementation, these algebraic operations can be easily performed.
In the case of a dedicated hardware implementation, design decisions must include pro-
cessing requirements, memory size, and multiple memory accesses in advance. Thus, the
hardware design process to implement the TFRA involves 16m accumulates, 16m2 data
store operations, 16m2 memory accesses to a constant array, and 16m memory accesses to
vector data.

Figure 4. Blocks for the TFRA implementation in hardware: (A) Memory stores the set of matrices
in memory, (B) Bz reads the data from the bz sensor in memory, (C) CeAn computes the contact
centroids and tangential force angle, (D) We calculates the initial solution weight vector wz, (E) Co
calculates the gpq coefficients, and (F) Op finds the optimal values of the algorithm. Note that the
symbol * represents a functional block in hardware that implements a matrix-vector multiplication.

3. SpTFRA Algorithm for Contact Forces Reconstruction

This section introduces a new algorithm, named SpTFRA (Sparse Triaxial Forces
Reconstruction Algorithm), that allows the improvement of the performance of the TFRA
algorithm by reducing the hardware resource consumption and the number of operations
required for its calculation through the use of sparse matrices. The software implementation
of the TFRA algorithm showed that in constant matrices A†1, A†2, A†3, C−1

33 , and Dpq
(computed by Equations (5), (7) and (14)), their components with the highest values are
concentrated in coordinates close to their diagonals (see Figure 5) and exhibit a data
distribution similar to sparse matrices (mostly zeros), a behavior demonstrated in different
contact cases. This can be attributed to the fact that the components of these matrices
are defined by the relative distances between the coordinates of the i-th taxel and the j-th
estimated force, meaning that the force vectors are mainly influenced by nearby taxels in
the xy-plane.

Matrix–vector multiplication is a basic operation required in many physical systems,
so its optimization is of interest in several scientific domains. The generalized sparse-
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matrix dense-vector multiplication (SpMv) is defined as y = Bx, where B is a sparse
matrix and x is a dense vector. This multiplication can be efficiently compressed using
data compression and encoding strategies that store only the non-zero (Nnz) values of the
matrix and its coordinates.
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Figure 5. Behavior of magnitudes of the TFRA matrices (size 100 × 100) for a tactile sensor of
10 × 10 taxels. The first three graphs show the components of the matrix C−1

33 for different rows
or columns.

One of the challenges to the hardware implementation of matrix operations relates
to the on-chip and off-chip memory access [53] and the design of processing blocks that
exactly suit the distribution of zeros in sparse matrices. Some algorithms to optimize
SpMv on hardware have already been studied for large-scale matrix dimension problems
in high-performance computing for physical or biological model simulations [54,55], data
analytics [56], large-scale graphics processing [57], and artificial intelligence [58,59]. These
algorithms provide solutions on GPU, FPGA, or heterogeneous architectures to process
matrices as large as 28,338 × 28,338, and response times less than 5 ms [60].

In SpTFRA, it is assumed that all values of sparse-like matrices close to zero are
effectively zero. This may slightly increase the error, but it reduces the resources required for
data storage and the number of operations to be performed. In this way, the implementation
of the SpTFRA algorithm requires the use of SpMv operations for the calculation of the
matrix–vector multiplications M0 − M12 defined by Equations (15) and (16) in which the
set of matrices (A†1, A†2, A†3, C−1

33 , and Dpq) is offline replaced with a set of approximate
sparse matrices. Multiplications M13, M14, and M15 were already included in the Op block
of the original TFRA as sparse operations, so no modifications are needed for the SpTFRA
implementation.

Although SpTFRA uses the same six stages described in Section 2, there are three main
differences between both the TFRA and SpTFRA algorithms: (i) calculating and storing
the sparse matrices in the memory block, (ii) executing M0 as SpMv in the We block, and
(iii) executing M1 − M12 as SpMv operations in the Co block. All other functional blocks
are common for both algorithms (see Figure 6).
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Figure 6. Hardware implementation of the SpTFRA algorithm. This figure highlights the blocks that
are modified with respect to the original TFRA, which change from normal matrix operations to
sparse matrix operations.

To implement SpTFRA, the proposed approach requires applying three filters that
make zero some components of a matrix if its magnitude is less than a previously deter-
mined threshold. This allows the obtaining of an approximate sparse matrix Bsp (i.e., A†1sp,
A†2sp, A†3sp, C−1

33sp, and Dpq−sp) from a dense matrix B (A†1, A†2, A†3, C−1
33 , and Dpq). The

threshold value is set under three specific criteria, named Sparse Filters, which are depicted
in Figure 7, and defined as follows:

• SpTFRA−F1: This filter admits only the non-zero values B(i, j) closest to the diagonal
in a dense matrix B, by evaluating the function:

Bsp1(i, j) =
{

B(i, j) i f |i − j| ≤ L
0 other − case

}
(25)

where L is a value that establishes the expanded diagonal matrix made up of the
components of B that satisfy |i − j| ≤ L, with L changing at each experiment by 10 in
a range from 10 to 90 (according to the estimation error calculated by the SpTFRA).
Figure 8 shows an example of applying this filter on the C−1

33 matrix, where non-zero
values are in blue.

• SpTFRA−F2: This filter accepts the components greater or equal to a percentage p of
the maximum value for each row p ∗ max(B(i, :)), by evaluating the function,

Bsp2(i, j) =
{

B(i, j) i f |Bij| ≥ (1/100p) ∗ max(B(i, :))
0 other − case

}
(26)

where p changes by 10 in a range from 10 to 90 at each experiment. Figure 9 shows the
results of applying this filter to the C−1

33 matrix.
• SpTFRA−F3: This filter selects between Filters 1 and 2, depending on which of these

generates the sparse matrix Bsp with the minimum value of Nnz and the minimum
error in the estimation of the contact forces, according to this function:

Bsp(i, j) =
{

Bsp1(i, j) eµ(Bsp1)Nnz(Bsp1) ≤ eµ(Bsp2)Nnz(Bsp2)
Bsp2(i, j) other − case

}
(27)
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where eµ is the error estimate of the friction coefficient in a force reconstruction and
comes defined as follows:

eµ = 100
µre f − µ

1.0
% (28)

with µ calculated as:

µ =

√
F2

x + F2
y

|Fz|
(29)

in which Fx = ∑m
i=1 fx(i) and Fy = ∑m

i=1 fy(i) are the estimated resultant tangential
forces, and Fz = ∑m

i=1 fz(i) is the reconstructed resultant normal force.
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Figure 7. SpTFRA filters for matrix B applied to the: (a) SpTFRA−F1, selects the non-zero values
closest to the diagonal; (b) SpTFRA−F2, selects the non-zero values greater or equal to a percentage
p of the maximum value for each row.

After filtering the matrices of the TFRA, the modified compressed sparse row (MCSR)
format [60] is used to store the compressed matrix Bsp in memory and calculate the SpMv on
three vectors, which include the Nnz values of the matrix Bsp, the column corresponding to
each Nnz in Bsp, and the number of multiplication accumulations (MAC) for each row. Due
to the MCSR representation, the matrix–vector multiplication algorithm does not require
adding or multiplying by zero, which means saving arithmetic operations proportional to
the Nnz of each matrix and reducing memory consumption when storing SpTFRA matrices.
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Figure 8. Application of the SpTFRA−F1 on the C−1
33 matrix.
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Figure 9. SpTFRA−F2 application on C−1
33 matrix.

4. Hardware Design for the TFRA and SpTFRA Implementations

The design of the hardware architecture for the TFRA and SpTFRA are based on the
four subsystems (CeAn, We, Co, and Op) shown in Figure 4 and correspond to the six
stages of the force reconstruction algorithm described in Section 2. The development of the
architecture was carried out by evaluating (in software) the functionality of the proposed
algorithms. Then, it was implemented in hardware (on a development platform for FPGA)
following the classic integrated circuit design flow presented in [61].

To evaluate the functionality and efficiency of the TFRA and SpTFRA hardware
implementations, we established two criteria:

Algorithm functionality: TFRA and SpTFRA should be generalizable (i.e., they should
depend only on the contact event but not on the transduction technology), scalable (i.e.,
operate over different contact area sizes), and efficient (i.e., have a predictable runtime) as
established in [34]. For the experimental verification of this criterion, we calculate the forces
estimation error and the response time, evaluating by simulation, two cases of simple con-
tacts (Hertzian and non-Hertzian) using two pressure-sensor arrays of different resolutions:

• Sensor 1. It is a 10× 10 taxel array with a (sx, sy) = (4 mm, 2 mm) resolution arranged
as a rectangular prism of dimensions 40 mm × 20 mm × 3 mm, on which a single
static Hertzian contact was modeled, equivalent to a distribution of elliptical normal
stresses measured at the base of the tactile sensor and centered on the coordinates
(x0, y0) = (18 mm, 9 mm).

• Sensor 2. It is a 10× 10 taxel array with a (sx, sy) = (4 mm, 4 mm) resolution arranged
as a rectangular prism of dimensions 40 mm × 40 mm × 3 mm, on which a single
static non-Hertzian contact was modeled measured at the base of the tactile sensor
and centered in the coordinates (x0, y0) = (18 mm, 18 mm).

The TFRA and SpTFRA software implementations were carried out in Matlab® Math-
Works™ 2021. To evaluate the estimation error and response time, we compared the Matlab
results with those obtained for a finite element analysis (FEA) model implemented in
COMSOL Multiphysics® 6.0.

Hardware Efficiency: A hardware efficient implementation of TFRA and SpTFRA
should perform triaxial force reconstruction with the lowest error estimation, power con-
sumption, hardware resource usage and memory requirements, the highest throughput,
and the shortest response time. That is why, in the design verification process, we consider
the corresponding metrics for each aspect and select the best alternative.

The entire hardware design process was carried out on AMD Vitis™ HLS 2022 and
Vivado™ Design Suite 2022 running on a laptop based on an Intel Dual-Core i7-4600U CPU
at 2.1 GHz and 8 GB of RAM. The SpTFRA hardware implementation was evaluated on a
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Zynq UltraScale+ MPSoC ZCU102 FPGA. Both cases used a 32-bit floating-point format
and a system clock frequency of 125 MHz.

High-Level Desing Approach of the TFRA and SpTFRA

High-level synthesis (HLS) is a modern and efficient automated design process for
digital systems that focuses on mapping behavioral/algorithmic specifications (in C/C++
or SystemC) on register-transfer level (RTL) structures. This technique speeds up the
verification procedures at early stage designs, supporting hardware designers to improve
functional features while tuning up optimization targets [62], considerably reducing the
design effort and supporting the exploration of test and reliability analyses [49,63].

This work exploits the advantages of an HLS tool to implement the TFRA and SpTFRA
algorithms in hardware. Before that, a software-level description (SWSF(L|p)) was used to
better understand the behavior of such algorithms and predict their characteristics at the
hardware level (HWSF(L|p)) when using the sensors S (S : 1 − 2), the filters F (F : 1 − 3) and
performing a sweep on their variables L (L : 10 : 10 : 90) or p (p : 10 : 10 : 90) for each filter.

The following nomenclature was used for the TFRA software (SW1, SW2), and hard-
ware (HW1, HW2) implementations, depending on the type of sensor (S : 1 − 2). Similarly,
for the SpTFRA, the software and hardware implementations were named SWSF(L|p) and
HWSF(L|p), respectively, depending on the type of sensor (S : 1− 2) and filter used (F : 1− 2).
For example, SW1F1(L10:L90) represents Sensor 1 with Filter 1 and a sweep of L from 10 to 90.
Meanwhile, SW1F2(p10:p90) represents Sensor 1 with Filter 2, with a sweep of p from 10 to
90. Finally, the SpTFRA implementations for the case of Filter 3 were named SW1F3, SW2F3
and HW1F3, HW2F3, according to the type of sensor used.

The testbench was also implemented in HLS, allowing for reports on hardware syn-
thesis, latency, resources, and power consumption. From test bench results, it was possible
to reduce from 42 hardware implementations to only four (two for each sensor).

5. Results
5.1. Sparse Filters Response

Figure 10 shows the friction coefficient µ obtained in the TFRA and SpTFRA software
implementations for a reference value µre f = 0.5 and variations in the angle of the orien-
tation of the tangential forces in the range of ϕ = [0–360◦] for the Hertzian (Sensor 1) and
non-Hertzian (Sensor 2) single contacts modeled. µ was computed at each ϕ value from the
triaxial forces reconstructed by applying Equation (29).
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Figure 10. Estimated friction coefficient by applying the SpTFRA−F1 and SpTFRA−F2 filters.

Figure 11 summarizes the behavior of all the filters proposed in Section 3 for each sparse
matrix in both algorithms. The values presented were calculated from Equations (27)–(29),
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in which the number of Nnz is correlated with the estimation error of µ obtained for each
filter. In this figure, the best cases are given for the cells with the lowest values, as this
corresponds to the minimum error and Nnz. This leads to sparser matrices that require
both less memory and fewer processing elements. Similarly, the white-on-orange text cells
in Figure 11 represent the best cases for the SpTFRA−F3 filter implementation.

Table 1 describes the filters selected at the hardware design stage, their Nnz values,
and the estimation of the average friction coefficient due to the variation of ϕ. The best
reconstruction cases were obtained for L = 40 and L = 50 at SpTFRA−F1 and p = 30 and
p = 50 at SpTFRA−F2 for both sensors.
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Figure 11. Comparative response of the filters applied to the SpTFRA model evaluating eµ(Bsp)Nnz(Bsp))
for each matrix. Note that the orange cells with white text represent the best cases for SpTFRA−F3.

Table 1. Nnz values per matrix generated at the best reconstruction cases for both sensors.

Sensor Filter C−1
33 A†1 A†2 A†3 D10 D11 D12 D20 D21 D22 D30 D31 D32 µ HW Name

1

None 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 0.56 HW1
F1 L = 40 8360 8360 8360 8360 8360 8360 8360 8360 8360 8360 8360 8360 8360 0.59 HW1F1L40
F1 L = 50 7450 7450 7450 7450 7450 7450 7450 7450 7450 7450 7450 7450 7450 0.60 HW1F1L50
F2 p = 30 4512 9462 7966 6876 9548 10,000 9400 8938 9400 9412 10,000 9550 8934 0.59 HW1F2p30
F2 p = 50 5180 9522 8552 7684 9568 10,000 9502 9320 9490 9676 10,000 9568 9326 0.59 HW1F2p50

F3 4512 8360 8360 6876 8360 8360 8360 8360 8360 8360 8360 8360 8360 0.49 HW1F3

2

None 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 0.49 HW2

F1 L = 40 8360 8360 8360 8360 8360 8360 8360 8360 8360 8360 8360 8360 8360 0.50 HW2F1L40
F1 L = 50 7450 7450 7450 7450 7450 7450 7450 7450 7450 7450 7450 7450 7450 0.50 HW2F1L50
F2 p = 30 4036 9294 9294 5388 9360 9932 9146 9360 9146 9932 10,000 9362 9362 0.51 HW2F2p30

F2 p = 50 5348 9430 9430 7588 9440 9968 9196 9440 9196 9968 10,000 9442 9442 0.50 HW2F2p50

F3 5732 8360 8360 8360 8360 8360 7395 8360 8360 8360 8360 8360 8360 0.50 HW2F3

5.2. Hardware Resource Consumption

From the information presented in Table 1, the use of digital signal processors (DSP),
block random access memory (BRAM), look-up tables (LUT), and Flip-Flops (FF) elements
required by each hardware implementation was compared. The results of this comparison
are shown in Figure 12. As can be seen, the SpTFRA requires considerably fewer DSP
blocks than the original TFRA because it does not need to operate MAC with zero values.
Regarding BRAM consumption, the SpTFRA approach does not offer a significant advan-
tage because of the MCSR format and the oversized memory allocation performed by EDA
tools (in this case, VITIS HLS™ and Vivado™). Nevertheless, all BRAM requirements for
the SpTFRA are for fully integrated memory, reducing memory access times and avoiding
needing external hardware. The FFs and LUTs consumption behaves similarly for all the
analyzed SpTFRA configurations; however, in all cases, these values are lower than those
required by the basic TFRA.
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Figure 12. Hardware resource consumption for the TFRA (HW1, HW2) and SpTFRA for the two
sensors analyzed.

Table 2 presents the main hardware characteristics obtained for the pre-synthesis stage
of the SpTFRA implementations for the lowest resource consumption cases. The TFRA
hardware implementations HW1 and HW2 are shown for reference only, as these are not
physically implementable because they exceed 100% of the resources available on the FPGA
platform used. TFRA and SpTFRA implementations execute steps i to v (see Figure 4) only
once, so the latency and response time of the CeAn, We, and Co blocks become predictable.

CeAn is a common block for all hardware implementations and has a latency of
3481 clock cycles for a system clock frequency of 125 MHz. Blocks responsible for process-
ing sparse matrices, such as coefficients calculations Co and weights vector calculation
We, show differences in their latency figures due to the variation in the number of oper-
ations required for each matrix. Op is also a common block for all proposed hardware
implementations and has a latency of 320,527 clock cycles per iteration. However, the total
time execution of Op block depends on the number of iterations performed to evaluate the
TFRA optimization functions (Equations (20) and (21)).

Table 2. Characteristics of the evaluated TFRA and SpTFRA hardware implementations.

Hardware
Resources Utilization On-Chip Latency Throughput

BRAM DSP FF LUT Power [W] CeAn We-Co Op [MBps]

HW1 718 2596 215,602 209,814 3992.9 *
3481

859,480
320,527

64.67
HW1F1L40 628 622 70,662 82,842 0.871 ** 683,252 65.89
HW1F3 849 568 64,917 83,277 0.894 ** 740,387 59.96

HW2 718 2596 215,602 209,814 3992.9 *
3481

859,480
320,527

64.67
HW2F2p50 858 1098 120,014 128,040 0.953 ** 804,205 62.72
HW2F3 749 578 64,287 78,489 0.983 ** 844,606 55.32

* Physically not implementable because this case exceeds the hardware platform capability. ** All data in this table
were obtained for a junction temperature of around 26 °C.

5.3. Design Verification

Figures 13 and 14 represent the results of the functional validation of the proposed
hardware implementations evaluated through behavioral simulation. As observed, the
obtained values are close to those expected for the resultant forces and the variables µ and
ϕ. These variables verified that the SpTFRA model meets the generalization and scalability
criteria when applied to two tactile sensors with different resolutions, two single contact
models, and different tangential force orientations.

The values presented in Table 3 were found when evaluating the system response.
These include the maximum values of the estimation error, the error distribution, and
the maximum response time for the TFRA and SpTFRA implementations studied. The
maximum relative error in the estimation of the tangential resultant forces is 7.70%, and of
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the normal resultant forces is 12.57%. The maximum relative errors in the estimation of
µ and ϕ were 14.67% and 1.93%, respectively. These values are close to those obtained by
software implementations for the TFRA.
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Figure 13. Resultant forces obtained in the TFRA and SpTFRA hardware implementations.
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Figure 14. The friction coefficient and tangential force orientation results for SpTFRA hardware
implementations.

The obtained results verified that force reconstruction performs better in square tac-
tile sensor arrays (Sensor 2) than rectangular ones (Sensor 1). Performed tests included
normal stress input data up to 50,000 N/m2 to reconstruct forces with magnitudes of
the resultant forces on each axis around 6 N. However, the input data can be changed
without affecting the hardware implementation, allowing the reconstruction of contact
forces at different scales. In this work, force magnitudes were estimated in contact ar-
eas up to 40 × 40 mm2. Other authors estimate triaxial forces of 1 N on contact areas of
12.5× 12.5 mm2 [2] and 10 N in 14.2× 14.2 mm2 [10] in applications of robotic manipulation
and implemented in PC workstations. This demonstrates the capabilities of TFRA and
SpTFRA to process triaxial forces with the portability, low power, and high processing
power of a high-performance FPGA.

Figure 15 shows the response times obtained by simulating the behavior of the TFRA
and SpTFRA implementations on an FPGA operating at a clock frequency of 125 MHz.
The force estimation for SpTFRA implementations was performed in an average time of
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58.68 ms, with a worst case of 78.88 ms. These results are in the same ranges as other works
that report operation in real time, such as in [16] (33 ms), [23] (44 ms), and in [2] (300 ms).
However, it should be noted that all those response times were obtained using software
implementations running on PC workstations.
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Figure 15. Time response for SpTFRA-HW10 and SpTFRA-HW13.

Table 3. Error estimation and response time.

Hardware
Maximum Relative Error [%] Standard Error [%] Av. Resp. Time

eFx eFy eFz eµ eϕ SEFx SEFy SEFz SEµ SEϕ tr

SW1 5.94 3.44 10.93 9.41 1.64 2.04 1.13 1.35 3.64 0.50 28.56
HW1 5.95 3.45 11.87 9.42 1.93 2.03 1.13 1.35 2.75 0.50 28.76
HW1F1L40 7.45 4.79 10.83 12.15 1.93 1.93 1.07 1.27 2.77 0.50 51.27
HW1F3 7.70 4.17 12.57 14.67 1.93 1.81 0.85 1.30 3.59 0.50 51.49

SW2 7.84 5.44 2.69 4.46 3.16 1.73 1.84 1.02 2.82 0.69 21.53
HW2 6.12 5.90 3.66 8.97 2.20 1.69 1.83 1.02 2.21 0.68 25.96
HW2F2p50 5.51 5.92 3.37 9.01 2.20 1.60 1.88 1.05 2.23 0.68 58.52
HW2F3 6.12 5.91 3.67 8.99 2.20 1.68 1.84 1.04 2.19 0.68 58.68

6. Conclusions

This work demonstrated an efficient hardware implementation for the reconstruc-
tion of triaxial contact forces in a distribution of discrete normal stresses obtained from
pressure-sensor arrays based on different transduction technologies, including piezore-
sistive, resistive, and capacitive, as well as the potential of high-performance embedded
platforms, such as FPGAs, to process contact forces in tactile sensing systems.

The presented hardware design approach leverages the generalized matrix–vector
multiplication operation to optimize hardware resource consumption by replacing dense
matrices with approximate sparse matrices, which is achieved using filters specifically
designed for this task.

The use of high-level design tools reduces the design effort by allowing different
software and hardware implementation options to be evaluated simultaneously, therefore
reducing the data storage requirements, the number of processing elements, and the energy
consumption of the developed system.

Future works could include exploring alternatives for data access, addressing, and
reuse for TFRA and SpTFRA implementations that take advantage of the on-chip memory
availability of FPGAs and other embedded systems to overcome the bottleneck caused
by poor memory access times. In addition, since the total response time of the system
depends on the number of iterations of the optimization algorithm (stage vi of the TFRA
algorithm), it becomes very sensitive to delays in the Op block, so efforts could be made
to achieve higher task concurrency and explore other minimization techniques in the
optimization algorithm.
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