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Abstract: Ruby mangoes are a cultivar with a thick skin, firm texture, red color, no splinters, and thin
seeds that is grown in eastern Thailand for export. Implementing a low-power wide-area network
(LPWAN) for smart agriculture applications can help increase the crop quality or yield. In this study,
empirical path loss models were developed to help plan a LPWAN, operating at 433 MHz, of a
Ruby mango plantation in Sakaeo, eastern Thailand. The proposed models take advantage of the
symmetric pattern of Ruby mango trees cultivated in the plantation by using tree attenuation factors
(TAFs) to consider the path loss at the trunk and canopy levels. A field experiment was performed to
collect received signal strength indicator (RSSI) measurements and compare the performance of the
proposed models with those of conventional models. The proposed models demonstrated a high
prediction accuracy for both line-of-sight and non-line-of-sight routes and performed better than the
other models.

Keywords: RSSI; Ruby mango; LPWAN 433 MHz; smart agriculture; path loss prediction

1. Introduction

Thailand is famous for its mangoes; in particular, Ruby mangoes are a cultivar with
a thick skin, firm texture, red color, no splinters, and thin seeds that is grown in eastern
Thailand for export. The Thailand Board of Investment supported 71 projects in the
agriculture and food processing sector worth 375.31 million USD in 2019 and 92 projects
worth 882.12 million USD in 2022 for a 30% increase in investment each year [1]. Smart
agriculture is widely used in many countries to accommodate extreme weather conditions,
growing populations, and a reduction in agriculture areas. It involves the use of different
types of Internet of Things (IoT) sensors to collect data on the soil, air, water, and insects,
which are then analyzed to facilitate the decision-making process [2]. Using IoT to monitor
mango plantations can help control the quality and quantity of the crop as well as increase
the operational efficiency and crop productivity [3]. Jani and Chaubey [4] studied the
automation of watering, fertilizing, pest detection, and pesticide spraying to minimize
farmer intervention.

Long Range (LoRa) low-power wide-area networks (LPWANs) are the preferred com-
munications option of most IoT applications for smart agriculture. LoRa-based solutions
have been applied to monitor irrigation systems, crops, trees, and livestock, but potential
issues include the network bandwidth, density, sensor complexity, and power demand,
as well as latency in the decision-making process [5]. LoRa uses license-free and region-
dependent industrial, scientific, and medical (ISM) frequency bands: 863–870 MHz for
Europe and 902–928 MHz for the United States. It can also be set to operate in the lower
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ISM bands of 433 and 169 MHz [6]. Pinto et al. [7] used an ISM band of 2.4 GHz in a tomato
greenhouse. Abouzar et al. [8] studied the received signal strength indicator (RSSI) of a
wireless sensor network (WSN) operating at 2.45 MHz above and below the canopy in an
agricultural field. Increasing the power efficiency and network life are important issues for
WSNs. The key factors are the data packet size and transmission power level [9]. Planta-
tions comprise rows of densely foliated trees, which can cause a significant propagation loss.
Moreover, tree leaves tend to absorb water, which can cause further scattering of the signal.
Low frequencies, such as 240 MHz, are less likely to be affected by weather conditions,
such as rain and strong winds [10]. Identifying the communication channel pattern is
important for describing the occurrence and nature of large-scale fading effects [11]. LoRa
data transmission is vulnerable to near-ground effects and blockages caused by vegetation
canopies and tree trunks, which interrupt the communication nodes and increase their
energy consumption.

1.1. Related Work

There are generally two types of path loss models. Firstly, the most commonly used are
empirical path loss models for vegetation, namely, the log-distance model and exponential
decay model (EDM), which are derived from the measured data in real environments,
therefore are easy to use and provide an accuracy prediction. The second type are machine
learning models, which are derived from training processes of expert systems.

In case of the empirical models, Raheemah et al. proposed an empirical path loss
model for mango greenhouses, at a frequency of 2.425 GHz, with seven different antenna
heights of 0.5 m, 1.0 m, 1.5 m, 2 m, 2.5 m, 3 m, and 3.5 m [12]. In this study, thirteen
mango trees were in a row, with a total of 3 rows. Also, the separation distance between
each tree in the same row was approximately 3.2 m, and the separation distance between
each row was 2.2 m. The trees were 5 years old with a mean maximum height of 2 m,
a main trunk height of 1 m, and a mean trunk diameter of 0.16 m. This model showed
the best prediction compared with the conventional models. Anzum et al. proposed a
log-distance with multi-wall attenuation model, based on LoRa, at 433 MHz measured
data for a symmetric pattern of oil palm trees in plantation [13]. This model provided an
average RMSE of 2.74 with respect to the measured path loss. Anderson et al. proposed
characterization of low-antenna (1.3 m) with an ultrawideband pulse (830–4200 MHz),
for four forest environments, light brush, light forest, medium forest, and dense forest.
The results showed that the path loss exponent (n) ranged from 2.5 to 3.8 with a standard
deviation (σ) range from 2.1 dB to 4.4 dB [14]. Azevedo et al. proposed an empirical path
loss model via the tree trunks of different trees at frequencies of 870 MHz and 2.414 MHz.
The multiplication of the tree density by the average diameter of the trunk was a parameter
that influenced the path loss exponent [15]. Additionally, tree density, average tree canopy
diameter, and foliage density were input parameters to estimate the path loss in areas
with tree foliage [16]. Barrios-Ulloa et al. reviewed the path loss models for 200 MHz
to 95 GHz, in both the log-distance and ABC models and provided a comparison of the
RMSE of those models [17]. A wireless communication near-ground was proposed with
the plane earth model for VHF and UHF bands by Meng et al. The researchers limited their
interest to specific phenomena, such as the impact of near-ground or surface components
on signal propagation in different environments [18]. Additionally, path loss models with
break point distance on-ground, near-ground, and above-ground (5 cm, 50 cm and 1 m)
were measured and analyzed at a frequency of 470 MHz by Tang et al. [19]. Jong et al.
proposed a tree scattering model for a single oak tree at a frequency of 1.9 GHz [20]. Lastly,
Leonor et al. proposed a raytracing-based scattering model for a Ficus benjamina tree and
a Thuja pelicata tree at frequencies of 20 GHz and 62.4 GHz [21,22].

There are many types of machine learning (ML) models, such as the ANFIS model by
Hakim et al. [23], Artificial Neural Network (ANN) by Wu et al. [24] and Pedro et al. [25],
and Asynchronous Federated ML by You et al. [26]. Additionally, Pal et al. proposed non-
dominated sorting genetic algorithm (NSGA-III) models for two medium grass vegetations,
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paddy and sugarcane, using 2.4 MHz measured data over node height and crop cycle
periodic combinations [27]. These models provided high performance for each trained
point, which were confirmed by Shibu et al. [28]. However, when the environments are
changed, the models may require new training or optimization to avoid predicted errors.

The above empirical path loss models depended on vegetation types, the radio wave
frequency, vegetation height, and the distance in the depth of the vegetation. However,
all of them provided an estimate of the path loss of the radio signal that is quite different
from those obtained from the conventional standard models. Therefore, in this study,
propagation models at 433 MHz for the WSN at trunk and canopy levels with tree attenua-
tion factors (TAFs) are proposed for a Ruby mango plantation, with the addition of LOS
path loss models. Additionally, the excess free-space loss or ABC models are included
and compared. Furthermore, we applied the near-ground plane earth model to optimize
the accuracy of the proposed model. Finally, a comparison of the proposed models and
standard models such as, ITU, COST, and FITU are presented and discussed.

1.2. Contribution

A common source of error in path loss models is non-uniform vegetation. However,
Ruby mango trees are trimmed to limit their height and are planted in symmetric patterns.
Therefore, the size of the trees remains much the same despite changes in the trees over time.
In this study, this fact was used to propose empirical path loss models for planning the
WSN of a Ruby mango plantation in Sakaeo, eastern Thailand. For the proposed models,
TAFs were used to consider non-line-of-sight (NLOS) path losses at the trunk and canopy
levels, which were then combined with line-of-sight (LOS) path losses. The proposed
TAFs are non-linear for each TAF and are a characteristic of this type of plantation. This
contribution is valid because tree height and spacing are maintained over the years.

Machine learning models may provide better results, however, they require consider-
able time for computation. The proposed model is comfortable and uses little time for the
computation. This study makes the following contributions to the literature:

• TAFs are proposed for a Ruby mango plantation. These factors can be used for
both short- and long-distance path loss prediction with an accuracy comparable to
conventional regression models.

• An exponential decay model is modified to be suitable for Ruby mango plantations.
• RSSI measurement data were captured for a LoRa LPWAN in the 433 MHz frequency

channel.

The remainder of this paper is structured as follows: Section 2 presents the proposed
empirical path loss models; Section 3 presents the field measurements; Section 4 presents
the results and discussion; Section 5 concludes the paper.

2. Proposed Path Loss Models

The two main forms of empirical path loss models used for vegetation, the exponential
decay (i.e., ABC) model and TAF model, were adopted in this study.

2.1. ABC Model

The following path loss model for a theoretically free-space can be used as a reference
for estimating the path loss in different environments:

PL f ree (dB) = −27.56 + 20log10( f ) + 20log10(d) (1)

where f is the frequency (MHz) and d is the distance between transmitting and receiving
antennas (m). For wave propagation through trees, the excess loss is generally expressed as:

PLexcess (dB) = A f BdC (2)
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where A, B, and C are values fitted to the measured data. For the near-ground path loss,
a plane-Earth model is often used that considers direct rays (i.e., LOS), in addition to
ground-reflected rays that are received by the receiver [18]:

PLPlane Earth(dB) = 40log(d)− 20log(ht)− 20 log(hr) (3)

where ht is the transmitting antenna height (m), hr is the receiving antenna height (m), and
d is the distance between the transmitter and receiver (m). This model assumes that d is
much greater than the ht and hr. The excess loss determined in (2) and the plane-Earth loss
calculated in (3) can be combined to derive a path loss model for a forest:

PL f orest(dB) = A f BdC + 40log10(d)− 20log10(ht)− 20log10(hr) (4)

The effectiveness of the perfect plane-Earth model is reduced by lateral wave propaga-
tion from diffraction over treetops and around trees, especially in the VHF band. Thus, the
fitted ground reflection model is often applied:

LFGR(dB) = 10nlog10(d)− 20log10(ht )−20log10 (hr) (5)

where n is an empirical path loss exponent. Then, the foliage path loss model is derived:

PL f orest(dB) = A f Bdc + LFGR(dB) (6)

The standard form of the forest model in (2) is still used by the ITU Recommen-
dation (ITU-R) model [17] for general forest environments in a wide frequency band
(200 MHz–95 GHz). The A, B, and C parameters are then fitted to the free-space path
loss model in (1), when the tree type and environment change to modify or compare with
standard models.

2.2. Tree Attenuation Factors Model

The log-distance path loss models have usually been used to analyze indoor and
outdoor electromagnetic wave propagation in the simple form as follows:

PLone slop = PL(d0) + 10nlog10(d) (7)

where PL(d 0) is path loss over the reference distance d0(1 m), d is the distance between
the transmitter and the receiver, and n is the path-loss exponent (PLE) that indicates how
fast the path loss increases with distance. The empirical PLE is obtained as follows:

n = [RSSI(d)− RSSI(d0)]/10log10(d) (8)

where RSSI(d) is the RSSI at distance d, and RSSI(d0) is the RSSI at 1 m distance ( d0)
in dBm. Since the trees in this study are separated, every 5 m distance acts as a floor
attenuation factor (FAF) on wireless communication inside a building [29]. Therefore, we
proposed to adapt the forest model with a tree attenuation factor (TAF) for the specific
forest environment as follows:

PL f orest = PL(d 0) + 10nlog10(d) + ∑M
i=1TAFi (9)

where TAFi represents the attenuation in a forest caused by M trees, the subscript i rep-
resents the number of direct waves through the trees, and nLOS is the PLE of the LOS
route. Four different TAFs were derived for antenna heights of 0.3, 1.2, 2.2, and 2.7 m
representing the trunk, bottom canopy, middle canopy, and top canopy levels, respectively.
The forest attenuation factors were also classified into either trunk attenuation factor or
canopy attenuation factor. The proposed models were completed from field measurements
in the next section as shown by a flowchart in Figure 1.
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Figure 1. Flowchart of the proposed empirical path loss models.

3. Field Measurements
3.1. Site Description

Measurements were taken at a Ruby mango plantation in Sakaeo Province of eastern
Thailand (13.4166954◦ N, 102.1368925◦ E). To ensure a good harvest, Ruby mango trees
must be planted at a certain density. Thus, the plantation follows a specific pattern. The
trees were planted in straight lines with 6 m between rows and 5 m between trunks in the
same row (Figure 2). There were 320 mango trees per hectare. Figure 3 (left) and Table 1
present the measured tree parameters. The trees had an average height of 4.5 m, which
comprised the trunk height (0.55 m) and canopy depth (3.96 m), and an average canopy



Sensors 2024, 24, 750 6 of 17

diameter of 5.69 m. Additionally, leaf dimensions were between 15–33 cm. as shown in
Figure 3 (right).
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Table 1. Measurement Parameters of Ruby Mango Trees (in Meters).

No. Total Height Trunk Height Trunk Diameter Canopy Depth Canopy Diameter

Tree 1 3.82 0.56 0.40 3.4 5.5

Tree 2 4.66 0.66 0.56 4.0 6.0

Tree 3 4.79 0.49 0.45 4.3 5.6

Tree 4 5.15 0.65 0.64 4.5 6.5

Tree 5 4.77 0.47 0.63 4.3 6.2

Tree 6 3.96 0.46 0.46 3.5 4.7

Tree 7 4.85 0.65 0.54 4.2 6.0

Tree 8 3.97 0.47 0.43 3.5 5.0

Average 4.50 0.55 0.51 3.96 5.69
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3.2. Measurement Setup

The following equipment was used for propagation measurement: a fixed 433 MHz
LoRa module (i.e., transceiver and omni-directional antenna) as the receiving station and
a portable LoRa module as the transmitter. This frequency band is allowed only for the
Asia region. This study used omni-directional antennas both as the transmitter and the
receiver in order to obtain the surrounding effects in the proposed model. These modules
were connected to a microcontroller (Arduino board) that programmed the transmitter to
wirelessly send a data packet containing the word “hello” with the RSSI to the receiver every
1.5 s, as shown in Figure 4. Since this study was only focused on the wave propagation
characteristics through the Ruby mango trees, therefore, a spreading factor (SF) of 7 and
a bandwidth (BW) of 125 kHz were used to obtain the best RSSI and time on air. Table 2
summarizes the equipment parameters. To model the path loss, the RSSI data were captured
by a notebook computer at the receiving station, while the portable transmitting node was
moved in intervals of 5 m up to 40 m in both the forward and reverse directions. The
antenna heights of the transmitter and receiver were varied at the same heights of 0.3, 1.2,
2.2, and 2.7 above the ground, as shown in Figure 5. This make waves propagate via the
tree classified into three parts, namely (1) Ground-reflected wave, (2) Direct wave, and
(3) Lateral wave. In order to obtain the correct measured data, the measurements were
repeated three times, both forward and reverse routes without strong wind or rain. The
measurements were divided to 2 routes for path loss modeling and validation with a total
of 7680 measured RSSIs.
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Table 2. Measurement Setup.

No. Parameters Value Unit

1 Power Amplifier (PA) 18 dBm

2 Antenna gain 2.2 dBi

3 Frequency 433 MHz
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Table 2. Cont.

No. Parameters Value Unit

4 Bandwidth (BW) 125 kHz

5 Spreading factor 7 -

6 Code rate (CR) 4/5 -

7 Antenna height 0.3–2.7 m

4. Results and Discussion
4.1. LOS Routes

To characterize the signal attenuation through trees, RSSI measurements were taken
along LOS routes in a Ruby mango plantation. Data were measured along LOS routes every
5 m in a tree line for different antenna heights. Figure 6 shows the relationship between the
RSSI and distance for one LOS route. The relationships at different antenna heights can be
represented as follows:

- Trunk level (h = 0.3 m)

RSSI (d) = −36.32 − 36.68log(d) (10)
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Figure 6. RSSI measurement (LOS) at different antenna heights.

- Bottom canopy level (h = 1.2 m)

RSSI (d) = −36.5 − 30.7log(d) (11)
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- Middle canopy level (h = 2.2 m)

RSSI (d) = −32.3 − 28.6log(d) (12)

- Top canopy level (h = 2.7 m)

RSSI (d) = −36.9 − 29.3log(d) (13)

At antenna heights close to the ground, the PLE was close to 4.0. In particular,
(10) shows that the measured PLE agreed with the plane-Earth model in (3). The PLE
decreased with increasing antenna height to approach 2.0. In particular, (12) and (13) show
that the measured PLE agreed with the free-space model. Increasing the antenna height
removed the fast fading due to strong winds in the cool season. The plane-Earth model was
accurate when the antenna was near the ground, as shown in Figure 6a. As the antenna
height increased, the plane-earth model introduced a large estimation error, especially at
distances close to the receiving node as shown in Figure 6b,c.

4.2. NLOS Routes

Figure 7 plots the relationship between the RSSI and distance when the effects of
foliage loss were included at different antenna heights. These relationships are represented
by the following equations:

- Trunk level (h = 0.3 m)

RSSI (d) = −37.87 − 37.89log(d) (14)

- Bottom canopy level (h = 1.2 m)

RSSI (d) = −31.97 − 38.38log(d) (15)

- Middle canopy level (h = 2.2 m)

RSSI (d) = −28.6 − 43.34log(d) (16)

- Top canopy level (h = 2.7 m)

RSSI (d) = −34.97 − 37.13log(d) (17)

The largest difference in RSSI between the LOS and NLOS routes was observed at an
antenna height of 2.2 m, which corresponded to the largest PLE of 4.33. This is because
radio waves traveling through the middle canopy suffered large attenuation. In contrast, a
small difference was observed between the LOS and NLOS routes for waves propagating
through the trunks, as shown in Figure 7a. This can be attributed to the near-ground effect,
which includes diffraction at the trunk level. The difference between the LOS and NLOS
routes was less at an antenna height of 1.2 m (Figure 7b) than at an antenna height of 2.2 m
(Figure 7c). This is because waves propagating through the bottom canopy suffered less
attenuation, owing to the less dense foliage.

Similarly, the difference was also smaller at an antenna height of 2.7 m (Figure 7d) than
at an antenna height of 2.2 m, because the waves propagated through less dense foliage
in the top canopy, and the waves diffracted at the top of the canopy. The NLOS path loss
model expressed by (14)–(17) was similar to the free-space model (CI).

Table 3 presents the TAFs through the first to eighth trees. The middle canopy had the
largest TAF because of the large canopy volume while the trunk had the lowest TAF because
it presented the smallest obstruction. The validation of the proposed modes provided good
agreements, especially in canopy levels because of the symmetry pattern. However, in the
case of the trunk level, there was an error with RMSE for the validation since the trees in
each row were not in a straight line. The table also presents the A, B, and C parameters in
Equation (2). The B parameter was 0.39 for all cases which represent the single frequency of
433 MHz. Figure 8 shows that the proposed TAF followed an exponential curve according
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to the number of through trees, which is similar to through floors with FAF for multistory
buildings [29]. From the above results, a suitable distance between the communication
nodes is approximately 35–40 m with the specific SF and BW for network planning for this
farm and similar environments.
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Figure 7. RSSI measurement (NLOS) at different antenna heights.
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Table 3. TAFs and ABC Parameters at 433 MHz (SF = 7, BW = 125 KHz).

Antenna Height
(m)

PLE (LOS)
PLE

(NLOS)
Tree Attenuation Factors

A B C Validation
(RMSE)Through TAF (dB)

0.3
(trunk) 3.67 3.79

1 2.40

0.98 0.39 0.34 2.11

2 2.76

3 2.97

4 3.12

5 3.24

6 3.34

7 3.42

8 3.49

1.2
(bottom canopy) 3.07 3.84

1 2.62

0.8 0.39 0.35 0.42

2 3.98

3 4.79

4 5.35

5 5.79

6 6.15

7 6.46

8 6.72

2.2
(middle canopy) 2.86 4.33

1 7.46

0.98 0.39 0.33 0.31

2 11.47

3 13.81

4 15.47

5 16.76

6 17.82

7 18.71

8 19.48

2.7
(top canopy) 2.93 3.71

1 5.09

1.0 0.39 0.3 1.18

2 6.70

3 7.63

4 8.30

5 8.82

6 9.24

7 9.60

8 9.91

4.3. Model Comparison

To compare the proposed model with the industry standard models in the literature,
the RSSI needed to be converted into the path loss:

PL (dB) = Pt + Gt + Gr − (RSSI + K) (18)

where K is an offset that depends on the characteristics of the transceiver chip, the frequency,
and the chosen technology. In the present study, LoRa communication was used with an SF
of 7 and BW of 125 kHz [30].
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The K value can be obtained by calibration. The following three conventional forest
models were selected for comparison.

(1) ITU-R Foliage Attenuation Model

The ITU Recommendation (ITU-R) [31] was developed from UHF measurements and
was proposed for cases where either the transmitting or receiving antenna is close to a
small grove of trees, so that the majority of the signal propagates through the trees. ITU-R
is commonly used for frequencies of 200 MHz–95 GHz and is expressed by

ITU − R (dB) = 0.2 f 0.3d0.6 (19)

(2) COST 235 Model

The COST 235 model [32] is based on measurements made at millimeter-wave frequen-
cies (9.6–57.6 GHz) through a small grove of trees over two seasons: in-leaf and out-of-leaf.
This model is also applicable to frequencies of 200 MHz–95 GHz, and is expressed by

COST 235 (dB) =

{
26.6 f−0.2d0.5 out of leaf
15.6 f−0.009d0.26 in leaf

(20)

For both ITU-R and COST 235, f is the frequency (MHz), and d is the tree depth (m).

(3) FITU-R Foliage Attenuation with Plane-Earth Model

FITU-R was developed by considering datasets collected during two foliation states at
11.2 and 20 GHz [33]:

FITU − R (dB) =
{

0.37 f 0.18d0.59 out o f lea f
0.39 f 0.39d0.25 in lea f

(21)

Lateral waves become dominant at relatively large tree depths, especially in the VHF
and UHF bands when both the transmitter and receiver are placed inside the forest. Based
on measurement data taken from an oil palm plantation, the model becomes [18]:

LITU(dB) = 0.48 f 0.43d0.13 + 40log(d)− 20log(ht)− 20 log(hr) (22)

where f is the carrier frequency (MHz), ht is the transmitting antenna height (m), hr is the
receiving antenna height (m), and d is the distance between the transmitter and receiver (m).

To observe the deviation of the measurement and related empirical models, RMSE
(root-mean-square-error) and MAE (mean-absolute-error) were calculated as follows:

RMSE =

√
∑N

i=1(MEAi − PLi)
2

N
(23)

and

MAE =
∑N

i=1 Mi − PLi

N
(24)

where Mi is measured path loss, PLi is predicted path loss, N is a total number of the data,
and subscripts i are the number of the data.

Table 3 indicates that the maximum TAF through eight trees (19.48 dB) was obtained
for the middle canopy level, and the minimum TAF (3.49 dB) was obtained at the trunk
level. The MAEs of the models are compared in Table 4.

The RMSEs of the models are compared in Table 5. The proposed TAF models provided
a more accurate prediction than the three conventional models, with the best MAE of
2.22 dB and RMSE of 2.65 dB. Figures 9–12 compare the proposed models with the three
conventional models at different antenna heights. Note that the large deviation of measured
path loss occurred at the trunk level with a MAE of 4.79 and RMSE of 6.2 (see Figure 9).
Additionally, the MAE was smaller than the RMSE because of the deviation of the path
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loss measurement at the bottom canopy. (see Figure 10). The models provide minimum
path loss since there are a little leaf in the bottom canopy level. The proposed ABC model
provided a good prediction accuracy overall, however the proposed TAF model generally
provided the best prediction accuracy because of influence from TAFs through the trees. At
the trunk level, the out-of-leaf ITU-R and FITU-R models had a large error, with RMSE of
21.65 dB and 22.59 dB, respectively, while the out-of-leaf COST 235 model demonstrated
a better prediction accuracy with RMSE of 11.77 dB, as shown in Table 5. At the canopy
levels, the proposed TAF model still demonstrated good prediction accuracy, especially at
the bottom canopy level, which had the lowest leaf density. Similarly, the proposed ABC
model still provided good prediction accuracy at distances greater than 10 m. The in-leaf
COST 235 model also performed better than the in-leaf ITU-R and FITU models.

Table 4. Mean Absolute Error Comparison of Models.

Antenna Height (m)

MAE (dB)

Proposed
ITU-R COST235 FITU-R

TAF ABC

0.3
(trunk) 4.79 5.54 19.63 10.19 20.55

1.2
(bottom canopy) 2.22 2.66 16.39 7.91 16.49

2.2
(middle canopy) 4.21 5.14 19.08 6.86 19.09

2.7
(top canopy) 4.13 4.96 17.69 7.45 17.84

Average 3.84 4.58 18.2 8.1 18.49
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Table 5. Root Mean Square Error Comparison of Models.

Antenna Height (m)

RMSE (dB)

Proposed
ITU-R COST235 FITU-R

TAF ABC

0.3
(trunk) 6.2 7.08 21.65 11.77 22.59

1.2
(bottom canopy) 2.65 3.69 16.96 8.61 17.10
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Table 5. Cont.

Antenna Height (m)

RMSE (dB)

Proposed
ITU-R COST235 FITU-R

TAF ABC

2.2
(middle canopy) 5.61 6.70 19.85 8.63 19.10

2.7
(top canopy) 5.26 6.12 18.62 9.09 18.53

Average 4.93 5.90 19.27 9.53 19.33
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5. Conclusions

In this study, an empirical path loss model was proposed for a 433 MHz LPWAN
in a symmetric vegetation plantation. RSSI measurements were taken in a Ruby mango
plantation in Sakaeo, Thailand. LOS and NLOS propagation measurement data were
collected to model the path loss at the trunk and three canopy levels. The PLEs at the
trunk, bottom canopy, middle canopy, and top canopy levels were 3.67, 3.07, 2.86, and
2.93, respectively, for LOS propagation, and 3.79, 3,84, 4.33, and 3.71, respectively, for
NLOS propagation. TAFs were obtained for up to eight trees. When compared with three
conventional models (COST 235, ITU-R and FITU), the proposed TAF model provided
the best prediction accuracy with an average MAE of 3.84 and RMSE of 4.93, while the
proposed ABC model also performed well, with an average MAE of 4.58 and RMSE of 5.9.
Therefore, the proposed TAF model is suitable for a symmetric pattern of Ruby mango trees
in normal situations. However, when the tree produces flowers and fruit, the proposed
models may provide an error for prediction. To reduce the MAE and RMSE, future work
will involve the incorporation of artificial intelligence models, such as neural networks and
adaptive neuro-fuzzy inference systems.
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