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Abstract: In order to address the challenges of low recognition accuracy and the difficulty in effective
diagnosis in traditional converter transformer voiceprint fault diagnosis, a novel method is proposed
in this article. This approach takes account of the impact of load factors, utilizes a multi-strategy
improved Mel-Frequency Spectrum Coefficient (MFCC) for voiceprint signal feature extraction, and
combines it with a temporal convolutional network for fault diagnosis. Firstly, it improves the
hunter–prey optimizer (HPO) as a parameter optimization algorithm and adopts IHPO combined
with variational mode decomposition (VMD) to achieve denoising of voiceprint signals. Secondly,
the preprocessed voiceprint signal is combined with Mel filters through the Stockwell transform.
To adapt to the stationary characteristics of the voiceprint signal, the processed features undergo
further mid-temporal processing, ultimately resulting in the implementation of a multi-strategy
improved MFCC for voiceprint signal feature extraction. Simultaneously, load signal segmentation
is introduced for the diagnostic intervals, forming a joint feature vector. Finally, by using the Mish
activation function to improve the temporal convolutional network, the IHPO-ITCN is proposed to
adaptively optimize the size of convolutional kernels and the number of hidden layers and construct a
transformer fault diagnosis model. By constructing multiple sets of comparison tests through specific
examples and comparing them with the traditional voiceprint diagnostic model, our results show that
the model proposed in this paper has a fault recognition accuracy as high as 99%. The recognition
accuracy was significantly improved and the training speed also shows superior performance, which
can be effectively used in the field of multiple fault diagnosis of converter transformers.

Keywords: converter transformer; current; fault diagnosis; improved hunter–prey optimization;
multi-strategy improved MFCC; voiceprint signal

1. Introduction

In order to ensure the secure and reliable operation of converter transformers, which
serve as intermediate devices for AC-DC power transmission technology, it is essential
to conduct research on fault diagnosis. This research aims to enhance the accuracy and
speed of fault identification, helping to promptly detect internal defects and prevent the
further escalation of accidents. Unlike regular power transformers, converter transform-
ers operate in a unique AC-DC working environment, which implies a higher level of
harmonic currents. Consequently, this complexity in operational characteristics presents
challenges in employing conventional fault diagnosis methods designed for traditional
power transformers [1,2].

The converter transformer, in the process of operation with the core and windings,
produces vibration because of electric power and other factors, and thus mechanical wave
propagation through the transformer oil and rigid connection to the box. The resulting
vibration and voiceprint signals contain a large amount of state information based on
the vibration signal monitoring means that are widely used in the online monitoring of
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power equipment [3,4]. In the vibration signal acquisition process, the deployment loca-
tion requirements of sensors are strict. Smaller deviations will interfere with the results.
The noise detection method is used as a non-contact measurement; its sensor installation
is convenient for solving the problem of high spatial sensitivity. At the same time, the
voiceprint signal acquisition device has a wide frequency range to meet the monitoring
requirements of different specifications of the transformer [5,6]. Numerous scholars both
domestically and internationally have conducted research in this area, achieving promising
results. In reference [7], four voiceprint emission feature spectra were constructed, and
a lightweight fault diagnosis model was established to diagnose loose winding faults in
transformers. Reference [8], based on the no-load operation of transformers, employed
MFCC for voiceprint feature extraction, introduced Principal Components Analysis (PCA)
to remove redundant features, and ultimately utilized the Vector Quantization (VQ) algo-
rithm for accurate identification of loosened iron core faults. Reference [9] extracted features
of on-load tap changers using Mel spectrograms and combined them with convolutional
neural networks to recognize mechanical faults. However, the abovementioned voiceprint
emission recognition techniques are based on traditional MFCC, which involves a cumber-
some process of frame segmentation, windowing, and Fourier transformation to overcome
spectral leakage issues. Furthermore, due to the inherent limitations of single-channel
signal sources, the practicality of fault diagnosis using voiceprint emission signals is mostly
limited to single-fault diagnosis.

To address the issue of the single-fault feature, reference [10] utilized Complete
Ensemble Empirical Mode Decomposition (CEEMD) and short-time Fourier transform
(STFT) to obtain temporal and spectral information about the signals. Deep fault fea-
tures were then extracted using a deep fused convolutional neural network (DFCNN).
Similarly, reference [11] proposed a mixed algorithm called high-order singular value
decomposition (HOSVD)–high-order alternation least square (HOALS) to extract multi-
dimensional features for pattern recognition. Furthermore, reference [12] combined the
fusion multiscale convolutional neural network (F-MSCNN) to fuse sound and vibration
features, leveraging the learning of multi-scale features for subsequent classification.
Reference [13] proposed a real-time fault diagnostic method for hydraulic systems using
data collected from multiple sensors in order to overcome the lack of information con-
tained in a single sensor. Reference [14] processed signals from multiple sensors, thereby
expanding the number of samples to enhance the diagnostic performance. However,
most of the existing studies are based on single or homogeneous signals. They focus on
extracting multidimensional features from different angles without considering multiple
signal sources. The above diagnostic models do not start from different types of signal
sources and ignore the correlation between different signals, making it difficult to extract
deep information effectively from faults.

Existing approaches on data-driven fault classification mostly rely on artificial intel-
ligence algorithms to analyze historical data and extract fault features, and the selection
of parameters during the model training process has a crucial impact on the accuracy
and convergence speed of fault classifiers. Reference [15] proposed a novel expectation
maximization-unscented particle filter-Wilcoxon rank sum test (EM-UPF-W) method for
data-driven techniques, which adaptively estimates noise variables with the help of the
EM algorithm. References [16,17] used an artificial intelligence optimization algorithm for
the adaptive optimization of machine learning parameters to avoid the human experience
of parameter selection, but the existing artificial intelligence optimization is prone to the
problem of local optimal stagnation, which has an impact on the final convergence speed
and accuracy of the model.

Given this context, this article is focused on the division of current signals into intervals,
combining voiceprint signals to achieve fault diagnosis in converter transformers. It
overcomes the inherent limitations of single signal sources and conducts research on multi-
fault diagnosis. The IHPO method is proposed to effectively address the local optimization
problem, serving as a subsequent parameter optimization algorithm. VMD is employed for
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noise reduction, while the S-transform is utilized as a time-frequency conversion method.
The improved MFCC technique based on multiple strategies is employed for feature
extraction. ITCN is utilized for accurate fault identification, offering a novel approach for
fault diagnosis in converter transformer systems. Furthermore, a specific 800 kV converter
station was taken as a case study to validate the effectiveness of this integrated model.

The main contributions of this article are summarized as follows:

• This paper aims to counteract the problems of the traditional hunter–prey optimization
algorithm, which easily falls into the local optimum, and of which the traversal of
population initialization is not strong. It is improved via the introduction of SPM
chaotic mapping and the Levy flight strategy, which is used for the adaptive selection
of parameters in the fault diagnostic model to avoid the interference of the human
experience selection.

• Multi-strategy improved MFCC is proposed for extracting voiceprint signals from
converter transformers. Compared with the traditional voiceprint signal feature
extraction method, the proposed approach incorporates the characteristics specific to
the voiceprint signals of electric power equipment. It overcomes the interference of
redundant information and demonstrates enhanced feature extraction capabilities.

• This paper introduces load signals to segment the operational intervals of converter
transformers, realizes fault diagnosis through multiple types of signal sources,
and proposes the improved multi-strategy MFCC and IHPO-VMD-ITCN fault
diagnostic models. The experimental results demonstrate that the proposed fault
diagnostic methods exhibit significant improvements in terms of both accuracy and
calculation speed.

2. Analysis of Vibration Mechanism of Converter Transformer

Similarly to traditional power transformers, the vibration of converter transformers is
induced by the electromagnetic forces in the windings and the expansion and contraction
of the core due to magnetic hysteresis. These vibrations propagate through the transformer
oil and rigid connections to the enclosure. However, owing to the complex environment
resulting from the dual impact of alternating and direct currents, the vibration excitations
are often characterized by multiple harmonic frequencies, leading to intricate vibration
patterns in different areas.

2.1. Winding Vibration Mechanism Analysis

In accordance with the principles of high-voltage transmission, the current in converter
transformers is accompanied by harmonic currents, including the 6k + 1(k = 1, 2, 3, . . .)th
harmonic current at 50 Hz. This is manifested in Equation (1).

i = ∑ Iαm cos(αω1t + Φα) (1)

where Iαm is the amplitude of each harmonic current, Φα is the phase angle of each harmonic,
and ω1 is the angular frequency of the 50 Hz current.

The interaction between currents of varying frequencies and magnetic fields generates
axial and radial electromagnetic forces is expressed in Equation (2). The windings vibrate
under the influence of these electromagnetic forces.

Fa = k f a(∑ Iαm cos(αω1t + Φα))
2

Fr = k f r(∑ Iαm cos(αω1t + Φα))
2 (2)

where k f a and k f r represent the axial and radial electromagnetic force coefficient and Fa
and Fr represent the winding axial and radial electromagnetic force.
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Based on the motion differential equation, the acceleration of winding vibration can
be represented by Equation (3):

aa = kaa(∑ p1 Iαm
2 cos(2αω1t + φ1) + ∑2 p2 Iα1m cos((α1 + α2)ω1t + φ2)

+∑2 p3 Iα1m Iα2m cos((α1 − α2)ω1t + φ3))
ar = kar(∑ p1 Iαm

2 cos(2αω1t + φ1) + ∑2 p2 Iα1m cos((α1 + α2)ω1t + φ2)
+∑2 p3 Iα1m Iα2m cos((α1 − α2)ω1t + φ3))

(3)

where ∑2 is the sum of multiplication of different harmonics, kaa and kar are the axial and
radial acceleration coefficients, p1, p2, and p3 are the calculation parameters, α1, α2 are the
number of harmonics, and φ1, φ2, and φ3 are the acceleration phase angles.

From Equation (3), it can be observed that under the influence of the 6k1 + 1
(k1 = 1, 2, 3, . . .)th harmonic, apart from the 100 Hz component, there is also a signifi-
cant presence of the 100k1Hzth harmonic in the vibration of the converter transformer.
When the natural frequency of the windings is close, resonance can easily occur, leading to
a deviation of the dominant vibration frequency from 100 Hz.

2.2. Core Vibration Mechanism Analysis

The vibration of the core is primarily induced by magnetostriction. Furthermore, the
excitation voltage of the converter transformer contains numerous harmonic components.
Taking the influence of harmonic voltages into account, the vibration of the core can be
represented by Equation (4):

a = d2(△L)
dt2 = ka(∑ 2Uαm

2 cos(2αω1t + φα) + ∑2 q1 cos((α1 + α2)ω1t + (φα1 + φα2))

+∑2 q1 cos((α1 − α2)ω1t + (φα1 − φα2))
(4)

Among them:

q1 =
(α1+α2)

2Uα1m Uα2m
α1α2

q2 =
(α1−α2)

2Uα1m Uα2m
α1α2

(5)

where Uαm is the amplitude of each voltage harmonic, △L is the magnetostrictive deforma-
tion of the silicon steel sheet, and ka is the saturation flux coefficient.

From Equation (4), it can be observed that the dominant frequency of the core vibration
is primarily at 100 Hz. The influence of harmonics introduce a significant presence of the
100k1 Hz harmonic components. However, nonlinearities in the core and other factors may
lead to deviations in vibration.

2.3. Fault Voiceprint Characterization of Converter Transformers

Similarly to ordinary power transformers, converter transformers are mainly com-
posed of iron core, windings, and rigid connectors. When the iron core ages or experiences
transportation and installation before operation, iron core loosening may occur. If the
condition of iron core loosening is not promptly addressed, it will continue to accumulate,
ultimately leading to iron core loosening failure. Iron core loosening failure results in a
decrease in the fastening force between the silicon steel sheets of the iron core, thereby
increasing the air gap between the stacked pieces. This causes a significant rise in the
amplitude of iron core vibration acceleration, leading to changes in the intrinsic frequency
of vibration and altering the voiceprint characteristics of the transformer. Similarly, during
operation, the converter transformer is constantly subjected to the impact of electric power.
In the event of a short-circuit fault, the intensification of electric power can prompt the
occurrence of winding loosening faults. This leads to an aggravation of axial vibration,
a significant increase in vibration acceleration amplitude, and changes in the vibration
frequency distribution, resulting in alterations to the voiceprint characteristics of the trans-
former. When the converter transformer is running under bias magnetic conditions, the
current signal can be regarded as the superposition of a DC component and Equation (1);
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according to Sections 2.1 and 2.2 of the core and winding vibration mechanism analysis,
it can be observed that, at this time, the vibration frequency of the converter transformer
changes significantly.

In summary, when a fault occurs in the converter transformer, its core and winding
vibration change significantly. The fault voiceprint signal generated under these conditions
differs from that of normal operation. Therefore, the fault diagnosis of the converter
transformer can be realized by adopting a machine learning algorithm for effective feature
extraction of the voiceprint signal.

2.4. Characterization of Voiceprint Pattern Changes under Operating Conditions

The voiceprint signal and vibration signal, originating from the same source, exhibit a
strong correlation. Based on the analysis in Sections 2.1 and 2.2, this study delves into the
vibration characteristics of converter transformers during operation.

This study focuses on 28 converter transformers in a specific 800 kV converter station.
Among them, there are 12 transformers per pole and 4 transformers on standby. The
parameters of certain converter transformers are presented in Table 1.

Table 1. Parameters of converter transformer.

Parameters
Numerical Value

Pole II High-End Y/D Converter Pole I High-End Y/Y Converter

Model number ZZDFPZ-412300/600 kV ZZDFPZ-412300/750/800
Rated capacity/MVA 412.3 412.3

Net side IN/A 933 933
Valve side IN/A 2357 4083

Operating frequency/Hz 50 50
Cooling method OFAF OFAF

The voiceprint signal acquisition system for the converter transformers is illustrated
in Figure 1, and on-site acquisition photos are presented in Figure 2. We employed a
combination of HS14401 capacitive sound sensors with a sampling frequency of 16 kHz
along with a DHDAS dynamic signal acquisition instrument. Each converter transformer
is equipped with three voiceprint acquisition devices, positioned on both sides and at a
45-degree angle, 0.5 m away from the enclosure. The data were collected in the outdoor
substation environment under normal operating conditions, which may include noise
interference. The voiceprint acquisition system was configured to collect voiceprint signals
every 30 min, with each collection lasting for 60 s. Electrical parameters within the converter
station were recorded every 30 min to ensure synchronization between the voiceprint
signals and electrical parameters.

We selected time-length 0.1 s converter transformer in-operation voiceprint slices as
the object of study. The time-domain and frequency-domain characteristics are illustrated
in Figure 3. The main frequency of the converter transformer is 400 Hz, accompanied
by a significant number of harmonics. This is attributed to the proximity of the winding
intrinsic frequency to 400 Hz and the resonance of the converter transformer 100k1 Hz
component, resulting in a deviation of 100 Hz compared to ordinary power transformers.
This deviation corresponds to the theoretical analysis mentioned above.

The vibration characteristics of converter transformers vary under different operat-
ing conditions. In a no-load converter transformer, the core winding resonance becomes
prominent. Under heavy load, the dominant vibration shifts to winding [18–20]. To
facilitate a more precise quantitative analysis, this article focuses on the high-end Y/D
converter transformer of pole II. The main objective is to analyze the main frequency
change pattern of voiceprint characteristics concerning the magnitude of current. The
results are depicted in Figure 4. Under no load, the main frequency of the converter
transformer is 200 Hz, indicating the core vibration stage. At the rated voltage, when
the valve side current is less than 0.2IN , the main frequency alternates between 200 Hz
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and 400 Hz. During this period, the core winding dominance alternates. However,
when the current exceeds 0.23IN , the main frequency stabilizes at 400 Hz, signifying the
dominance of winding vibration.
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Based on the information provided, a strong correlation exists between the electrical
signals and voiceprint features of converter transformers. The division of converter
transformers into three interval states, as illustrated in Table 2, allows for a phased
approach to fault diagnosis. This approach proved effective in overcoming the issue of
overlapping between core faults and winding faults, ultimately enhancing the accuracy
of fault identification.

Table 2. Acousto-electric signal correlation analysis.

Operational State No-Load (I) Load (II) Load (III)

Current and voltage signals U = 1 I = 0 U = 1 I < 0.23 U = 1 I > 0.23
Voiceprint signal main frequency/Hz 200 200/400 400

Conclusion Iron core vibration dominated The core windings alternately dominate Winding vibration dominant

3. Description of Fault Diagnosis Algorithms
3.1. Improved Hunter–Prey Optimization Algorithms

The hunter–prey optimization algorithm is a new intelligent optimization algorithm
proposed by Naruei et al. in 2021 [21]. In this algorithm, the hunter adjusts its position
to obtain the best hunting position, while the prey moves to a safe position to avoid the
hunter’s attack, and the safest position of the prey is the optimal solution of the problem to
be optimized. This article proposes an improvement of the HPO algorithm by introducing
the Levy flight strategy and SPM chaotic mapping. The modifications are briefly described
as follows.

(1) Initialization: The conventional HPO algorithm achieves population initialization
using Equation (6), as described below:

xi = rand(1, d)× (ub, lb) + lb (6)
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wherein xi represents the positions of hunters or prey, d represents the problem
dimensionality, and ub, lb represent the upper and lower bounds of the problem.

We chose Strongly Perturbed Mix (SPM) chaotic mapping for initializing the pop-
ulation, as shown in Figure 5. In comparison to circle mapping, the SPM demonstrates
enhanced randomness and tergodicity, effectively addressing the issue of local clustering
of individual hunters and prey [22]. The expression for SPM chaotic mapping is given by
Equation (7).

xi+1 =



mod( x(t)
η ) + µ sin(πx(t) + r, 1),

0 ≤ x(t) ≤ η

mod( x(t)/η
0.5−η ) + µ sin(πx(t) + r, 1),

η ≤ x(t) ≤ 0.5
mod( 1−x(t)/η

0.5−η ) + µ sin(π(1 − x(t)) + r, 1),
0.5 ≤ x(t) ≤ 1 − η

mod( 1−x(t)
0.5 ) + µ sin(π(1 − x(t)) + r, 1),

1 − η ≤ x(t) ≤ 1

(7)
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search targets, while the prey continuously move to evade hunter attacks and max-
imize their chances of survival. The position update for hunters and prey can be de-
scribed by Equations (8) and (9), respectively. 
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Figure 5. (a) SPM chaotic mapping value distribution; (b) circle chaotic mapping value distribution.

In Equation (7), the parameter η ⊆ (0, 1), µ ⊆ (0, 1) is typically chosen within the
range of (0.4, 0.3).

(2) Optimization strategy: Hunters select prey that are far away from the group as
their search targets, while the prey continuously move to evade hunter attacks and
maximize their chances of survival. The position update for hunters and prey can be
described by Equations (8) and (9), respectively.

xi,j(t + 1) = xi,j(t) + 0.5[(2CZPpos(j) − xi,j(t))+
(2(1 − C)Zµ − xi,j(t))]

(8)

wherein xi,j(t + 1) represents the position of the ith hunter in the jth dimension at the
(t + 1)th iteration, xi,j(t) represents the position of the ith hunter at the tth iteration,
Ppos(j) represents the position of the prey in the jth dimension, C = 1 − 0.98t/T
represents the balance parameter between exploration and exploitation, and Z is an
adaptive parameter.
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xi,j(t + 1) = Tpos(j) + CZ cos(2πR1) · (Tpos(j) − xi,j(t)) (9)

wherein Tpos(j) represents the global best position and R1 represents a random number
within the range of [−1, 1].

It is challenging to overcome local optima solely by introducing SPM chaotic mapping.
However, the utilization of the Levy flight strategy allows for a quick escape from local
optima. The implementation approach is depicted in Equation (10).

Levy(s) ≈
λβ(Γ(λ)) sin(πλ

2 )

π
· 1

s1+λ
(10)

wherein Γ(λ) =
∫ ∞

0 tz−1e−tdt and the value of β is set to 1.5.
In practical applications, the Mantegna method is commonly used to generate random

step lengths following a Levy distribution, as described in Equations (11) and (12).

S =
µ

|v|
1
β

(11)

µ ∼ N(0, σ2), v ∼ N(0, 1)

σ =

{
Γ(1+β) sin( πβ

2 )

βΓ( 1+β
2 )2

β−1
2

} 1
β (12)

In the IHPO optimization algorithm, if the change in fitness values is continuously
less than 0.001, the Levy flight strategy aids in escaping local optima. This generates the
candidate solution for the next iteration, as shown in Equation (13).

xt+1
i = xt

i + θ ⊕ Levy(β) (13)

In the equation, ⊕ denotes element-wise multiplication, θ is a random number uni-
formly distributed in the range [0, 1], and β is equal to 1.5.

The pseudocode used to improve the hunter–prey optimization algorithm is as follows
in Algorithm 1:

Algorithm 1 Improve hunter–prey optimization

Input: HPO Parameters
Output: TargetScore, Best pos, Convergence curve
1: Initialize Hppos
2: Evaluate fitness of each HPpos
3: Set Target as the best HPpos, TargetScore as its fitness
4: for t = 2 to Max_iteration do
5: Update c
6: Update kbest
7: for i = 1 to N do
8: Generate random numbers
9: if rand < B then
10: Calculate xi and dist
11: Set SI as HPpos(idxsortdist(kbest))
12: Update HPpos(i,:) using formula with levy, l, c, z, SI, xi
13: else
14: for j = 1 to dim do
15: Calculate v and rr
16: Update HPpos(i,j) using formula with z(j), rr, Target(j), HPpos(i,j)
17: end for
18: end if
19: Clip HPpos(i,:) values to be within bounds of lb and ub
20: Evaluate fitness of HPpos(i,:)
21: if HPposFitness(i) < TargetScore then
22: Update Target and TargetScore
23: end if
24: end for
25: Store TargetScore in Convergence curve(t)
26: end for
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To validate the superiority of the IHPO algorithm, this article compares its per-
formance with traditional optimization algorithms using the test function described in
Equations (14) and (15). The results are depicted in Figure 6.

f1(x) = −20 exp(−0.2

√
1
n

n
∑

i=1
x2

i )−

exp( 1
n

n
∑

i=1
cos(2πxi)) + 20 + e

(14)

f2(x) =
1

4000

n

∑
i=1

(x2
i )−

n

∏
i=1

cos(
xi√

i
) + 1 (15)Sensors 2024, 24, x FOR PEER REVIEW 12 of 27 
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According to Figure 6a,b, it can be observed that the IHPO optimization algorithm
converges to values of 8.9 × 10−16 and 0, respectively. The convergence speed of the
IHPO algorithm is significantly higher than that of other traditional algorithms, achieving
superior convergence values with the fewest number of iterations.

3.2. Variational Mode Decomposition

During the process of collecting transformed voiceprint signals, there is often a signifi-
cant amount of noise interference. In order to ensure the accuracy of fault diagnosis, this
article adopts the VMD algorithm for denoising processing, aiming to restore the original
voiceprint signal as faithfully as possible.

The VMD algorithm constructs a variational problem and solves it [23,24]. Firstly, the
original signal is decomposed into k modal components, denoted as µk(t). The energy
spectrum is obtained through Hilbert transformation. f (t) is made equal to each modal
component µk(t) as a constraint condition, and the Lagrange multiplier λ(t) and penalty
factor α are introduced to transform it into a variational problem, as shown in Equation (16).

min
{µk}{ωk}

{
K
∑
k
∥∂t[(δ(t) +

j
πt ) ∗ µk(t)]e−jωkt∥

2

2

}

L
µk ,ωkλ

= α
K
∑
k
∥∂t[(δ(t) +

j
πt ) ∗ µk(t)]e−jωkt∥

2

2

+∥ f (t)−
K
∑

k=1
µk(t)∥

2

2
+

〈
λ(t), f (t)−

K
∑

k=1
µk(t)

〉 (16)
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In Equation (16), * represents the convolution operation, µk(t) is the k-th modal
component, ωt is the central frequency, δ(t) is the impulse function, ∂t represents the partial

derivative with respect to t, and
〈

λ(t), f (t)−
K
∑

k=1
µk(t)

〉
denotes the inner product.

The alternating direction multiplier method is used to solve the variational problem to
find the optimal values of µk(t), ωk, which is realized in the following steps.

(1) Initialize the parameters µk(t), ωk, λ, set the loop n = n + 1, and iteratively update
the parameters according to Equations (17)–(19).

(2) Update µk(t).

µ̂n+1
k (ω) =

f̂ (ω)−
k−1
∑

i=1
µ̂n(ω) + λ̂n(ω)

2

1 + 2α(ω − ωn
k )

2 (17)

In Equation (17), µ̂n+1
k (ω), f̂ (ω), λ̂n(ω) are the Fourier transforms corresponding to

µn+1
k , f (t), λn.

(3) Update ωk.

ωn+1
k =

∫ ∞
0 ω

∣∣∣µ̂n+1
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣µ̂n+1
k (ω)

∣∣∣2dω

(18)

(4) Update λ.

λ̂n+1 = λ̂n + τ[ f̂ (ω)−
K

∑
k=1

µ̂n+1
k (ω)] (19)

(5) Determine convergence.
K
∑

k=1
∥µ̂n+1

k − µ̂n
k ∥

2
2

∥µ̂n+1
k ∥2

2

< ς (20)

by setting ς > 0.
(6) Determine whether the iteration condition is satisfied; if not, return to step (2).

3.3. Multi-Strategy Improvement of MFCC for Dimensionality Reduction Extraction of
Voiceprint Features

As a common speech feature extraction method, MFCC is widely used in the field
of speech recognition [25]. Considering that spectral leakage in the Fourier transform is
very likely to occur, the S-transform is used as a time-frequency conversion method, and
combined with the characteristics of the stationary energy of the converter voiceprint signal,
it undergoes processing in the medium time to obtain the improved MFCC method to
realize the voiceprint signal feature extraction.

3.3.1. S-Transform

The S-transform employs the Gaussian window function with adaptive adjustment of
time and frequency parameters, replacing the fixed window function of the Fourier trans-
form and the scale parameter window function of the wavelet transform. This approach
exhibits higher-frequency characteristics at low frequencies and effectively improves the
shortcomings of the Fourier transform [26].

The result of signal x(t) after S-transformation is shown in Equation (21).

S(τ, f ) =
∫ +∞

−∞
x(η)w(η − τ, f )e−j2π f ηdη (21)
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where f is the frequency, η is the time variable of x(η), τ is the time component after S-
transformation, and w(η − τ, f ) is the Gaussian window function for adaptive adjustment,
as shown in Equation (22):

w(η − τ, f ) =
| f |√
2π

e−
(t−η)2 f 2

2 (22)

3.3.2. Multi-Strategy Improvement MFCC

In the field of audible sound recognition, given that the human ear exhibits varying
sensitivities to the perception of each frequency band and the perception of the normal
frequency band is nonlinear, Mel filtering is typically employed to transform the spectral
information of voiceprint into Mel spectrum under Mel scale. The relationship between the
normal frequency scale and the Mel frequency scale is expressed as in Equation (23):

Mel(k) = 2595 × lg(1 + f /700) (23)

where f is the frequency on the regular scale and k is the frequency scale on the Mel scale.
In the domain of power equipment fault diagnosis, low-frequency information within

1000 Hz frequently incorporates numerous fault characteristics. Consequently, the uti-
lization of Mel filters can adjust voiceprint information to varying degrees, enhance low-
frequency information, and filter high-frequency information and compress it. The equal-
height Mel filter bank function is expressed in Equation (24):

H(m) f =


0, f < x(m − 1)

f−x(m−1)
x(m)−x(m−1) , x(m − 1) ≤ f ≤ x(m)

x(m+1)− f
x(m+1)−x(m)

, x(m) < f ≤ x(m + 1)
0, f > x(m + 1)

(24)

where m is the filter bank number and the number of filters in this paper is set to 26;
therefore, the range of m is 0 < m < 26, the center frequency of the Mel filter. The formula
for the calculation of x(m) is:

x(m) = (N
fs
)Mel−1(Mel( fmin)+

m Mel( fmax)−Mel( fmin)
M+1

(25)

where fs is the sampling frequency, fmax, fmin represent the frequency range of the Mel
filter bank, N is the number of S-transform samples, and M is the number of Mel filters.

The improved MFCC feature extraction method is distinguished from MFCC by the
simpler operations of frame splitting and window adding. The specific steps are as follows:

(1) Framing: the S-transform has a high time complexity, so in order to save time, the
original signal is framed with a fixed frame length.

(2) S-transform: the S-transform is performed on each frame by Equation (16) to obtain
the time-frequency matrix A(t, f ).

(3) The spectral information is sought, as shown in Equation (26).

F( f ) =

t
∑

i=1
|A(t, f )|2

t
(26)

where A(t, f ) is the time-frequency matrix, t is the time corresponding to the S-
transform matrix, and f is the frequency.

(4) Bandpass filtering is performed, as in Equation (27).

Mel(m) = ln(
N−1

∑
k=0

|F( f )|Hm( f )) (27)
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where Mel(m) is the Mel filter output and Hm( f ) is the filter bank.
(5) A discrete cosine transform is performed as in Equation (28) to obtain the first set of

voiceprint characterization coefficients f eat1.

C(i) =
m

∑
j=1

Mel(m) cos(
πi(m − 0.5)

26
) (28)

(6) We perform first-order and second-order differentiation operations on f eat1 to obtain the
second and third sets of parameters f eat2, f eat3 of the improved MFCC eigenvectors.

(7) We splice the three sets of parameters to form the feature vector IMFCC = [ f eat1, f eat2, f eat3].

Compared with the human speaking voice, power equipment voiceprint signal char-
acteristics tend to be stationary; the feature vector obtained above contains a large amount
of redundant information between the frames, so the use of mid-time features as shown
in Equation (29) is more in line with the characteristics of stationary power equipment
voiceprint features, reducing the interference of the heterogeneous long frames and having
a stronger generalization [27], The multi-strategy improvement MFCC flowchart is shown
in Figure 7.

MIMFCC =

N
∑

i=1
IMFCCi

N
(29)

where IMFCCi is the ith frame signal feature and N is the number of medium-time signal
frames and denotes MIMFCC is the medium-time feature vector.
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3.4. Improved Temporal Convolutional Neural Networks

Time convolutional networks have good sequence information processing capabilities.
In comparison to traditional architectures such as convolutional neural networks, this
network achieves deeper networks by incorporating skip connections of residual blocks,
effectively integrating shallow features into the depths for improved accuracy [28,29]. To
simplify the network’s complexity, cavity convolution is employed to expand the sensory
field, and the causal cavity convolution is calculated as shown in Equation (30):

F(t) =
k−1

∑
i=0

f (i)xt−di (30)

where d is the void coefficient, k is the convolution kernel size, and f (i) is the ith element of
the convolution kernel.

The traditional TCN residual module introduces nonlinearity through the Relu acti-
vation function. However, when the input is negative, the zero-gradient problem occurs,
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leading to the offset phenomenon. This, in turn, limits the learning efficiency and effective-
ness of the TCN. Setting the output mean of the activation function to zero serves a dual
purpose: it reduces the gradient vanishing problem and mitigates the impact of weight
initialization. Additionally, the output of the activation function with zero-mean facilitates
the propagation of information between the different layers of the network, resulting in bet-
ter learning dynamics. This helps the network learn complex features and representations
more efficiently. To a greater extent, it can enhance the network’s learning performance.
Therefore, the Mish activation function is used to replace the traditional Relu function, as
in this equation:

F(x) = mish(x) = x × tanh(ln(1 + ex)) (31)

As depicted in Figure 8, compared with other activation functions, although the Tanh
function has an absolute 0-mean value, it is prone to gradient vanishing due to the range of
[−1, 1]. The Mish activation function is a better trade-off between the 0-mean value and
the gradient vanishing problem [30].
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The improved TCN architecture is illustrated in Figure 9 (k = 2, d = 1, 2, 4), where each
residual module contains two causal convolutional layers. The network’s performance is
enhanced through the incorporation of the Mish activation function, weight normalization,
and dropout.
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The improved TCN pseudocode is shown in Algorithm 2:
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Algorithm 2 improved Temporal Convolutional Network

Input: Input sequence X with length T, Number of residual blocks K, Stack size S, Number of output channels C, Filter size f,
Initial dilation value d0, Learning rate η
Output: Probability distribution over classes
1: Initialize all model parameters
2: Set learning rate to η
3: Set initial dilation value to d0
4: for k = 1 to K do
5: for s = 1 to S do
6: for c = 1 to C do
7: Apply causal convolution to input sequence X with dilation d
8: Apply activation function (e.g., Mish) to the output
9: Apply weight normalization to the output
10: Update output sequence O
11: end for
12: end for
13: Stack the output sequence O with the input sequence X as the new input
14: Increase the dilation value d exponentially
15: end for
16: Apply a fully connected layer to the final output sequence O
17: Apply softmax function to obtain probability distribution over classes

3.5. Multi-Strategy Improved MFCC-IHPO-VMD-ITCN Combined Fault Diagnosis Modeling

Converter transformer voiceprint signals are mainly concentrated in the low-frequency
band. Considering the operating patterns of the converter transformer, a combined
voiceprint–electric feature vector is adopted to overcome the problem of interference
between core and winding vibrations. The accurate identification of converter transformer
faults is achieved through a diagnostic process from denoising through feature extraction
to pattern recognition. The diagnostic workflow is illustrated in Figure 10.
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The VMD is optimized based on IHPO to obtain the proprioceptive voiceprint signal.
The selection of the decomposition number k and the penalty factor α has a significant
impact on the decomposition result. It is prone to over-decomposition or loss of band
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information. Therefore, the minimum envelope entropy shown in Equation (32) is selected
as the fitness function. IHPO is utilized to select the optimal [k, α] to overcome the inherent
defects of VMD decomposition.

Fitness = min( f (i))

f (i) = −
N
∑

i=1
p(i) · log 10(p(i))

p(i) = a(i)/
N
∑

i=−1
a(i)

(32)

where N is the number of Intrinsic Mode Function (IMF) components, f (i) is the en-
velope entropy after Hilbert adjustment, p(i) is the normalized form, and a(i) is the
envelope signal.

Through the normalization of the load signal combined with the construction of
multi-strategy improved MFCC for converter voiceprint and electric joint feature vector,
multi-channel signal fault diagnosis is achieved.

Optimizing ITCN based on IHPO involves fine-tuning key parameters like kernel size
(k) and dilation factor (d) for expansion convolution, which are crucial in determining the
receptive field size and training accuracy. Utilizing Equation (33) as the fitness function
enables adaptive optimization of ITCN to find optimal values for (k) and (d) that maximize
the performance.

Fitness = (1 − accTrain)× 100 (33)

where accTrain is the training set accuracy.

4. Calculus Analysis
4.1. Noise Reduction Processing for Voiceprint Signals

The voiceprint signals collected from outdoor substations are susceptible to significant
transient and continuous noise interference, which inevitably affects the accuracy of fault
diagnosis. Therefore, performing noise reduction processing is crucial.

Based on the given information, the optimization algorithm has a population size of 25
and a dimension of 2. The upper limit is denoted as ua = [25, 3000], while the lower limit
is denoted as ub = [1, 500]. Through 20 iterations, the fitness function changes are shown
in Figure 11. In comparison to the HPO and HHO algorithms that converge to 3.208 and
3.2141, respectively, the proposed IHPO optimization algorithm in this study demonstrates
better convergence performance.
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Figure 11. Comparison of fitness function values of different optimization algorithms. Figure 11. Comparison of fitness function values of different optimization algorithms.

It reaches the optimal solution within five iterations, with a significantly smaller final
fitness value of 3.194. The optimal values obtained are k = 16 and α = 1246. The results of
the IMF decomposition using IHPO-VMD are shown in Figure 12.
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Figure 12. (a–d) Component IMF1–IMF16 after IHPO-VMD decomposition. 

This article compares the results of IHPO-VMD with manually selected values of k 
and α to validate the superiority of IHPO-VMD. Taking k = 16 and α = 1000 as an exam-
ple, the first two decomposition results are shown in Figure 13a. When the value of α is 
too small, it results in a wide bandwidth, causing severe mode mixing between the 400 
Hz and 500 Hz components, as well as between the 600 Hz and 1000 Hz components. In 
contrast, Figure 13b shows that IHPO-VMD avoids the mode mixing problem. 

Figure 12. (a–d) Component IMF1–IMF16 after IHPO-VMD decomposition.

This article compares the results of IHPO-VMD with manually selected values of k
and α to validate the superiority of IHPO-VMD. Taking k = 16 and α = 1000 as an example,
the first two decomposition results are shown in Figure 13a. When the value of α is too
small, it results in a wide bandwidth, causing severe mode mixing between the 400 Hz and
500 Hz components, as well as between the 600 Hz and 1000 Hz components. In contrast,
Figure 13b shows that IHPO-VMD avoids the mode mixing problem.
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By calculating the correlation coefficients of the 16 IMF components, noise reduction
processing can be achieved by setting a threshold using Equation (34). The correlation
coefficients of each component are illustrated in Figure 14. Through the establishment of a
threshold value, C = 0.212, the IMF1–IMF4 components can be recombined to derive the
voiceprint signal of the converter transformer.

C =

√
n
∑

i=1
(ρi−ρ)2

k

ρk =

n
∑

i=1
(xi,k−xk)(yi−y)√

n
∑

i=1
(xi,k−xk)

2
√

n
∑

i=1
(yi−y)2

(34)

where ρi is the correlation coefficient of the ith order IMF component, ρ is the mean value, k
is the number of components, x is the IMF component; y is the original signal; and n is the
number of sampling points.
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4.2. Joint Feature Vector Extraction

Based on the 1 s denoised voiceprint data, a frame length of 25 ms was chosen to
generate an enhanced MFCC feature vector with a size of [36 × 39]. In this representa-
tion, 36 denotes the number of frames, and 39 signifies the dimensionality of the feature
vector, as depicted in Figure 15a. The voiceprint signal of the converter transformer
demonstrates stability, exhibiting high redundancy between frame numbers. To miti-
gate complexity, a mid-term feature vector of 250 ms was constructed, as depicted in
Figure 15b, where the feature vector changes from [36 × 39] to [4 × 39]. This leads to a
notable reduction in its complexity.
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Based on the provided information, feature extraction from the load signal was carried
out using per-unit value to construct a joint voiceprint–electric feature vector of size [4× 40].
The iron core faults and winding faults in the converter transformer exhibit strong random-
ness, with distinct characteristic spectra corresponding to different loosening conditions. As
analyzed in 2.3 and Table 1, iron core fault diagnosis is accomplished in Stage I, while wind-
ing fault diagnosis is achieved in Stage III. Through the separation of voiceprint features
of the iron core and winding based on the load signal, a joint voiceprint–electric feature
vector is constructed. In Stage II, the fault is defined as either an iron core or winding fault.
However, this stage represents an unmonitorable phase, and determining whether a core
failure or a winding failure is challenging for maintenance personnel. The fault diagnosis
is conducted in stages to precisely identify iron core loosening faults, winding loosening
faults, and DC bias faults. This approach effectively overcomes the limitation of existing
research focusing on single fault diagnosis, providing a more comprehensive diagnostic
capability. The spectral characteristics of typical defects in the converter transformer section
are illustrated in Figure 16.
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Figure 16. (a–c) are the typical defective spectral characteristics of the converter transformer.

4.3. Description of Experimental Objects and Measurement Points

The converter transformer, operating at a high voltage level and featuring a complex
structure, plays a crucial role in high-voltage DC transmission technology. Utilizing the
original model for fault diagnosis studies involves significant expenses and requires exten-
sive equipment. Therefore, in this study, we sourced fault data from the signal detection
system of an 800 kV converter station mentioned above. This system not only enables
real-time storage of fault data but also allows for historical playback. To diversify fault
samples, we used the monitoring system to collect fault signals from other converter sta-
tions to build a sample library. In this article, we collected fault signals from converter
transformers experiencing DC bias, core loosening, winding loosening, and normal states.
Both acoustic and current signals were collected through historical playback. The dataset
was constructed following the method outlined in Section 4.2, involving division into the
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training sets and the test sets to ensure the effectiveness of deep learning [31], as shown in
Table 3.

Table 3. Combined model training program.

Operational State Serial Number Training Sets/Each Test Sets/Each

Normal 0 180 20
Iron core loosening 1 180 20
Winding loosening 2 180 20

DC bias 3 180 20
Core or winding fault 4 180 20

The IHPO parameters were set as follows: the number of populations is 30, the
maximum number of iterations is 50, the epoch of parameter optimization is 50, the upper
limit is ua = [16, 6], and the lower limit is ub = [1, 1]. Adaptive optimization of the
convolution kernel size k and the expansion factor d was realized, and the change in fitness
value is shown in Figure 17, which converged to 0.082 after 21 iterations and gave outputs
of k = 16 and d = 3.
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Figure 18. (a) Model identification results; (b) model testing set prediction results. 

4.4. Comparative Analysis of Combined Forecasting Methods 

To assess the performance of the combined model, in this article, we conducted a 
comparison with the IHPO-TCN model utilizing voiceprint–electric joint feature vectors 
and the IHPO-ITCN model based on audio feature vectors. The results are presented in 
Figure 19a. Upon comparing a (1) and a (2), it is evident that a (1) exhibits superior con-
vergence, reaching 99.91% accuracy as epoch increases, surpassing a (2) in stability. This 
validates the superiority of model (a). In contrast, model a (3) achieves lower accuracy, 
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compared to the other models analyzed. 

Figure 17. Change in fitness function.

The optimized results of IHPO were used as the input for ITCN, configuring the model
with an epoch set to 100 and a batch size of 32. As illustrated in Figure 18a, this integrated
model demonstrated stable convergence, achieving 100% accuracy after 88 epochs. To
validate the training accuracy of the model, it was tested using a validation set, and
the prediction results are depicted in Figure 18b, with a test accuracy of 99%. Through
this analysis, the combination model, which utilizes current signals and incorporates
audio–electric joint features, successfully mitigated interference between faults, affirming
the feasibility of this combined model.
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4.4. Comparative Analysis of Combined Forecasting Methods

To assess the performance of the combined model, in this article, we conducted a
comparison with the IHPO-TCN model utilizing voiceprint–electric joint feature vectors
and the IHPO-ITCN model based on audio feature vectors. The results are presented
in Figure 19a. Upon comparing a (1) and a (2), it is evident that a (1) exhibits superior
convergence, reaching 99.91% accuracy as epoch increases, surpassing a (2) in stability. This
validates the superiority of model (a). In contrast, model a (3) achieves lower accuracy,
converging to 95.41% after 94 epochs. The test set prediction results for the a (3) model are
depicted in Figure 19b, with a test accuracy of 94%. Notably, mixed interference between
core loosening and winding loosening faults is observed. In conclusion, the IHPO-ITCN
model based on audio-electric joint feature vectors demonstrates significant superiority
compared to the other models analyzed.
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A comparison of training time and accuracy of different feature signal fault recognition
models is shown in Table 4. In the comparison experiments, the number of training sets
and test sets are shown in Table 3, and the parameter settings of each model are also equal.
Compared with traditional MFCC, MFCC’s multi-dimensional improvement strategy de-
creased training time by 26 s and increased accuracy by 2.82%. These results validate the
superiority of the improved MFCC in feature extraction. Due to changes in feature dimen-
sions, the training time of feature vectors constructed by the voiceprint signals’ combined
load is longer. Compared with traditional MFCC features, traditional MFCC combined
load features have a longer training time of 5.6 s but an accuracy improvement of 5.95%.
Similarly, multi-strategy improvement MFCC combined load features have a training time
increase of 1.1 s but an accuracy improvement of 4.33% compared to single multi-strategy
improvement MFCC features. This verifies that although load signal intervention prolongs
a certain training time, it effectively improves the accuracy of fault classification. For the
diagnostic model proposed in this article, the accuracy ultimately converges to 100% and
the training time is shorter, thus confirming the superior performance of the model.

Table 4. Comparison of training time and accuracy of different feature signal fault recognition models.

Characteristic Signal Type Training Time/s Convergence to Maximum Accuracy/%

Traditional MFCC 50.6 92.85
Multi-strategy improvement MFCC 24.6 95.67

Load + multi-strategy improvement MFCC 25.7 100
Load + traditional MFCC 56.3 98.8
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In order to further substantiate the superiority of TCN in inverter voiceprint fault
diagnosis, in this article, we conducted a comparative analysis with traditional machine
learning algorithms, ensuring consistency in dataset determination, epochs, and other pa-
rameters used for the comparison method. The hyperparameter settings of the comparison
model are provided in Table 5.

Table 5. Contrasting model hyperparameter settings.

Contrast Model Activation Function Batch Size Learning Rate

TCN Relu 16 0.001
CNN Relu 16 0.001
LSTM Relu 16 0.001
GRU Relu 16 0.001

The recognition results of different machine learning models are presented in Table 6:
Utilizing the load joint multi-strategy to improve MFCC parameters as fault features to
construct a dataset, the four machine learning algorithms show good results in training time
and test set recognition accuracy, further verifying the effectiveness of the fault diagnosis
model in feature extraction. However, when compared with CNN, although TCN has a
training time of 1.9 s longer, it excels in capturing deep features, leading to a 3% higher
recognition accuracy. In contrast to TCN, the training times of GRU and LSTM are 2.2 s and
2.7 s longer, respectively, with accuracy reductions of 7% and 5%, confirming the superiority
of TCN in this diagnostic model.

Table 6. Comparison model recognition results.

Contrast Model Training Time/S Test Set Accuracy/%

TCN 25.7 99
CNN 23.8 96
LSTM 27.9 92
GRU 28.4 94

5. Conclusions

This paper proposes a fault diagnosis method that combines the multidimensional-
improvement strategy of MFCC with adaptive VMD-ITCN and incorporates the influ-
ence of load signals. This method significantly enhances recognition accuracy and is
applicable in the field of fault diagnosis for converter transformers. Our experimental
results demonstrate that the application of IHPO for optimizing VMD and ITCN has sig-
nificant benefits, such as improved convergence and the avoidance of parameter-related
impacts on fault diagnosis models. The introduction of load signals divides the entire
operational process of the converter transformer into three stages, diagnosing core faults
in Stage I and winding faults in Stage III. The effectiveness of the proposed model was
verified using a sample dataset from an 800 kV converter station. This model exhibits
superior performance in terms of recognition accuracy and training speed, providing
a new approach for maintenance personnel to promptly and accurately detect internal
defects in converter transformers.

The fault diagnosis model proposed in this article is based on a data-driven back-
ground, which achieves fault classification through row analysis of historical data of
converter transformers. Therefore, the number of fault categories and samples is relatively
small. In future research, we will collect fault data of converter transformers in different
scenarios and expand the types of faults. The idea of transfer learning, as described in
reference [32,33], can also be introduced to further improve the generalization of diagnostic
models. On the other hand, we will consider establishing an accurate mathematical model
from a model-driven perspective to simulate fault signals and achieve fault diagnosis.
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