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Abstract: Optical encryption based on single-pixel imaging (SPI) has made great advances with the
introduction of deep learning. However, the use of deep neural networks usually requires a long
training time, and the networks need to be retrained once the target scene changes. With this in mind,
we propose an SPI encryption scheme based on an attention-inserted physics-driven neural network.
Here, an attention module is used to encrypt the single-pixel measurement value sequences of two
images, together with a sequence of cryptographic keys, into a one-dimensional ciphertext signal to
complete image encryption. Then, the encrypted signal is fed into a physics-driven neural network
for high-fidelity decoding (i.e., decryption). This scheme eliminates the need for pre-training the
network and gives more freedom to spatial modulation. Both simulation and experimental results
have demonstrated the feasibility and eavesdropping resistance of this scheme. Thus, it will lead
SPI-based optical encryption closer to intelligent deep encryption.

Keywords: optical encryption; single-pixel imaging; image reconstruction; attention module; physics-
driven neural network

1. Introduction

Optical encryption mainly uses optical principles and techniques for information
encryption and decryption, offering advantages such as high speed, enhanced security, and
resistance to jamming and attacks, making it an important development direction in the
field of information security. Traditional optical encryption mainly relies on double-random
phase-encoding techniques [1–4], optical interference principles [5–7], phase recovery algo-
rithms [8–10], and computational holography methods [11–13]. However, these methods
generally require complex optical systems and sophisticated optical components and are
susceptible to environmental noise and optical device errors, resulting in poor encryption
and reduced security.

Recently, single-pixel imaging (SPI) has attracted significant attention due to its fea-
tures such as a simple optical system and low detector cost [14–18]. Unlike classical imaging
systems, SPI uses a single-pixel detector instead of a conventional pixelated array detector
and recovers the two-dimensional (2D) spatial light-field information of the target by cor-
relating modulation patterns and a one-dimensional (1D) single-pixel (bucket) signal. Its
optical modulation and image reconstruction processes can be regarded as the encoding
and decoding of the target, respectively, making SPI very suitable for optical image encryp-
tion [19–23]. In the image reconstruction process of SPI, the fidelity of decoding is ensured
by requiring a sufficiently large number of modulations, whose transmission poses a secu-
rity risk and also increases the burden of data transmission. We can reduce the number of
modulations and improve reconstruction quality by using compressed sensing [24,25], opti-
mized orthogonal Hadamard basis patterns [26,27], or sinusoidal patterns [28,29]. With the
advancement of research, deep learning (DL) has also become a mainstream technique
adopted in SPI [30–34], which is capable of obtaining high-fidelity images at low sampling
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rates. To address the problem of poor generalization of the pre-training of data-driven
neural networks to target scenes, Situ et al. [35] proposed a physics-driven neural network
suitable for SPI. It uses the residuals between experimentally measured single-pixel val-
ues and the estimated single-pixel values output by the network to iteratively correct the
parameters in the untrained network so that the image reconstruction results constantly
approximate the real object images. However, its deep integration with optical encryption
needs to be further investigated.

The attention module is currently a popular module structure in neural networks.
The introduction of this module allows a network to automatically learn the important
features of the input and adjust the weights accordingly [36–38]. This mechanism allows a
network to focus more on important information, improving the accuracy and robustness
of the network. The inputs of this module are three vectors and its output is one vector.
Therefore, the forward propagation process of this module can also be regarded as the
encryption of these three input vectors. Based on this concept, this paper proposes a
physically driven neural network SPI encryption scheme using the above attention module
to deal with multi-image encryption tasks [39–42]. We let the two vectors of the attention
module be taken from single-pixel measurements that correspond to two different object
images and set the sequence of cryptographic keys as the third vector. The output vector will
be transmitted as ciphertext for communication. These three vectors have the same number
of elements. In the decryption process, we use a physically driven neural network to decode
two sequences of single-pixel measurements from the ciphertext and then reconstruct two
decrypted images via repeated iterations of fully connected layers of the deep neural
network. The neural network infrastructure used here is the multi-wavelet residual dense
convolutional neural network (MWRDCNN) [43], previously proposed by our group,
which has been proven to have superior performance. Combined with the physics-driven
mechanism, the quality and efficiency of image reconstruction can be further improved. We
will verify the feasibility and efficiency of this scheme and its sensitivity to eavesdropping
attacks through both numerical simulations and optical experiments. To the best of our
knowledge, this scheme is the first attempt at applying the attention module in SPI-based
image encryption. Moreover, the use of a physics-driven neural network in the decryption
stage makes this method more versatile, gives more design freedoms to optical modulation
(without the need to use specifically trained patterns), and decodes higher-quality object
images compared to data-driven DL algorithms.

2. Principles and Methods
2.1. Optical Image Encryption

The optical image encryption process in this scheme is shown in Figure 1a. We assume
that there are N modulation patterns Pi, each consisting of 0 s and 1 s. These patterns are
illuminated onto the object image O(x, y) to be encrypted, and the modulated light field is
recorded by a single-pixel (bucket) detector. The measured light intensity of the single-pixel
detector Bi (i = 1, 2, · · · , N) can be expressed as:

Bi =
∫∫

Pi(x, y)O(x, y)dxdy. (1)

In this scheme, two object images are encoded using the same number of modulation
patterns, yielding two sets of single-pixel measurements, denoted as B1 and B2, respectively.
Then, B1 and B2 are fed into the attention module along with a sequence of cryptographic
keys K of the same dimension, which is composed entirely of random real numbers.
The output signal of the attention module is the encrypted ciphertext C. Since all three
inputs to the attention module are purely random, its output is also purely random, and no
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useful information can be obtained from the encrypted signal C alone. The above process
can be expressed as:

C = Attention(B1, B2, K) = Softmax

(
B1 × BT

2√
d

)
K, (2)

where d is the number of elements in the sequence of B1, B2, K. After being processed
by the attention module, two sequences of single-pixel (bucket) values according to two
different object images are encrypted into a ciphertext sequence of the same dimension.
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Figure 1. Encryption and decryption processes. (a,b) Flowcharts of image encryption and decryption
and image reconstruction, respectively. SPI denotes the measurement process of single-pixel imaging.

2.2. Decryption and Image Reconstruction

In Figure 1b, we illustrate our decryption process. First, the ciphertext sequence passes
through a fully connected layer to generate two sequences of 1D signals with the same
length as B1 and B2. These two sequences of signals are then fed into an untrained neural
network to complete the initial reconstruction of two object images. Then, we use the
SPI mathematical measurement model to compute the single-pixel values, B′

1 and B′
2, of

the above initially reconstructed images and input them, together with the sequence of
cryptographic keys K, into the attention module, which outputs the estimated values Ĉ of
the ciphertext sequence. Next, the residual between the estimated values of the ciphertext Ĉ
and the original ciphertext is calculated to update the weights of the network. With repeated
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iterations, the residual gradually decreases and the output of the network finally converges
to two high-quality plaintext images. The loss (residual) function used here is defined as:

L =
1

2N

N

∑
i=1

[Ĉ(i)− C(i)̇]2. (3)

2.3. Image Reconstruction Neural Network

The applied network architecture for image reconstruction is illustrated in Figure 2.
The input 1D signal is augmented by the fully connected layer to a 1× 16,384 1D signal and
reshaped into a 128 × 128 2D image. We continue to use the MWRDCNN proposed in our
previous work [43] as the network architecture for image recovery, which has been proven
to have superior image reconstruction performance. Compared with the traditional U-net
structure, the MWRDCNN replaces the original pooling layer using wavelet and inverse
wavelet transforms to complete the upsampling and downsampling processes, respectively,
thus avoiding information loss. In each layer of the network, we introduce the dense block
that enhances the learning capability of the network by establishing short-term connections
among the feature maps. Furthermore, the dense blocks in different layers help the network
to accurately extract image features at different scales. After the feature map undergoes the
last layer of inverse wavelet transform, the network outputs a reconstructed image, and
its weights are optimized based on the calculation of the residuals between the predicted
ciphertext and the original ciphertext.

Here, the learning rate decreases exponentially from 0.02 to 0.0002, and an NVIDIA
Geforce RTX 2080 Ti GPU is used to accelerate the computation.
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Figure 2. Neural network structure for image reconstruction. DWT and IWT indicate discrete wavelet
transform and inverse wavelet transform, respectively.

3. Numerical Simulation and Analysis

To verify the feasibility of the proposed approach, some numerical simulations are
performed, as shown in Figure 3a. The two images to be encrypted are the “cameraman”
image from the “Set12” data set and the handwritten digital image from the MNIST data set.
We first resize each image to 128 × 128 pixels and set the number of modulation patterns to
1638, corresponding to a sampling rate of 10%. The single-pixel intensities simulated from
these two images are given in Figure 3b. In Figure 3c, we show the 1D encrypted sequence
output by the attention module. With the help of the sequence of cryptographic keys
and the physics-driven neural network, two decrypted sequences and two high-quality
plaintext images can be acquired, as shown in Figure 3d and Figure 3e, respectively.
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Figure 3. Simulation results with a 10% sampling rate. (a) The plaintext image; (b) the single-
pixel signals; (c) the encrypted signal; (d) the decrypted single-pixel signal; (e) the reconstructed
plaintext images.

3.1. Effect of Network Parameters on Reconstruction Results

The MWRDCNN is a typical U-network structure. Generally, deeper network struc-
tures often result in slow computation speed and extremely large memory, increasing
difficulty in practical applications. Thus, in this paper, we investigate the reconstruction
results of a network with different numbers of layers to select an appropriate network
structure. It should be noted that the 16 GB of video memory of the used RTX 2080 Ti is not
enough to withstand a network with more than four layers. Since the video memory of the
RTX 2080 Ti exceeds that of most graphics cards on the market, the network structure with
more than four layers is not discussed in this paper.

The reconstruction quality using the MWRDCNN with the number of layers changing
from one to three at different sampling ratios is presented in Figure 4. We use the peak
signal-to-noise ratio (PSNR) as a quantitative measure to evaluate the reconstruction quality:

PSNR = 10 log10

(
1

MSE

)
, (4)

MSE =
1

1282

128

∑
p=1

128

∑
q=1

[Ô(p, q)− O(p, q)]2. (5)

where MSE is the mean-square error and Ô denotes the reconstructed image. The larger
the PSNR value, the better the reconstruction quality.
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Figure 4. Peak signal-to-noise ratio (PSNR) curves of reconstructed images using our network of
different depths. (a,b) PSNR curves of the “cameraman” and handwritten digit images with different
numbers of layers, respectively.
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It can be observed in Figure 4 that the reconstruction quality of all three networks
improves linearly as the sampling rate increases, and deeper networks have better recon-
struction. Therefore, in the following, we use the MWRDCNN with a three-layer depth for
both the numerical simulations and optical experiments.

3.2. Effect of the Number of Training Steps on Reconstruction Quality

To balance the reconstruction quality and computational efficiency, we further investi-
gate the relationship between the reconstruction quality and the number of training steps.
The curves of the recovered “cameraman” image and handwritten digit image are plotted
in Figure 5.
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30

“cameraman”

handwritten digit

“cameraman”

handwritten digit

P
S

N
R

/d
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Number of training steps

Figure 5. PSNR curves of reconstructed “cameraman” and handwritten digit images as a function of
the number of training steps, which is changing from 1 to 400.

It can be seen in Figure 5 that when the number of training steps is less than 200,
the PSNR value significantly increases with the number of training steps, whereas when
the number of training steps is greater than 200, the PSNR value tends to be saturated and
no longer significantly increases. Therefore, we set the number of training steps to 200 in
the following simulations and experiments.

3.3. Effect of the Number of Stolen Bits of the Cryptographic Key Sequence on the
Reconstruction Results

To verify the security of the attention-inserted cryptosystem, we perform an eaves-
dropping analysis. At first, the security of the system is ensured by the privacy of the
modulation patterns and cryptographic keys. If the eavesdropper Eve randomly guesses
a set of random modulation patterns and cryptographic key sequence, it is absolutely
impossible for Eve to decrypt any information. From the perspective of matrix theory, even
if the modulation patterns are wrong by just a little bit, the final decryption results will
be very different. Now, let us consider an extreme case where Eve has bribed a user to
acquire the complete modulation patterns, along with knowledge of the pixel size of the
object images, and the cryptographic key with some missing values. Eve does not know
whether the intercepted cryptographic keys are complete, and the length of the original
cryptographic key sequence is only related to the number of modulations. In the following
analysis, we examine the effect of the proportion of correct stolen cryptographic keys
to the total number of cryptographic keys on the decryption and reconstruction quality.
In Figure 6, we plot the PSNR curves of the “cameraman” and handwritten digit images as
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a function of the eavesdropping percentage. For the grayscale “cameraman” image, when
the eavesdropping ratio is lower than 96%, the reconstructed image does not contain any
valuable information. For the handwritten digit image, the reconstruction quality gradually
decreases as the eavesdropping ratio decreases, and when the eavesdropping ratio is lower
than 92%, no valuable information can be displayed in the recovered image. Thus, very
few missing keys can lead to deciphering failures. Furthermore, as long as the length of the
cryptographic key sequence is large enough, the proposed cryptosystem will exhibit good
resistance to eavesdropping attacks.

90%92%94%96%98%100%
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30

Eavesdropping percentage

P
S

N
R

/d
B

Figure 6. PSNR curves of the “cameraman” and handwritten digit images as a function of the
eavesdropping percentage, with a sampling rate of 10%.

4. Optical Experiment Results

We built the SPI’s experimental setup to further verify the proposed method, as shown
in Figure 7. The thermal light emitted from a tungsten halogen lamp is collimated and then
illuminates the object to be encrypted. The light field that carries the object information is
imaged onto a digital micromirror device (DMD) for intensity modulation. The modulated
light field is then focused by a lens and collected by a photomultiplier tube (PMT), which
outputs a 1D sequence of single-pixel values. In this scheme, the two object images required
for a single encryption are encoded in this way.

In our experiments, we select the “peppers” image from the “Set12” data set and
another handwritten digit image from the MNIST data set as the object (plaintext) images,
as shown in Figure 8a. Each object image is modulated 4096 times by the DMD, correspond-
ing to a sampling rate of 25%. Without loss of generality, the switching speed of the DMD
is set to 200 frames/s. The recorded single-pixel measurements are presented in Figure 8b.
After being processed by the attention module, an encrypted ciphertext sequence can be
obtained, as shown in Figure 8c. Then, we use our network to decrypt the single-pixel
value sequences and reconstruct the corresponding plaintext images with high quality,
as shown in Figure 8d and Figure 8e, respectively. We can see that the performance of this
scheme in the optical experiments is consistent with the simulation results, which once
again proves the feasibility of this scheme.
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Figure 7. Experimental setup. The thermal light illuminates the object and is then imaged onto a digi-
tal micromirror device (DMD), with the modulated total intensity being recorded by a photomultiplier
tube (PMT).
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Figure 8. Experimental results with a 25% sampling ratio. (a) The grayscale “peppers” image and
digit “9” image as the object (plaintext) images; (b) the single-pixel measurements of the object images;
(c) the encrypted signal; (d) the decrypted single-pixel signals; (e) the recovered plaintext images.

Next, to demonstrate the performance of the proposed method in decoding reconstruc-
tion, we compare it with a variety of traditional SPI reconstruction algorithms, including
background removal GI, differential ghost imaging (DGI), TVAL3, and classical physics-
driven neural networks [35], using experimental measurement data. Here, a uniform
sampling rate of 25% is chosen, and the reconstruction results are given in Figure 9. To as-
sess the reconstruction quality more comprehensively, we additionally introduce perceptual
quantitative metric structural similarity (SSIM) [44], which can evaluate the perceptual
difference between the original image and the recovered one. The larger the SSIM value,
the better the image quality. Here, we can see that the reconstruction results of traditional
intensity correlation functions, such as background removal GI and DGI, are very poor,
whereas TVAL3 performs better but still has deficiencies in detail resolution. Both the
classical physics-driven neural network and the proposed method are able to reconstruct
near-perfect handwritten digital images. But when dealing with the more complicated
“peppers” image, more noise exists in the image recovered using the classical physics-driven
neural network, and the quality of its decoded image is obviously not as good as the image
decoded using our method. Therefore, the proposed method exhibits superior performance
in image reconstruction.
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Figure 9. Image reconstruction results (marked with PSNRs and SSIMs) of experimental measurement
data with the same sampling rate of 25% using different methods, including background removal
GI, differential ghost imaging (DGI), TVAL3, the classical physics-driven neural network, and the
proposed method.

Next, we perform a security analysis using a method similar to that used in the
aforementioned simulations. It is also assumed that the eavesdropper can steal some part
of the cryptographic key sequence. The PSNR curves of the “peppers” and digit “9” images
as a function of the eavesdropping percentage are plotted in Figure 10. The results again
prove that the proposed encryption system is sufficiently secure.

25
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90%92%94%96%98%100%

Figure 10. PSNR curves of the reconstructed images from experimental measurements against the
eavesdropping percentage of the cryptographic key sequence, with a sampling rate of 25%.

In the proposed cryptosystem, the encrypted ciphertext comes from the output of the
attention module. The key space [41,42,45] can be infinite because either the two sequences
of single-pixel measurements or the input cryptographic key sequence are random with
unlimited dynamic range.

To prove the generality of the proposed optical encryption scheme, we further analyze
the effect of the modulation patterns on the image reconstruction results (see Figure 11).
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Figure 11. Reconstruction results (marked with PSNRs and SSIMs) for two object images using
identical and different sets of modulation patterns.

In the first case, two object images are encoded using two identical sets of modulation
patterns, whereas in the second case, they are encoded using two different sets of mod-
ulation patterns. It can be seen that in both cases, the grayscale “peppers” image can be
reconstructed with high quality at a sampling rate of 25%. The details of the reconstructed
images become more enriched with the increase in the sampling rate. The handwritten digit
“9” image exhibits excellent recovery when the sampling rate is not less than 25%. Benefiting
from the use of the attention module and physics-driven neural network, our encryption
method can complete encryption using arbitrary modulation patterns and achieve good
decryption results, which are sufficient to meet practical requirements.

5. Conclusions

In summary, we propose an efficient optical image encryption method based on
attention physics-driven deep SPI. In this method, we use the attention module to perform
encryption, with inputs of two sequences of single-pixel values corresponding to two
object (plaintext) images and a sequence of cryptographic keys. For the decryption process,
we design an attention-inserted physics-driven neural network to constantly update the
weights of the network by calculating the residuals between the estimated ciphertext and
the true ciphertext, ultimately obtaining high-fidelity reconstruction results. This optimized
attention-inserted physics-driven neural network structure not only ensures high-quality
reconstruction of plaintext images but can also be easily applied to a wide variety of
modulation patterns. The privacy of the modulation patterns and the cryptographic keys is
crucial to ensure the security of the system. We have also demonstrated through simulation
and experimental results that if the eavesdropper steals some part of the cryptographic
keys, deciphering will fail as long as a small number of cryptographic keys are missing.
Although the attention module introduced in this paper is only capable of handling two-
channel image encryption, in future research, we will design more complicated modules
with more input channels to handle multi-image encryption tasks. Therefore, this work
tries to break new ground, hoping to provide new ideas for intelligent optical encryption
based on SPI.
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